1
|
Lu W, Cai G, Xing Y, Fu X, Zhou L, Tang Y, Xu R, Li Y, Wu L. SWG5 regulates grain size and weight via sugar metabolism-mediated signaling in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1552268. [PMID: 40201785 PMCID: PMC11977390 DOI: 10.3389/fpls.2025.1552268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025]
Abstract
Grain size significantly affects rice yield and quality. Although several genes that regulate grain size have been identified, their mechanisms remain unclear. In this study, we characterized the swg5 mutant, which has a smaller plant height, shorter panicles, and smaller grains compared to the wild type (WT). MutMap resequencing and gene knockout analysis identified SWG5, a gene encoding the kinesin-13a protein, a new allele of SRS3 that positively regulates grain length and weight. RNA sequencing analyses revealed that the SWG5 allele is involved in diterpenoid biosynthesis, amino sugar metabolism, and pentose-glucuronate interconversions. Furthermore, young panicles of the swg5 mutant exhibited decreased sucrose invertase activity as well as reduced sugar and starch content. These findings indicate that SWG5/SRS3 plays a significant role in sugar metabolism, influencing grain size and weight in rice. This research provides valuable insights into breeding rice varieties with improved yield and grain quality.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Gaoyi Cai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yannan Xing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Xingzhe Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yijun Tang
- Zunyi Normal College, Department of Resources and Environment, Zunyi, Guizhou, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences (CAS) Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| |
Collapse
|
2
|
Liang C, Han Y, Xu H, Liu D, Jiang C, Li Q, Hu Y, Xiang X. The high molecular weight and large particle size and high crystallinity of starch increase gelatinization temperature and retrogradation in glutinous rice. Carbohydr Polym 2025; 348:122756. [PMID: 39562053 DOI: 10.1016/j.carbpol.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 11/21/2024]
Abstract
The gelatinization and retrogradation properties of glutinous rice starch are important factors that affect its quality. In this study, the thermal properties, viscosity properties and retrogradation of starch from 152 natural glutinous varieties were investigated, and further explored the effects of starch structure on gelatinization temperature (GT) and retrogradation. The results demonstrated a strong positive linear correlation between thermal properties and retrogradation of glutinous rice. The high molecular weight, high crystallinity and large particle size of starch have significant positive effects on the thermal properties and retrogradation of amylopectin. Varieties of glutinous rice with high molecular weight starch, large starch particle sizes, and high crystallinity exhibited high GT and retrogradation rates (R%). Additionally, there was a significantly negative correlation between the range of gelatinization temperature and gelatinization enthalpy in raw starch, while a larger temperature range in retrograded starch corresponded to greater gelatinization enthalpy. The recrystallization of retrograded starch exhibited higher crystal heterogeneity and a broader range of melting points compared to raw glutinous starch. These findings provide valuable insights for breeding glutinous rice varieties with desirable retrogradation traits, particularly those with low R%.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Dan Liu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Chunyan Jiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China.
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China.
| |
Collapse
|
3
|
Li M, Miao M, Sun J, Fang H, Liu L, Xu X, Zheng Y, Lai Q, Tang Y, Liu X, Shu X, Wang Z, Wang Y. Structure and physicochemical properties of starches from six accessions of the genus Pueraria in China. Int J Biol Macromol 2024; 279:135508. [PMID: 39260630 DOI: 10.1016/j.ijbiomac.2024.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Kudzu (Pueraria lobata) root contains abundant starch, but the physicochemical properties of kudzu starch are not well understood. In this study, we compared the compositions and physicochemical properties of starches isolated from six Pueraria accessions in China. Caige starch exhibited the highest purity (96.99 %) and amylose content (24.76 %), while Yege starch contained higher levels of puerarin (493.37 μg/g) and daidzein (38.68 μg/g). All kudzu starches were rich in resistant starch, with RS2 content ranging from 38.61 % to 46.22 % and RS3 content from 3.59 % to 6.04 %. The granules of kudzu starches varied in morphology, with Yege starch featuring larger polygonal granules. The kudzu starches presented either A-type or A-type-like C-type diffraction patterns. Caige starch had a higher IR2 value (1.28), higher gelatinization temperatures, wider temperature ranges, and greater enthalpy changes. Yege (JX) starch exhibited the highest peak viscosity but the lowest setback viscosity and pasting temperature. Fenge starch showed the highest final viscosity, with Fenge (ZJ) starch demonstrating the highest crystallinity (25.7 %) and IR1 value (0.80). These results indicated that kudzu starches derived from various Pueraria species possess unique structural and physicochemical properties, which provide significant potential for applications in food and other industrial fields.
