1
|
Machado BR, Silva PGP, Garda-Buffon J, Santos LO. Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae. Braz J Microbiol 2022; 53:1881-1891. [PMID: 36199005 PMCID: PMC9679107 DOI: 10.1007/s42770-022-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/25/2022] [Indexed: 01/13/2023] Open
Abstract
Glutathione (GSH) and peroxidase (POD) are biomolecules of interest in the global market; thus, it is desirable to seek ways to increase their production. Magnetic field (MF) application is one of the technologies used in cultivation that has shown promising results to increase bioproducts. Therefore, this study aimed at evaluating the influence of MFs on GSH and POD production by Saccharomyces cerevisiae ATCC 7754. Different periods of MF application (35 mT) were evaluated over 72 h. The highest GSH production was reached in 48 h of cultivation in assays MF 0-24 (155.32 ± 9.12 mg L-1) and MF 0-72 (149.27 ± 3.62 mg L-1), which showed an increase of 121.9 % and 113 %, respectively, by comparison with the control without any MF application. The highest POD activity was achieved when MFs were applied throughout the culture (36.31 U mg-1) and POD productivity of 0.72 U mg-1 h-1. MF application throughout cultivation proved to be a promising strategy since all responses increased, i.e., GSH concentration, GSH productivity, POD activity, and POD productivity increased 113.7 %, 113 %, 20.4 %, and 28.6 %, respectively. This study is one of the first to consider MFs as a viable and low-cost alternative to produce GSH and POD in bioprocesses.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory of Mycotoxin and Food Science, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
2
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wu Y, Liu C, Niu Y, Xia J, Fan L, Wu Y, Gao W. Procyanidins mediates antineoplastic effects against non-small cell lung cancer via the JAK2/STAT3 pathway. Transl Cancer Res 2021; 10:2023-2035. [PMID: 35116524 PMCID: PMC8797329 DOI: 10.21037/tcr-20-3018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/09/2021] [Indexed: 01/05/2023]
Abstract
Background Lung cancer is a malignant tumor with one of the highest rates of cancer-related morbidity and mortality worldwide. Non-small cell lung cancer (NSCLC) account for 85% of all lung cancers and have a poor prognosis. Proanthocyanidins (PCs) are polyphenolic compounds that are found widely in natural plants. The present study aimed to determine the effects of PC on lung cancer and identify its possible mechanism. Methods A cell growth assay was used to detect the cell growth ability of A549 cancer cells, and a clonal formation assay was used to detect the cloning ability of A549 cancer cells. Flow cytometry was used to detect the effect of PCs on apoptosis and the cell cycle. The wound healing test, Transwell migration, and invasion test were used to detect the migration and invasion of human NSCLC A549 cells. Western blotting was utilized to detect the expression levels of N-cadherin, E-cadherin, vimentin, Janus kinase 2 (JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), STAT3, matrix metalloproteinase 2 (MMP-2), MMP-9, and the apoptosis-related proteins, B-cell lymphoma-2 (Bcl-2) and BCL2-associated X (Bax). Cell immunofluorescence was used to detect the expression levels of the p-STAT3 primary antibody. Results PCs reduced the proliferation and cloning ability of A549 cells and significantly inhibited the migration and invasion of A549 cells in a dose-dependent manner. At the same time, PCs induced apoptosis in A549 cells and G2/M cell cycle arrest. PCs increased the pro-apoptotic protein expression, Bax, and down-regulated the anti-apoptotic protein expression, Bcl-2. PCs also inhibited the epithelial-mesothermal transition (EMT) process of A549 cells. We also found that the JAK2/STAT3 signaling pathway inhibitor, AG490, cooperated with PCs to inhibit A549 cell invasion and migration. Our results demonstrated that PCs could mediate the antitumor effect of NSCLC via the JAK2/STAT3 pathway. Conclusions PCs can inhibit NSCLC A549 cell proliferation, invasion, metastasis, clone formation, EMT, and induced apoptosis and G2/M cell cycle arrest. They work by inhibiting the JAK2/STAT3 signaling pathway. As a novel antitumor drug, PCs have broad application prospects for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yue Wu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Chi Liu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuxu Niu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Jiamin Xia
- Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liwen Fan
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yun Wu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Grape ( Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020; 9:foods9101360. [PMID: 32992712 PMCID: PMC7599587 DOI: 10.3390/foods9101360] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Wine production is an ancient human activity that generates several by-products, which include some constituents known for their potential in health care and for their role in the food or cosmetic industries. Any variety of grape (Vitis vinifera L.) contains nutrients and bioactive compounds available from their juice or solid parts. Grape seed extract has demonstrated many activities in disease prevention, such as antioxidant effects, which make it a potential source of nutraceuticals. Grape seed is a remarkable winery industry by-product due to the bioactivity of its constituents. Methods for recovery of oil from grape seeds have evolved to improve both the quantity and quality of the yield. Both the lipophilic and hydrophilic chemicals present in the oil of V. vinifera L. make this wine by-product a source of natural nutraceuticals. Food and non-food industries are becoming novel targets of oil obtained from grape seeds given its various properties. This review focuses on the advantages of grape seed oil intake in our diet regarding its chemical composition in industries not related to wine production and the economic and environmental impact of oil production.
