1
|
Yuan H, Wang Q, Tan J, Wu J, Liang C, Wang Y, Deng T, Hu Z, Liu C, Ye X, Wu Q, Wu X, Zheng X, Sun W, Fan Y, Jiang L, Peng L, Zou L, Huang J, Wan Y. Ionic titanium is expected to improve the nutritional quality of Tartary buckwheat sprouts through flavonoids and amino acid metabolism. Food Chem 2024; 461:140907. [PMID: 39173266 DOI: 10.1016/j.foodchem.2024.140907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Tartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, PR China; Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, Jilin, PR China
| | - Jianxin Tan
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, Tibet, PR China
| | - Jingyu Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Tingting Deng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Sichuan Institute of Food Inspection, Chengdu 610097, Sichuan, PR China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| |
Collapse
|
3
|
Morita M, Naito Y, Itoh Y, Niki E. Comparative study on the plasma lipid oxidation induced by peroxynitrite and peroxyl radicals and its inhibition by antioxidants. Free Radic Res 2019; 53:1101-1113. [DOI: 10.1080/10715762.2019.1688799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mayuko Morita
- Gastrointestinal Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| |
Collapse
|
8
|
Sadowska-Bartosz I, Gajewska A, Skolimowski J, Szewczyk R, Bartosz G. Nitroxides protect against peroxynitrite-induced nitration and oxidation. Free Radic Biol Med 2015; 89:1165-75. [PMID: 26546694 DOI: 10.1016/j.freeradbiomed.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland.
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Janusz Skolimowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
9
|
Ribeiro D, Freitas M, Lima JLFC, Fernandes E. Proinflammatory Pathways: The Modulation by Flavonoids. Med Res Rev 2015; 35:877-936. [PMID: 25926332 DOI: 10.1002/med.21347] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a natural, carefully orchestrated response of the organism to tissue damage, involving various signaling systems and the recruitment of inflammatory cells. These cells are stimulated to release a myriad of mediators that amplify the inflammatory response and recruit additional cells. These mediators present numerous redundancies of functions, allowing a broad and effective inflammatory response, but simultaneously make the understanding of inflammation pathways much difficult. The extent of the inflammatory response is usually self-limited, although it depends on the balance between the pro- and anti-inflammatory signals. When that equilibrium is dislocated, a more widespread inflammatory response may take place. Flavonoids have been shown to be possible alternatives to the traditionally molecules used as anti-inflammatory agents. In fact, the biological activities of flavonoids include the modulation of the diverse phases of inflammatory processes, from the gene transcription and expression to the inhibition of the enzymatic activities and the scavenging of the reactive species. In the present review, the inflammatory network is widely revised and the flavonoids' broad spectrum of action in many of the analyzed inflammatory pathways is revised. This kind of integrated revision is original in the field, providing the reader the simultaneous comprehension of the inflammatory process and the potential beneficial activities of flavonoids.
Collapse
Affiliation(s)
- Daniela Ribeiro
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Marisa Freitas
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - José L F C Lima
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| |
Collapse
|