Collapse
Affiliation(s)
- Mengdi Li
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Department of Agronomy, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Miao
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, PR China
| | - Hao Fang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Lei Liu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoxiao Xu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Advanced Agricultural Sciences, Zhejiang Agriculture & Forest University, Hangzhou 311300, PR China
| | - Yanran Zheng
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Qixian Lai
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yong Tang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xunyue Liu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture & Forest University, Hangzhou 311300, PR China
| | - Xiaoli Shu
- Department of Agronomy, Zhejiang University, Hangzhou 310058, PR China
| | - Zhi'an Wang
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, PR China.
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Lab of the Ministry of Agriculture for Creative Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
4
|
Chen Z, Liang N, Zhang H, Li H, Guo J, Zhang Y, Chen Y, Wang Y, Shi N. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem X 2024; 21:101118. [PMID: 38282825 PMCID: PMC10819196 DOI: 10.1016/j.fochx.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
The intricate relationship between resistant starch (RS) and the gut microbiome presents a dynamic frontier in nutrition science. This review synthesizes current understandings of how RS, an indigestible form of starch found naturally in certain foods and also enhanced through various modification methods, interacts with the gut microbiome. We particularly focus on how RS fermentation in the colon contributes to the production of beneficial volatile fatty acids (VFAs) such as butyrate, acetate, and propionate. These VFAs have been recognized for their vital roles in maintaining gut barrier integrity, modulating inflammation, and potentially influencing systemic health. Additionally, we discuss the dietary implications of consuming foods rich in RS, both in terms of gut health and broader metabolic outcomes. By consolidating these insights, we emphasize the significance of RS in the context of dietary strategies aimed at harnessing the gut microbiome's potential to impact human health.
Collapse
Affiliation(s)
| | | | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Liang C, Xu H, You H, Zhang O, Han Y, Li Q, Hu Y, Xiang X. Physicochemical properties and molecular mechanisms of different resistant starch subtypes in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1313640. [PMID: 38259949 PMCID: PMC10800921 DOI: 10.3389/fpls.2023.1313640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Resistant starch (RS) can help prevent diabetes and decrease calorie intake and that from plants are the main source of mankind consumption. Rice is many people's staple food and that with higher RS will help health management. A significantly positive correlation exists between apparent amylose content (AAC) of rice and its RS content. In this study, 72 accessions with moderate or high AAC were selected to explore the regulatory mechanisms and physicochemical properties on different proceeding types of rice RS. RS in raw milled rice (RSm), hot cooked rice (RSc), and retrogradation rice (RSr) showed a wide variation and distinct controlling mechanisms. They were co-regulated by Waxy (Wx), soluble starch synthase (SS) IIb and SSI. Besides that, RSm was also regulated by SSIIa and SSIVb, RSc by granule-bound starch synthase (GBSS) II and RSr by GBSSII and Pullulanase (PUL). Moreover, Wx had significant interactions with SSIIa, SSI, SSIIb and SSIVb on RSm, but only the dominant interactions with SSIIb and SSI on RSc and RSr. Wx was the key factor for the formation of RS, especially the RSc and RSr. The genes had the highest expression at 17 days after flowering and were beneficial for RS formation. The longer the chain length of starch, the higher the RS3 content. RSc and RSr were likely to be contained in medium-size starch granules. The findings favor understanding the biosynthesis of different subtypes of RS.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Hui You
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Ouling Zhang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| |
Collapse
|
6
|