Collapse
|
5
|
Passos LS, Gnocchi KG, Pereira TM, Coppo GC, Cabral DS, Gomes LC. Is the Doce River elutriate or its water toxic to Astyanax lacustris (Teleostei: Characidae) three years after the Samarco mining dam collapse? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139644. [PMID: 32485386 DOI: 10.1016/j.scitotenv.2020.139644] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In 2015, after the Fundão dam failure, in Minas Gerais State, Brazil, around 50 million cubic meters of sludge from iron mining tailings were discharged into the Doce River. After the dam collapse, surpassing concentrations of metals were observed in the river sediment, which could be harmful to aquatic organisms, including the fishes. The present study aimed to evaluate the toxic effects of both elutriate and water, collected from the Doce River, on Astyanax lacustris three years after the dam failure. A bioassay was carried out through subchronic exposure to Doce River water (E0) and three elutriate concentrations (10, 50 and 100%). Biochemical analyses (CAT, GST, AChE), metal bioaccumulation assays and calculation of the integrated biomarker response index, version 2 (IBRv2) were performed. The outcomes uncovered deleterious consequences on organisms exposed to E0, with AChE inhibition and bioaccumulation of Fe and Mn in both liver and gills. IBRv2 values were more elevated in fishes exposed to E0 for all tissues. Thus, the elutriate was not harmful for the assessed fishes, since complexing agents presented in the sediment, such as goethite and hematite, may have triggered metals' chelation. In this scenario, the elutriate may have acted as a protective agent for the subjected organisms, unlike the Doce River waters, in which contaminants were proven to be hazardous for the aquatic biota.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil
| | - Karla Giavarini Gnocchi
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil
| | - Tatiana Miura Pereira
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil
| | - Gabriel Carvalho Coppo
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil
| | - Dandara Silva Cabral
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil
| | - Levy Carvalho Gomes
- Laboratório de Ictiologia Aplicada - LabPeixe, Universidade Vila Velha, Complexo Biopráticas - Av. José Dantas de Melo, 21, Boa Vista, Zip Code 29102-770 Vila Velha, ES, Brazil.
| |
Collapse
|
6
|
Liu S, Wang X, Zhang R, Song M, Zhang N, Li W, Wang Y, Xu Y, Zhang L. Amino acid, fatty acid, and carbohydrate metabolomic profiles with ginsenoside-induced insecticidal efficacy against Ostrinia furnacalis (Guenee). J Ginseng Res 2020; 44:544-551. [PMID: 32617034 PMCID: PMC7322809 DOI: 10.1016/j.jgr.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Background Previous studies have shown the insecticidal efficacy of ginsenosides. In the present study, we aimed to investigate the metabolic mechanism related to the inhibitory effect of panaxadiol saponins (PDSs) against the Asian corn borer Ostrinia furnacalis (Guenee). Methods Third instar larvae of O. furnacalis were fed normal diets with different concentrations of PDSs for 4 days. The consumption index, relative growth rate, approximate digestibility, and conversion of ingested and digested food were recorded. A targeted gas chromatography–mass spectrometry assay was performed to detect the profiles of amino acids, fatty acids, and carbohydrates in larvae of O. furnacalis. In addition, the activity of detoxification-related enzymes was determined. Results and Conclusions PDSs decreased the consumption index, relative growth rate, approximate digestibility, and conversion of ingested and digested food in the 3rd instar larvae of O. furnacalis in a dose-dependent manner. PDSs decreased 15 free amino acids, 16 free fatty acids, and 5 carbohydrates and increased the levels of palmitoleic acid, palmitic acid, and 9-octadecenoic acid in the 3rd instar larvae. The activity of detoxification-related enzymes, such as acetylcholinesterase, glutathione S-transferase, cytochrome P450, carboxylesterase, trehalase, acid phosphatase, and alkaline phosphatase, was reduced in a dose-dependent manner in the 3rd instar larvae exposed to PDSs. These data confirmed the inhibitory effect of PDSs against growth, food utilization, and detoxification in the 3rd instar larvae of O. furnacalis and the potential for using PDSs as an efficient tool for insect pest management for O. furnacalis larvae. Panaxadiol saponins (PDSs) reduced larval growth and food consumption and utilization in Ostrinia furnacalis. PDSs reduced the levels of free amino acids, fatty acids, and sugar in larvae. PDSs inhibited the activity of acetylcholinesterase, glutathione S-transferase, cytochrome P450, carboxylesterase, trehalase, acid phosphatase, and alkaline phosphatase. All the inhibitory effects of PDSs against O. furnacalis larvae were dose dependent.
