1
|
Wei D, Tan S, Pang S, Liu B, Zhang Q, Zhu S, Fu G, Sun D, Wei W. Protective effects of anthocyanins on the nervous system injury caused by fluoride-induced endoplasmic reticulum stress in rats. Food Chem Toxicol 2025; 200:115386. [PMID: 40073964 DOI: 10.1016/j.fct.2025.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Long-term fluoride exposure can produce neurotoxicity. Anthocyanins, as antioxidants, have a certain protective effect in nerve damage. This study aimed to investigate the protective role of anthocyanins in fluoride-induced neurological damage due to endoplasmic reticulum stress (ERS). Using a fluoride-exposed Wistar rat model, we assessed learning memory capacity and pathologic and ultrastructural injury. The level of oxidative stress (OS) in vivo was detected by colorimetric method, the level of ERS was analyzed by immunohistochemistry, and the apoptosis of neuronal cells was observed by TUNEL staining. The results showed that fluoride exposure could decrease the learning and memory ability in rats, and led to histopathological and ultrastructural damage in the hippocampal CA1, CA3 and cortical regions. Fluoride exposure-induced OS in vivo, which further activates ERS, which was manifested by increased levels of ERS-related proteins GRP78, Caspase 12, and Caspase 3 in hippocampal CA1, CA3, and cortical regions, and eventually led to a significant increase in neuronal apoptosis rate. Notably, after anthocyanins treatment, pathological and ultrastructural damage was restored, the level of OS and ERS were significantly restored, and the apoptosis rate of neuronal cells was significantly reduced. In summary, as nutritional interventions, anthocyanins exert a protective role in fluoride-induced neurological injury.
Collapse
Affiliation(s)
- Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiwen Tan
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Shujuan Pang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, 266033, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Jining Center For Disease Control and Prevention, Jining, Shandong Province, 272000, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Shan R, Zhang Y, You X, Kong X, Zhang Y, Li X, Wang L, Wang X, Chen C. Revealing the Molecular Regulatory Mechanism of Flavonoid Accumulation in Tender Leaves of Tea Plants by Transcriptomic and Metabolomic Analyses. PLANTS (BASEL, SWITZERLAND) 2025; 14:625. [PMID: 40006884 PMCID: PMC11859652 DOI: 10.3390/plants14040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Flavonoids are secondary metabolites that are beneficial to life activities and are mainly concentrated in buds and leaves in the form of glycosides. Flavonoid glycosides have important effects on the properties and quality of tea plants. Research has shown that the abundance of flavonoid glycosides varies greatly among different cultivars, but research on the regulatory mechanisms that cause their differential accumulation among tea plant cultivars with different leaf colors is lacking. In this study, an integrated analysis of metabolomics and transcriptomics was conducted to determine the regulatory networks regulating astringency and color-related flavonoids in tea plant cultivars with diverse leaf colors. A total of five anthocyanidins, four catechins, and nine flavonol glycosides were found to partially contribute to the differences in taste and leaf color among tea plant cultivars with diverse leaf colors. Furthermore, 15 MYB genes and 5 Dof genes were identified as potential regulators controlling the expression of eight key structural genes, resulting in differences in the accumulation of specific compounds, including epicatechin (EC), catechin (C), cyanidin, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and quercetin 3-O-glucoside, in tea plant cultivars with diverse leaf colors. These findings provide insights into the development and utilization of resources from tea plants with diverse leaf colors.
Collapse
Affiliation(s)
- Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| | - Yongheng Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.Z.); (L.W.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| | - Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.Z.); (L.W.)
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.Z.); (L.W.)
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Science, Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China; (R.S.); (X.Y.); (Y.Z.); (X.L.)
| |
Collapse
|
3
|
Köpsel M, Kostka T, Niesen S, Winterhalter P, Esatbeyoglu T. Influence of fractionation of polyphenols by membrane chromatography on antioxidant, antimicrobial and proliferation-inhibiting effects of red fruit juices. Food Chem 2025; 463:141216. [PMID: 39357108 DOI: 10.1016/j.foodchem.2024.141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024]
Abstract
Interest in fruit juice extracts as nutraceuticals is constantly increasing due to their health-beneficial properties, mainly caused by polyphenols. However, the correlation between the various effects of fruit juice extracts and their individual composition, including anthocyanins and copigments, is unknown. Therefore, in the present study, eight red fruit juice extracts were prepared using XAD-7 column chromatography, followed by fractionation and identification of the different compounds as well as characterization of their health-promoting effects. The fruit juice extract of pomegranate, chokeberry, and cranberry showed the highest antimicrobial potential against food-borne pathogens. The highest antioxidant and cell proliferation-inhibiting potential was also found in the pomegranate extract. It can be assumed that pomegranate extracts, which are rich in copigments, especially hydrolyzable tannins, are suitable natural antioxidants and antimicrobial agents. Pomegranate extracts could be used as nutraceuticals or natural preservatives.