Park J, Oh SK, Doo M, Chung HJ, Park HJ, Chun H. Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients 2023; 15:nu15102248. [PMID: 37242130 DOI: 10.3390/nu15102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rice is a major source of carbohydrates. Resistant starch (RS) is digested in the human small intestine but fermented in the large intestine. This study investigated the effect of consuming heat-treated and powdered brown rice cultivars 'Dodamssal' (HBD) and 'Ilmi' (HBI), with relatively high and less than 1% RS content, respectively, on the regulation of glucose metabolism in humans. Clinical trial meals were prepared by adding ~80% HBI or HBD powder to HBI and HBD meals, respectively. There was no statistical difference for protein, dietary fiber, and carbohydrate content, but the median particle diameter was significantly lower in HBI meals than in HBD meals. The RS content of HBD meals was 11.4 ± 0.1%, and the HBD meals also exhibited a low expected glycemic index. In a human clinical trial enrolling 36 obese participants, the homeostasis model assessment for insulin resistance decreased by 0.05 ± 0.14% and 1.5 ± 1.40% after 2 weeks (p = 0.021) in participants in the HBI and HBD groups, respectively. The advanced glycation end-product increased by 0.14 ± 0.18% in the HBI group and decreased by 0.06 ± 0.14% in the HBD group (p = 0.003). In conclusion, RS supplementation for 2 weeks appears to have a beneficial effect on glycemic control in obese participants.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyejin Chun
- Department of Family Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
7
|
Jiang S, Cen J, Zhou Y, Wang Y, Wu D, Wang Z, Sun J, Shu X. Physicochemical characterizations of five Dioscorea alata L. starches from China. Int J Biol Macromol 2023; 237:124225. [PMID: 36990403 DOI: 10.1016/j.ijbiomac.2023.124225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
D. alata is an important edible and medicinal plant in China. Its tuber is rich in starch but the understanding of the physiochemical properties of D. alata starch is limited. In order to explore the processing and application potential of different D. alata accessions in China, five kinds of D. alata starch (LY, WC, XT, GZ, SM) were isolated and characterized. The study showed that D. alata tubers contained abundant starch, enriched in amylose and resistant starch (RS). D. alata starches showed B-type or C-type diffraction pattern, had higher RS content and gelatinization temperature (GT), lower fa and viscosity when compared to D. opposita, D. esculenta, and D. nipponica. Among D. alata starches, D. alata (SM) showing the C-type diffraction pattern, had the lowest proportion of fa with 10.48 %, the highest amylose, RS2 and RS3 content of 40.24 %, 84.17 % and 10.48 % respectively, and the highest GT and viscosity. The results indicated that D. alata tubers are potential sources for novel starch with high amylose and RS content, and provided a theoretical basis for further utilizations of D. alata starch in food processing and industry application.
Collapse
Affiliation(s)
- Shuo Jiang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jinxi Cen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhi'an Wang
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China.
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
8
|
Sahoo B, Kumari A, Sarkhel S, Jha S, Mukherjee A, Jain M, Mohan A, Roy A. Rice Starch Phase Transition and Detection During Resistant Starch Formation. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2163498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arunima Mukherjee
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Mahima Jain
- Department of Food Science & Technology, University of Georgia, Georgia, USA
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Georgia, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
9
|
Zhou Y, Cheng Z, Jiang S, Cen J, Wu D, Shu X. High temperature boosts resistant starch content by altering starch structure and lipid content in rice ssIIIa mutants. FRONTIERS IN PLANT SCIENCE 2022; 13:1059749. [PMID: 36466223 PMCID: PMC9715984 DOI: 10.3389/fpls.2022.1059749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
High temperature (HT) during grain filling had adverse influences on starch synthesis. In this study, the influences of HT on resistant starch (RS) formation in rice were investigated. Most genes in ssIIIa mutants especially in RS4 were upregulated under Normal Temperature (NT) while downregulated under HT when compared with those of wild parent R7954. ssIIIa mutants had higher RS content, more lipid accumulation, higher proportion of short chains of DP 9-15, and less long chains of DP ≥37. ssIIIa mutation exacerbated the influences of HT on starch metabolite and caused larger declines in the expression of BEI, BEIIa, BEIIb, and SSIVb when exposed to HT. HT reduced the contents of total starch and apparent amylose significantly in wild type but not in mutants. Meanwhile, lipids were enriched in all varieties, but the amounts of starch-lipid complexes and the RS content were only heightened in mutants under HT. HT led to greatest declines in the amount of DP 9-15 and increases in the proportion of fb3 (DP ≥37); the declines and increases were all larger in mutants, which resulted in varied starch crystallinity. The increased long-chain amylopectin and lipids may be the major contributor for the elevated RS content in mutants under HT through forming more starch-lipid complexes (RSV).
