1
|
Yang Y, Wang HL, Cheng RT, Zheng PR, Sun HP, Liu ZW, Yuan H, Liu XY, Gao WY, Li H. Determination of α-Dicarbonyl compounds in traditional Chinese herbal medicines. Fitoterapia 2024; 175:105928. [PMID: 38548027 DOI: 10.1016/j.fitote.2024.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 μg/g in the seeds of Alpinia katsumadai to 7032.75 μg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 μg/g, MGO being up to 55.50 μg/g, and DA to 18.75 μg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; School of Pharmacy, Xi'an Medical University, 1 Xinwang Road, Xi'an, Shaanxi 710021, China
| | - Hai-Ling Wang
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Rui-Tong Cheng
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Pei-Rong Zheng
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Hui-Peng Sun
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Zhi-Wen Liu
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Heng Yuan
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xue-Yi Liu
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Wen-Yun Gao
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Heng Li
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Asghari A, Zongo PA, Osse EF, Aghajanzadeh S, Raghavan V, Khalloufi S. Review of osmotic dehydration: Promising technologies for enhancing products' attributes, opportunities, and challenges for the food industries. Compr Rev Food Sci Food Saf 2024; 23:e13346. [PMID: 38634193 DOI: 10.1111/1541-4337.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.
Collapse
Affiliation(s)
- Ali Asghari
- Soils Science and Agri-Food Engineering Department, Laval University, Quebec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Quebec City, Québec, Canada
| | - P Assana Zongo
- Applied Sciences and Technologies Research Institute, National Center for Research and Applied Sciences of Burkina Faso, Ouagadougou, Burkina Faso
| | - Emmanuel Freddy Osse
- Soils Science and Agri-Food Engineering Department, Laval University, Quebec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Quebec City, Québec, Canada
| | - Sara Aghajanzadeh
- Soils Science and Agri-Food Engineering Department, Laval University, Quebec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Quebec City, Québec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec City, Québec, Canada
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Quebec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Quebec City, Québec, Canada
| |
Collapse
|
3
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zongo AP, Khalloufi S, Ratti C. Sugar profiles modulation of mangoes during osmotic dehydration in agave syrup solutions. J Food Sci 2023; 88:228-243. [PMID: 36444525 DOI: 10.1111/1750-3841.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Chemical interaction and multicompound competition were investigated on solids gain and carbohydrate profiles evolution during osmotic dehydration of mangoes. Tommy Atkins mango slices (0.4 cm and 1.5 cm thickness) were osmotically processed at 40°C for up to 4 h and 8 h, respectively. Osmotic solutions (60 °Brix) were separated in two categories: single solute (sucrose, glucose, fructose) and multisolute (agave syrup, alone or with additions of 5% inulin or 0.1-0.3% xanthan gum) solutions. High performance liquid chromatography (HPLC) analysis was carried out on treated mango to determine sugar profiles evolution during osmotic dehydration and final product concentrations. Findings pointed out that composition of osmotic solution may modulate mango sugar profiles by triggering uptake or loss of sugar according to different phenomena: chemical potential gradient, lixiviation, prevailing mass transfer, formation of carbohydrate barrier, and solution viscosity. Mango was enriched with the solute present in the single solute osmotic solution, while it lost its own native sugars, which were absent in the osmotic solution. Increasing sample thickness reduces individual sugar uptake or loss in mango treated with both single and multisolute solutions. Significant differences in mono solute solution behavior were found for sucrose due to its capability to form a sugar layer outside the surface of thicker samples, which was shown by scanning electron microscopy (SEM) images, a barrier markedly hindering the sucrose uptake or loss. Addition of polysaccharides (particularly xanthan gum) was found to have an impact of lowering mango individual sugar uptake (18-30%). Practical Application These results will help in understanding the mechanisms by which gain of individual sugars could be reduced and composition could be modulated during osmotic dehydration of fruits. Thus, the findings in this work could lead to production of low-sugar content, osmotically processed mango snacks, enriched with inulin, enhancing their dietary and marketable value.