Collapse
Affiliation(s)
- Shuangli Liu
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Xiaohui Wang
- Research Center of Agricultural Environment and Resources, Jilin Academy of Agricultural Sciences, China
| | - Rui Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Mingjie Song
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Nanqi Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Wanying Li
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Yingping Wang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Yonghua Xu
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
- Corresponding author. 2888 Xincheng Street, Changchun City, Jilin Province, China.
| | - Lianxue Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
- Corresponding author. 2888 Xincheng Street, Changchun City, Jilin Province, China.
| |
Collapse
|
7
|
Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8584136. [PMID: 29750172 PMCID: PMC5884402 DOI: 10.1155/2018/8584136] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.
Collapse
|
8
|
Ceci R, Duranti G, Leonetti A, Pietropaoli S, Spinozzi F, Marcocci L, Amendola R, Cecconi F, Sabatini S, Mariottini P, Cervelli M. Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: Evaluation of a new transgenic mouse model. Free Radic Biol Med 2017; 103:216-225. [PMID: 28043891 DOI: 10.1016/j.freeradbiomed.2016.12.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Spermine oxidase oxidizes spermine to produce H2O2, spermidine, and 3-aminopropanal. It is involved in cell drug response, apoptosis, and in the etiology of several pathologies, including cancer. Spermine oxidase is an important positive regulator of muscle gene expression and fiber size and, when repressed, leads to muscle atrophy. We have generated a transgenic mouse line overexpressing Smox gene in all organs, named Total-Smox. The spermine oxidase overexpression was revealed by β-Gal staining and reverse-transcriptase/PCR analysis, in all tissues analysed. Spermine oxidase activity resulted higher in Total-Smox than controls. Considering the important role of this enzyme in muscle physiology, we have focused our study on skeletal muscle and heart of Total-Smox mice by measuring redox status and oxidative damage. We assessed the redox homeostasis through the analysis of the reduced/oxidized glutathione ratio. Chronic H2O2 production induced by spermine oxidase overexpression leads to a cellular redox state imbalance in both tissues, although they show different redox adaptation. In skeletal muscle, catalase and glutathione S-transferase activities were significantly increased in Total-Smox mice compared to controls. In the heart, no differences were found in CAT activity level, while GST activity decreased compared to controls. The skeletal muscle showed a lower oxidative damage than in the heart, evaluated by lipid peroxidation and protein carbonylation. Altogether, our findings illustrate that skeletal muscle adapts more efficiently than heart to oxidative stress H2O2-induced. The Total-Smox line is a new genetic model useful to deepen our knowledge on the role of spermine oxidase in muscle atrophy and muscular pathological conditions like dystrophy.
Collapse
Affiliation(s)
- Roberta Ceci
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | | | | | | | - Lucia Marcocci
- Department of Biochemical Sciences 'A.Rossi Fanelli', La Sapienza University, Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', 00133, Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Stefania Sabatini
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | | | - Manuela Cervelli
- Department of Sciences, Roma Tre Università, 00146, Rome, Italy.
| |
Collapse
|
9
|
A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8361493. [PMID: 28243359 PMCID: PMC5294375 DOI: 10.1155/2017/8361493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
Abstract
This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.