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Zhenfeng Cheng
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Shuo Jiang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jinxi Cen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
10
|
Irshad A, Guo H, Ur Rehman S, Gu J, Wang C, Xiong H, Xie Y, Zhao S, Liu L. Screening of Induced Mutants Led to the Identification of Starch Biosynthetic Genes Associated with Improved Resistant Starch in Wheat. Int J Mol Sci 2022; 23:10741. [PMID: 36142653 PMCID: PMC9502818 DOI: 10.3390/ijms231810741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Several health benefits are obtained from resistant starch, also known as healthy starch. Enhancing resistant starch with genetic modification has huge commercial importance. The variation of resistant starch content is narrow in wheat, in relation to which limited improvement has been attained. Hence, there is a need to produce a wheat population that has a wide range of variations in resistant starch content. In the present study, stable mutants were screened that showed significant variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch content, digestible starch, and total starch. The analysis of variance showed a significant difference in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of key genes regulating resistant starch biosynthesis (GBSSI and their isoforms) in the high resistant starch mutant lines, in comparison to the parent variety (J411). The expression of SBEs genes was higher in the low resistant starch mutants. The other three candidate genes showed overexpression (BMY, Pho1, Pho2) and four had reduced (SSIII, SBEI, SBEIII, ISA3) expression in high resistant starch mutants. The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146 may be due to missense mutations in these genes. Similarly, there was a stop_gained mutation for PHO2; it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing genes in four different mutants (low and high resistant starch mutants) shows that in addition to the important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute to the biosynthesis of resistant starch. There is a need to do further study about these new genes, which are responsible for the fluctuation of resistant starch in the mutants.
Collapse
Affiliation(s)
- Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Srichamnong W, Lasukhang W. Structural and chemical analysis of resistant starch effected by pre‐treatments, cooking methods, reheating and storage condition in parboiled germinated brown rice (
Oryza sativa
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Warangkana Srichamnong
- Institute of Nutrition Mahidol University Phuttamonton sai 4 Road, Salaya, Phuttamonton Nakhonpathom 73170 Thailand
| | - Wararat Lasukhang
- Institute of Nutrition Mahidol University Phuttamonton sai 4 Road, Salaya, Phuttamonton Nakhonpathom 73170 Thailand
| |
Collapse
|
12
|
Chao S, Mitchell J, Prakash S, Bhandari B, Fukai S. Effects of Variety, Early Harvest and Germination on Pasting Properties and Cooked Grain Texture of Brown Rice. J Texture Stud 2022; 53:503-516. [PMID: 35312202 PMCID: PMC9544751 DOI: 10.1111/jtxs.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
Brown rice is superior to white rice in nutritional value and in prevention of chronic diseases. However, it is not the preference of consumers and the relative consumption of brown rice is limited due to a number of factors including chewiness and perceived hard texture after cooking. While both early harvested brown rice and germinated brown rice have been shown to contain superior nutritional components, there is limited knowledge on textural properties of these types of brown rice relative to standard brown rice, and how varieties may affect such properties. Thus, the present study examined the effect of variety, early harvest and germination on those properties of 8 rice varieties with contrasting amylose content and known texture in terms of milled rice. Early harvest and germination decreased pasting viscosities and cooked grain hardness. However, their effect on the characteristics of flour and whole grains differed, in which germination had greater effect on pasting properties, while early harvest on texture of cooked grains. Softer texture of brown rice, about 32% lower could be achieved by germination, and 46% by harvesting early. There was a good relationship between pasting characteristics particularly setback and hardness among different varieties in brown rice, germinated brown rice and also in early harvest brown rice. This is the first time the comparison of texture between the 3 brown rice types has been reported. The results also provide new options for selection of desired characteristics for food processing and brown rice consumption. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sinh Chao