Collapse
Affiliation(s)
- Assana Pingdwendé Zongo
- Food Science Department, Institute of Nutrition and Functional Foods, Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada.,Institute of Nutrition and Functional Foods, Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada
| | - Seddik Khalloufi
- Institute of Nutrition and Functional Foods, Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada.,Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada
| | - Cristina Ratti
- Institute of Nutrition and Functional Foods, Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada.,Soils Science and Agri-Food Engineering Department, Université Laval, Quebec City, Canada
| |
Collapse
|
5
|
Herrera-Ruiz M, Jiménez-Ferrer E, González-Cortazar M, Zamilpa A, Cardoso-Taketa A, Arenas-Ocampo ML, Jiménez-Aparicio AR, Monterrosas-Brisson N. Potential Use of Agave Genus in Neuroinflammation Management. PLANTS 2022; 11:plants11172208. [PMID: 36079590 PMCID: PMC9460694 DOI: 10.3390/plants11172208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Agavaceae contains about 480 species, commonly used in the production of alcoholic beverages such as tequila and mezcal, making it a resource of economic and cultural importance. Uses of this plant rely mainly on the stem; other components such as the leaves are discarded, generating agro-industrial waste, despite being a source of bioactive and nutraceutical products. Reports show anti-inflammatory and anti-neuroinflammatory effects of these species, with flavonoids and saponins being mainly responsible. Neuroinflammation is a brain process that plays a key role in the pathogenesis of various neurodegenerative disorders and its effects contribute greatly to mortality and morbidity worldwide. This can be triggered by mechanisms such as glial reactions that lead to the release of inflammatory and oxidative molecules, causing damage to the CNS. Treatments do not cure chronic disease associated with inflammation; they only slow its progression, producing side effects that affect quality of life. Plant-based therapy is promising for treating these diseases. Pharmacological activities have been described for the Agavaceae family; however, their role in neuroinflammation has not been fully investigated, and represents an important target for study. This review synthesizes the existing literature on the biologically active compounds of Agave species that are related in some way to inflammation, which will allow us to propose a line of research with this genus on the forefront to orient experimental designs for treating neuroinflammation and associated diseases.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Alexandre Cardoso-Taketa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
| | - Martha Lucía Arenas-Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Yautepec 62739, Mexico
| | | | - Nayeli Monterrosas-Brisson
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
- Correspondence:
| |
Collapse
|
6
|
Agave Syrup: Chemical Analysis and Nutritional Profile, Applications in the Food Industry and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127022. [PMID: 35742286 PMCID: PMC9222424 DOI: 10.3390/ijerph19127022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
Agave syrup (AS), a food product made from agave plant sap, is a vegan sweetener that has become popular for replacing conventional sweeteners such as sucrose. As the demand for naturally derived sweeteners has grown in the last decade, this review paper addresses and discusses, in detail, the most relevant aspects of the chemical AS analysis, applications in the food industry, sustainability issues, safety and quality control and, finally, nutritional profile and health impacts. According to our main research outcome, we can assume that the mid-infrared-principal components analysis, high-performance anion exchange chromatography equipped with a pulsed amperometric detector, and thin-layer chromatography can be used to identify and distinguish syrups from natural sources. The main agave–derived products are juice, leaves, bagasse, and fiber. In sustainability terms, it can be stated that certified organic and free trade agave products are the most sustainable options available on the market because they guarantee products being created without pesticides and according to specific labor standards. The Mexican government and AS producers have also established Mexican guidelines which prohibit using any ingredient, sugar or food additive that derives from sources, apart from agave plants, to produce any commercial AS. Due to its nutritional value, AS is a good source of minerals, vitamins and polyphenols compared to other traditional sweeteners. However, further research into the effects of AS on human metabolism is necessary to back its health claims as a natural sugar substitute.
Collapse
|
7
|
Ozuna C, Franco-Robles E. Agave syrup: An alternative to conventional sweeteners? A review of its current technological applications and health effects. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zongo AP, Khalloufi S, Ratti C. Effect of viscosity and rheological behavior on selective mass transfer during osmotic dehydration of mango slices in natural syrups. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Assana Pingdwendé Zongo
- Institute of Nutrition and Functional Foods Université Laval Québec Canada
- Food Science Department Université Laval Québec Canada
| | - Seddik Khalloufi
- Institute of Nutrition and Functional Foods Université Laval Québec Canada
- Soils and Agri‐Food Engineering Department Université Laval Québec Canada
| | - Cristina Ratti
- Institute of Nutrition and Functional Foods Université Laval Québec Canada
- Soils and Agri‐Food Engineering Department Université Laval Québec Canada
| |
Collapse
|
9
|
Jia CF, Yu WN, Zhang BL. Manufacture and antibacterial characteristics of Eucommia ulmoides leaves vinegar. Food Sci Biotechnol 2020; 29:657-665. [PMID: 32419964 DOI: 10.1007/s10068-019-00712-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022] Open
Abstract
In this work, the fermentation conditions and the antibacterial characteristics of Eucommia ulmoides leaves vinegar (EV) were studied. By single factor orthogonal test, it was found that under optimal fermentation conditions (bran addition 10%, sugar addition 8%, leaven addition 0.3% and acetic acid bacteria solution 12%), the acetic acid content and CA content of EV were 45.5 ± 2.8 mg/mL and 0.98 ± 0.08 mg/mL, respectively. Then, by the disc diffusion method, it was concluded that the antibacterial effect of EV was significantly higher than that of Eucommia ulmoides leaves enzymatic hydrolysate and Zhenjiang aromatic vinegar (P<0.05). An investigation into action mode of EV against Bacillus subtilis indicated that, under the combined action of CA and acetic acid, EV exerted its antibacterial effect by damaging bacterial cell wall and cell membrane, increasing the cell permeability which resulted in the structural lesions and release of cell components, thus led to cell death.