Collapse
Affiliation(s)
- Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Tina Kostka
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Strasse 52, 67663 Kaiserslautern, Germany.
| | - Sonja Niesen
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
4
|
Vaneková Z, Rollinger JM. Bilberries: Curative and Miraculous - A Review on Bioactive Constituents and Clinical Research. Front Pharmacol 2022; 13:909914. [PMID: 35847049 PMCID: PMC9277355 DOI: 10.3389/fphar.2022.909914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilberry (Vaccinium myrtillus L.) fruits are an important part of local diets in many countries and are used as a medicinal herb to treat various disorders. Extracts from fruits are often a part of eye health-promoting supplements, whereas extracts from leaves are advertised for type 2 diabetes mellitus and glycemic control. This review provides an overview of the current knowledge of the phytochemical contents of bilberry fruits and leaves and their bioactivities, critically summarizes origins of the health claims and the outcome of clinical trials, with special attention towards those published in the past 10 years. Overall, the three most referenced indications, which are type 2 diabetes mellitus, vision disorders and circulatory diseases, all include contradictory results with no clear conclusion as to the benefits and recommended dosages. Moreover, the indications for vision disorders and diabetes originate from unproven or false claims that have been repeated in research since the 20th century without consistent fact-checking. Beneficial clinical results have been attested for the treatment of dyslipidemia and chronic inflammatory disorders when applied as dietary supplementation of fresh bilberries or as anthocyanin-rich bilberry fruit extracts. However, there is a general lack of double-blinded controlled research with larger sample sizes.
Collapse
Affiliation(s)
- Zuzana Vaneková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Niesen S, Göttel C, Becker H, Bakuradze T, Winterhalter P, Richling E. Fractionation of Extracts from Black Chokeberry, Cranberry, and Pomegranate to Identify Compounds That Influence Lipid Metabolism. Foods 2022; 11:foods11040570. [PMID: 35206045 PMCID: PMC8871205 DOI: 10.3390/foods11040570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols show a spectrum of bioactive effects, including an influence on lipid metabolism. In this study, we performed activity-guided fractionations of black chokeberry (aronia), cranberry, and pomegranate extracts to identify the biologically active compounds. The extracts were prepared from fruit juice concentrates with the adsorbent resin Amberlite XAD-7 and were separated into a copigment and an anthocyanin fraction, followed by fractionation into a polymer and monomeric fraction by means of hexane precipitation. For further fractionation of the cranberry and pomegranate copigment fractions, high-performance countercurrent chromatography (HPCCC) was used. The compounds in each fraction were identified by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS), and the quantification was performed by ultra high-performance liquid chromatography-diode array detector (UHPLC-DAD) analyses. Each of the (sub-)fractions was tested in three in vitro assays: phosphodiesterase 3B (PDE) activity, lipid accumulation, and lipolysis in 3T3-L1 cells. The results showed that various fractions and subfractions can inhibit lipid accumulation and PDE activity as well as increase lipolysis, particularly copigments. Overall, our results indicate an influence of polyphenol-rich (sub-)fractions on the lipid metabolism.
Collapse
Affiliation(s)
- Sonja Niesen
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany; (S.N.); (P.W.)
| | - Celina Göttel
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany; (C.G.); (H.B.); (T.B.)
| | - Hanna Becker
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany; (C.G.); (H.B.); (T.B.)
| | - Tamara Bakuradze
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany; (C.G.); (H.B.); (T.B.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany; (S.N.); (P.W.)
| | - Elke Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany; (C.G.); (H.B.); (T.B.)