- The University of Queensland, School of Agriculture and Food Sciences, Qld, Australia
| | - Jaquie Mitchell
- The University of Queensland, School of Agriculture and Food Sciences, Qld, Australia
| | - Sangeeta Prakash
- The University of Queensland, School of Agriculture and Food Sciences, Qld, Australia
| | - Bhesh Bhandari
- The University of Queensland, School of Agriculture and Food Sciences, Qld, Australia
| | - Shu Fukai
- The University of Queensland, School of Agriculture and Food Sciences, Qld, Australia
| |
Collapse
|
13
|
You H, Liang C, Zhang O, Xu H, Xu L, Chen Y, Xiang X. Variation of resistant starch content in different processing types and their starch granules properties in rice. Carbohydr Polym 2022; 276:118742. [PMID: 34823776 DOI: 10.1016/j.carbpol.2021.118742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022]
Abstract
Ninety-nine lines from recombinant inbred lines were selected to investigate the effects of starch synthesis-related genes on resistant starch (RS) content in different proceeding types. RS in raw milled rice (RSm), hot cooked rice (RSc), and retrogradation rice (RSr) showed a wide variation among the lines, especially RSm arrived at 10.61%. Divergent variability of RSm, RSc and RSr indicated that there were different regulation mechanisms for them. Waxy wildtype allele (Wxa) could elevate RSm, RSc and RSr, but Soluble starch synthase IIa (SSIIa) only played a vital role in regulating RSm. Wxa-indica SSIIa could increase RSm, and Wxa-japonica SSIIa (SSIIaj) could elevate RSc and RSr. The mean diameter of Wxa-SSIIaj was significantly bigger than others. The bigger starch granules, the higher RSc and RSr. Starch granules morphology with high-RSm would have a higher percentage in polyhedral and angular shape. The results provide new information for rice breeding with high-RS content.
Collapse
Affiliation(s)
- Hui You
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ouling Zhang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
| | - Liang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongjun Chen
- Rice Research Institute of Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
14
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
15
|
Effects of intermittent drying on physicochemical and morphological quality of rice and endosperm of milled brown rice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Taddei F, Galassi E, Nocente F, Gazza L. Innovative Milling Processes to Improve the Technological and Nutritional Quality of Parboiled Brown Rice Pasta from Contrasting Amylose Content Cultivars. Foods 2021; 10:foods10061316. [PMID: 34201020 PMCID: PMC8229246 DOI: 10.3390/foods10061316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The demand for gluten-free products, including pasta, is increasing and rice pasta accounts for the largest share of this market. Usually, the production of rice pasta requires additives or specific technological processes able to improve its texture, cooking quality, and sensory properties. In this work, two rice cultivars, with different amylose content, were subjected to parboiling, micronization, and flour air fractionation to obtain brown rice pasta, without any supplement but rice itself. In particular, two types of pasta (spaghetti shape) were produced, one from 100% micronized wholemeal, and the other from refined rice flour replaced with 15% of the air-fractionated fine fraction. Regardless of the cultivar, pasta from wholemeal micronized flour showed higher protein and fiber content than refined flour enriched with fine fraction, whereas no differences were revealed in resistant starch and antioxidant capacity. Pasta from the high amylose content genotype showed the highest resistant starch content and the lowest predicted glycemic index along with sensorial characteristics as good as durum semolina pasta in fine fraction enriched pasta. Besides the technological processes, pasta quality was affected the most by the genotype, since pasta obtained from high amylose cv Gladio resulted in the best in terms of technological and sensory quality.