Collapse
Affiliation(s)
- Chun-Feng Jia
- 1College of Biochemical Engineering and Environmental Engineering, Baoding University, Baoding, 071000 China
| | - Wang-Ning Yu
- 2College of Medicine, Hebei University of Engineering, Affiliated Hospital, Handan, 056002 China
| | - Bo-Lin Zhang
- 3College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
10
|
Brighina S, Restuccia C, Arena E, Palmeri R, Fallico B. Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system. Food Chem 2020; 311:125905. [DOI: 10.1016/j.foodchem.2019.125905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
11
|
González-Montemayor ÁM, Flores-Gallegos AC, Serrato-Villegas LE, Ruelas-Chacón X, López MG, Rodríguez-Herrera R. Processing temperature effect on the chemical content of concentrated aguamiel syrups obtained from two different Agave species. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Wang XJ, Gao F, Li LC, Hui X, Li H, Gao WY. Quantitative analyses of α-dicarbonyl compounds in food samples by HPLC using 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a derivatizing reagent. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang JY, Wang XJ, Hui X, Hua SH, Li H, Gao WY. Determination of Diacetyl in Beer by a Precolumn Derivatization-HPLC-UV Method Using 4-(2,3-Dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a Derivatizing Reagent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2635-2641. [PMID: 28285533 DOI: 10.1021/acs.jafc.7b00990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diacetyl is an important flavoring compound in many foods, especially in beer. In the present study, we developed and validated a new precolumn derivatization HPLC-UV method for the determination of diacetyl using 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a novel derivatizing reagent. After derivatization with the reagent at a pH value 4.0 at ambient temperature for 10 min, diacetyl was analyzed on an ODS column and detected at 254 nm. The results show that the correlation coefficient of the method is 0.9991 in the range of 0.10 to 100.0 μM diacetyl, and the limit of detection is 0.02 μM. The method was further evaluated in the analysis of beer samples with the recoveries ranging from 94.4 to 102.6% and RSDs from 1.36 to 3.33%. The concentrations of diacetyl in 8 beer samples were determined in the range of 0.19 to 0.42 μM. The method established in this study may be well suitable for the determination of diacetyl in beer.
Collapse
Affiliation(s)
- Ji-Yu Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xin-Jie Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Shui-Hong Hua
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University , 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| |
Collapse
|
14
|
Stewart JR. Agave as a model CAM crop system for a warming and drying world. FRONTIERS IN PLANT SCIENCE 2015; 6:684. [PMID: 26442005 PMCID: PMC4585221 DOI: 10.3389/fpls.2015.00684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/17/2015] [Indexed: 05/14/2023]
Abstract
As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus) and prickly pear (Opuntia ficus-indica and related species), typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 200 species spread throughout the U.S., Mexico, and Central America, agaves have evolved traits, including crassulacean acid metabolism (CAM), that allow them to survive extreme heat and drought. Agaves have been used as sources of food, beverage, and fiber by societies for hundreds of years. The varied uses of Agave, combined with its unique adaptations to environmental stress, warrant its consideration as a model CAM crop. Besides the damaging cycles of surplus and shortage that have long beset the tequila industry, the relatively long maturation cycle of Agave, its monocarpic flowering habit, and unique morphology comprise the biggest barriers to its widespread use as a crop suitable for mechanized production. Despite these challenges, agaves exhibit potential as crops since they can be grown on marginal lands, but with more resource input than is widely assumed. If these constraints can be reconciled, Agave shows considerable promise as an alternative source for food, alternative sweeteners, and even bioenergy. And despite the many unknowns regarding agaves, they provide a means to resolve disparities in resource availability and needs between natural and human systems in semi-arid regions.
Collapse
Affiliation(s)
- J. Ryan Stewart
- Department of Plant and Wildlife Sciences, Brigham Young UniversityProvo, UT, USA
| |
Collapse
|
15
|
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015; 6:461-473. [PMID: 26178030 PMCID: PMC4496742 DOI: 10.3945/an.115.008433] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs) to the body pool of AGEs and therefore increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases. A 3-d symposium (1st Latin American Symposium of AGEs) to discuss this subject took place in Guanajuato, Mexico, on 1-3 October 2014 with the participation of researchers from several countries. This review is a summary of the different presentations and subjects discussed, and it is divided into 4 sections. The first section deals with current general knowledge about AGEs. The second section dwells on mechanisms of action of AGEs, with special emphasis on the receptor for advanced glycation end products and the potential role of AGEs in neurodegenerative diseases. The third section discusses different approaches to decrease the AGE burden. The last section discusses current methodologic problems with measurement of AGEs in different samples. The subject under discussion is complex and extensive and cannot be completely covered in a short review. Therefore, some areas of interest have been left out because of space. However, we hope this review illustrates currently known facts about dietary AGEs as well as pointing out areas that require further research.
Collapse
Affiliation(s)
- Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Food Analysis and Bioactivity, Institute of Food Science Research, Spanish National Research Council, Madrid, Spain
| | - María Pía de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - Rosana Filip
- Department of Pharmacognosy, Institute of Drug Chemistry and Metabolism, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | - Alejandra Medrano
- Food Science and Technology Department, School of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Teresita Menini
- College of Osteopathic Medicine, Touro University California, Vallejo, CA
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Department, School of Medicine, Biomedical Research Institute of Lleida, University of Lleida, Lleida, Spain
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile; and
| | | | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|