- Correspondence: ; Tel.: +49-631-205-4061
| |
Collapse
|
6
|
Felgus-Lavefve L, Howard L, Adams SH, Baum JI. The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative Stress. Adv Nutr 2021; 13:1279-1309. [PMID: 34791023 PMCID: PMC9340979 DOI: 10.1093/advances/nmab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Blueberries have been extensively studied for the health benefits associated with their high phenolic content. The positive impact of blueberry consumption on human health is associated in part with modulation of proinflammatory molecular pathways and oxidative stress. Here, we review in vitro studies examining the anti-inflammatory and antioxidant effects of blueberry phytochemicals, discuss the results in terms of relevance to disease and health, and consider how different blueberry components modulate cellular mechanisms. The dampening effects of blueberry-derived molecules on inflammation and oxidative stress in cell models have been demonstrated through downregulation of the NF-κB pathway and reduction of reactive oxygen species (ROS) and lipid peroxidation. The modulatory effects of blueberry phytochemicals on the mitogen-activated protein kinase (MAPK) pathway and antioxidant system are not as well described, with inconsistent observations reported on immune cells and between models of endothelial, dermal, and ocular inflammation. Although anthocyanins are often reported as being the main bioactive compound in blueberries, no individual phytochemical has emerged as the primary compound when different fractions are compared; rather, an effect of whole blueberry extracts or synergy between different phenolic and nonphenolic extracts seems apparent. The major molecular mechanisms of blueberry phytochemicals are increasingly defined in cell models, but their relevance in more complex human systems needs further investigation using well-controlled clinical trials, in which systemic exposures to blueberry-associated molecules are measured concurrently with physiologic indices of inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA,Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, CA, USA
| | | |
Collapse
|
7
|
Ma Y, Ma X, Gao X, Wu W, Zhou B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int J Mol Sci 2021; 22:ijms222011116. [PMID: 34681776 PMCID: PMC8538450 DOI: 10.3390/ijms222011116] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are natural pigments with antioxidant effects that exist in various fruits and vegetables. The accumulation of anthocyanins is induced by environmental signals and regulated by transcription factors in plants. Numerous evidence has indicated that among the environmental factors, light is one of the most signal regulatory factors involved in the anthocyanin biosynthesis pathway. However, the signal transduction of light and molecular regulation of anthocyanin synthesis remains to be explored. Here, we focus on the research progress of signal transduction factors for positive and negative regulation in light-dependent and light-independent anthocyanin biosynthesis. In particular, we will discuss light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis in plants. In addition, an integrated regulatory network of anthocyanin biosynthesis controlled by transcription factors is discussed based on the significant progress.
Collapse
Affiliation(s)
- Yanyun Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xu Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China;
| | - Weilin Wu
- Agricultural College, Yanbian University, Yanji 133002, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
8
|
Groh IAM, Bakuradze T, Pahlke G, Richling E, Marko D. Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers. BMC Chem 2020; 14:39. [PMID: 32514500 PMCID: PMC7260737 DOI: 10.1186/s13065-020-00690-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, we demonstrated that the consumption of a bolus of bilberry extract modulates the transcription of Nrf2-regulated genes in peripheral blood lymphocytes (PBL) of healthy volunteers, accompanied by decreased DNA-damage. In the present study, we addressed the question whether consumption of consumer-relevant amounts of anthocyanin-rich beverages can achieve similar effects. The impact of three different anthocyanin-rich beverages on Nrf2-dependent gene transcription as well as and the status of DNA-damage in whole blood was investigated. After a polyphenol-reduced diet, five healthy male subjects consumed a bolus (700 mL) of respective test beverages with blood sampling up to 8 h after intake. All beverages affected the transcription of Nrf2, HO-1 and NQO-1, but showed different potencies and persistence of effects. Consumption of red fruit juice significantly reduced total DNA strand breaks (with formamidopyrimidine-DNA-glycosylase-(fpg) treatment) after 8 h in blood samples of the volunteers, suggesting antioxidant and DNA protective effects, albeit transcript levels of Nrf2-dependent genes had reached the basal state. The amount of basic DNA strand breaks (damage without oxidative DNA strand breaks) remained unchanged during the monitoring period. In contrast, a beverage prepared from grape skin extract significantly increased basic and total DNA strand breaks 2 h after intake, underlining the necessity of further investigations regarding composition, safety and consumer´s acceptance of respective products to exclude undesired adverse effects. Consumption of a bolus of anthocyanin-rich beverages affected Nrf2 and Nrf2-dependent gene transcription in human PBL and DNA integrity, which is indicative for systemic effects.