Collapse
|
17
|
Wang X, Zheng H, Tang Q, Chen Q, Mo W. Seed filling under different temperatures improves the seed vigor of hybrid rice (Oryza sativa L.) via starch accumulation and structure. Sci Rep 2020; 10:563. [PMID: 31953514 PMCID: PMC6969159 DOI: 10.1038/s41598-020-57518-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/30/2019] [Indexed: 11/12/2022] Open
Abstract
Seed filling is crucial for seed vigor and starch accumulation and structure. Differences in hybrid rice seed vigor were evaluated in field experiments, conducted across two sites in 2017 and 2018, under different seed filling temperatures along with the underlying mechanisms related to the seed filling characteristics and starch accumulation and structure. Significant differences in the seed vigor parameters were revealed, with different seed filling characteristics observed under different temperatures. When averaged across cultivars, the seeds with a low seed filling rate and long seed filling duration obsessed 11.9% higher germination percentage (GP) and 22.7% higher vigor index (VI) than those with a high seed filling rate and short seed filling duration. Moreover, a high seed filling rate and short seed filling duration significantly decreased the total starch and amylose contents and increased the amylopectin content. Additionally, when averaged across cultivars, the relative crystallinity and starch granule diameter obtained with a high seed filling rate and short seed filling duration were 3.8% and 15.1% higher, respectively, than those with a low seed filling rate and long seed filling duration. In summary, it can be speculated that seed filling characteristics determine hybrid rice seed vigor by affecting starch accumulation and structure.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Qimin Chen
- Yibin Vocational and Technical College, Sichuan, 644000, China
| | - Wenwei Mo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
18
|
Zhang X, Shen Y, Zhang N, Bao J, Wu D, Shu X. The effects of internal endosperm lipids on starch properties: Evidence from rice mutant starches. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
GWAS for Starch-Related Parameters in Japonica Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8080292. [PMID: 31430915 PMCID: PMC6724095 DOI: 10.3390/plants8080292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS). The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.
Collapse
|
20
|
Bao J, Zhou X, Xu F, He Q, Park YJ. Genome-wide association study of the resistant starch content in rice grains. STARCH-STARKE 2017. [DOI: 10.1002/star.201600343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinsong Bao
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
| | - Xin Zhou
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
| | - Feifei Xu
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
- Food Science Institute; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang P.R. China
| | - Qiang He
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Center for Crop Genetic Resource and Breeding (CCGRB); Kongju National University; Cheonan Republic of Korea
| |
Collapse
|
21
|
Donlao N, Ogawa Y. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non-waxy long-grain rice (Oryza sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:896-901. [PMID: 27234963 DOI: 10.1002/jsfa.7812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. RESULTS Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. CONCLUSION The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Natthawuddhi Donlao
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
22
|
Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. BREEDING SCIENCE 2016; 66:481-489. [PMID: 27795673 PMCID: PMC5010312 DOI: 10.1270/jsbbs.16037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/18/2016] [Indexed: 05/07/2023]
Abstract
Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.
Collapse
Affiliation(s)
- Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jianjiang Bai
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jun Fang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Gangseob Lee
- National Academy of Agricultural Science (South Korea),
Suwon City,
Korea 441-857
| | - Zhongze Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| |
Collapse
|
23
|
Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2746-54. [PMID: 26311190 DOI: 10.1002/jsfa.7439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/03/2015] [Accepted: 08/23/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND The objectives of this study were to: (1) observe the effects of drought stress (DS) on the structural development of endosperm starch granules; (2) investigate the effects of DS on composition and physicochemical properties of starches; and (3) compare the different responses to DS between soft and hard wheat. RESULTS DS resulted in large A-type starch granules at 12 d after anthesis (DAA) and a high percentage of B-type starch granules at 18 DAA in endosperm cells of the two wheat cultivars. DS decreased the 1000-grain weight, total starch and amylose contents, and amylose-to-amylopectin ratio of both starches. DS also decreased the percentage of B-type starch granules in NM13 and increased the number of hollows on the surface of A-type starch granules in XM33. DS further increased the swelling power and affected pasting properties of both starches. DS also significantly enhanced the hydrolysis degrees of starches by pancreatic α-amylase, Aspergillus niger amyloglucosidase, and HCl in NM13. DS altered the contents of rapidly digestible, slowly digestible, and resistant starches in native, gelatinised, and retrograded starches. CONCLUSION Overall, DS can affect the development of endosperm starch granules and the physicochemical properties of starches, thus affecting the qualities of the final wheat products. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Bo Li
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226541, China
| | - Leilei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wenjun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yunjie Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
24
|
Yu X, Li B, Wang L, Chen X, Wang W, Wang Z, Xiong F. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. PLoS One 2015; 10:e0138228. [PMID: 26394305 PMCID: PMC4578966 DOI: 10.1371/journal.pone.0138228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China
| | - Leilei Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenjun Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhong Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Fei Xiong
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- * E-mail:
| |
Collapse
|