Collapse
|
10
|
Kafantaris I, Kotsampasi B, Christodoulou V, Kokka E, Kouka P, Terzopoulou Z, Gerasopoulos K, Stagos D, Mitsagga C, Giavasis I, Makri S, Petrotos K, Kouretas D. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J Anim Physiol Anim Nutr (Berl) 2016; 101:e108-e121. [DOI: 10.1111/jpn.12569] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- I. Kafantaris
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
- Animal Research Institute; Hellenic Agricultural Organization (HAO) - Demeter; Giannitsa Greece
| | - B. Kotsampasi
- Animal Research Institute; Hellenic Agricultural Organization (HAO) - Demeter; Giannitsa Greece
| | - V. Christodoulou
- Animal Research Institute; Hellenic Agricultural Organization (HAO) - Demeter; Giannitsa Greece
| | - E. Kokka
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - P. Kouka
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - Z. Terzopoulou
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - K. Gerasopoulos
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - D. Stagos
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - C. Mitsagga
- Department of Food Technology; Lab of Food Microbiology and Biotechnology; Technical Education Institute of Thessaly; Karditsa Greece
| | - I. Giavasis
- Department of Food Technology; Lab of Food Microbiology and Biotechnology; Technical Education Institute of Thessaly; Karditsa Greece
| | - S. Makri
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| | - K. Petrotos
- Department of Biosystem Engineering; Technical Education Institute of Thessaly; Larissa Greece
| | - D. Kouretas
- Department of Biochemistry and Biotechnology; University of Thessaly; Larissa Greece
| |
Collapse
|
11
|
Jiang L, Yang Y, Jia LX, Lin JL, Liu Y, Pan B, Lin Y. Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:87-94. [PMID: 26803524 DOI: 10.1016/j.ecoenv.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/31/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0mgkg(-1) simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8mgkg(-1) to 8.0mgkg(-1), simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress.
Collapse
Affiliation(s)
- Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Danzhou Scientific Observing an Experimental Station of Agro-Environment Ministry Agriculture, Danzhou 571737, China
| | - Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lin Xian Jia
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jing Ling Lin
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Danzhou Scientific Observing an Experimental Station of Agro-Environment Ministry Agriculture, Danzhou 571737, China.
| |
Collapse
|
12
|
|
13
|
Goutzourelas N, Stagos D, Housmekeridou A, Karapouliou C, Kerasioti E, Aligiannis N, Skaltsounis AL, Spandidos DA, Tsatsakis AM, Kouretas D. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells. Int J Mol Med 2015; 36:433-41. [PMID: 26082074 PMCID: PMC4501638 DOI: 10.3892/ijmm.2015.2246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Christina Karapouliou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Nektarios Aligiannis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Athens 15771, Greece
| | - Alexios L Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Athens 15771, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
14
|
Chen G, Zhang S, Jin Y, Wu Y, Liu L, Qian H, Fu Z. TPP and TCEP induce oxidative stress and alter steroidogenesis in TM3 Leydig cells. Reprod Toxicol 2015; 57:100-10. [PMID: 26049154 DOI: 10.1016/j.reprotox.2015.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Effects of triphenyl phosphate (TPP) and tris-(2-chloroethyl) phosphate (TCEP) exposure on induction of oxidative stress and endocrine disruption were investigated in TM3 cells. After 24h exposure, cell growth declined and morphology changed in TPP and TCEP treated groups with high dosages. Significant increases in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione S-transferase (GST) activities and their respective gene expressions in a dose-dependent and/or time-dependent manner in TPP or TCEP groups. Moreover, the expression of main genes related to testosterone (T) synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were dramatically reduced by TPP and TCEP treatments, especially with the high dosage for 24h. TPP and TCEP treatments for 24h caused significant decreases in T levels in the medium. Furthermore, co-treatments of hCG with TPP or TCEP could inhibit hCG-induced changes in the expression of P450scc, P450-17α and 17β-HSD and T levels. Taken together, TPP and TCEP could induce oxidative stress and endocrine disruption in TM3 cells.
Collapse
Affiliation(s)
- Guanliang Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Songbin Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yan Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ling Liu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
15
|
Pei R, Yu M, Bruno R, Bolling BW. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Piedrahita AM, Peñaloza J, Cogollo Á, Rojano BA. Kinetic Study of the Oxidative Degradation of Choibá Oil (<i>Dipteryx oleifera</i> Benth.) with Addition of Rosemary Extract (<i>Rosmarinus officinalis</i> L.). ACTA ACUST UNITED AC 2015. [DOI: 10.4236/fns.2015.65048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|