Collapse
Affiliation(s)
- Isabel Anna Maria Groh
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
- Present Address: Department of Experimental and Clinical Pharmacology and Pharmacogenomic, University of Tuebingen, Wilhelmstraße 56, 72072 Tuebingen, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Gudrun Pahlke
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
9
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
10
|
Kosehira M, Machida N, Kitaichi N. A 12-Week-Long Intake of Bilberry Extract ( Vaccinium myrtillus L.) Improved Objective Findings of Ciliary Muscle Contraction of the Eye: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Nutrients 2020; 12:nu12030600. [PMID: 32106548 PMCID: PMC7146147 DOI: 10.3390/nu12030600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
A 12-week-long randomized, double-blind, placebo-controlled, parallel-group comparison trial was conducted to determine the effects of long-term standardized bilberry extract (SBE) intake on tonic accommodation of ciliary muscle caused by visual display terminal (VDT) tasks. This study was compliant with the accordance with CONSORT 2010 statement. A total of 109 healthy adult men and women aged 20–60 years were recruited and randomized into SBE and placebo groups. The subjects in the SBE and placebo groups were administered 240 mg of SBE and placebo, respectively, once daily for 12 weeks. Tests were performed before and after VDT tasks at week 0, 4, 8, and 12; high-frequency component (HFC)-1 value was the evaluation outcome. Results showed that post-load HFC-1 values at weeks 8 and 12 were significantly improved in the SBE group than in the placebo group (p = 0.014 and 0.017, respectively). This study shows that oral consumption of 240 mg SBE extract for 12 weeks relieves the tonic accommodation of the ciliary muscle caused by VDT tasks and near-vision tasks.
Collapse
Affiliation(s)
- Marie Kosehira
- Research Department, Omnica Co., Ltd, 4-21-7 Itabashi, Itabashi Ward, Tokyo 173-0004, Japan
- Correspondence: (M.K.); (N.M.); Tel.: +81-3-5944-4201 (M.K. & N.M.); Fax: +81-3-5944-4211(M.K. & N.M.)
| | - Naomichi Machida
- Research Department, Omnica Co., Ltd, 4-21-7 Itabashi, Itabashi Ward, Tokyo 173-0004, Japan
- Correspondence: (M.K.); (N.M.); Tel.: +81-3-5944-4201 (M.K. & N.M.); Fax: +81-3-5944-4211(M.K. & N.M.)
| | - Nobuyoshi Kitaichi
- Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo 002-8072, Japan;
| |
Collapse
|
11
|
The effects of whortleberry on ischemia reperfusion-induced myocardial injury in rats. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 28:63-69. [PMID: 32175144 DOI: 10.5606/tgkdc.dergisi.2020.18389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/19/2019] [Indexed: 02/05/2023]
Abstract
Background The aim of this study was to investigate the potential protective effect of whortleberry by examining the effects on heart tissue at the molecular level of ischemia-reperfusion injury caused by surgical repair of a ruptured abdominal aortic aneurysm. Methods Between May 2018 and February 2019, a total of 32 male Sprague-Dawley rats were randomly assigned into control, sham (ischemia-reperfusion+glycerol), ischemia-reperfusion, and ischemia-reperfusion+whortleberry groups. Hypovolemic shock was applied to the rats in the ischemia-reperfusion groups for one hour. The abdominal aorta was explored following midline laparotomy and atraumatic microvascular clamps were applied from the infrarenal level. Following one-hour ischemia, the clamps were removed, and reperfusion was established for two hours. In the sham group, intraperitoneal glycerol once daily was applied five days before surgery. In the whortleberry group, whortleberry treatment was administered via the intraperitoneal route five days before ischemia-reperfusion. Results The ischemia-reperfusion group exhibited a decrease in the glutathione levels and an increase in the malondialdehyde levels (p<0.01 and p<0.01, respectively). We also observed an increase in the caspase-3 positivity in cardiac myofibrils (p<0.01). Whortleberry administration lowered both malondialdehyde levels and numerical density of caspase-3 positive cardiac myofibrils, while increasing the heart tissue glutathione levels, compared to the ischemia-reperfusion alone group (p<0.01, p=0.011, and p=0.011, respectively). Conclusion Whortleberry may be beneficial in preventing cardiac tissue damage caused by ischemia-reperfusion in the surgical repair of ruptured abdominal aortic aneurysms.
Collapse
|
12
|
Phenolic Antioxidants in Aerial Parts of Wild Vaccinium Species: Towards Pharmaceutical and Biological Properties. Antioxidants (Basel) 2019; 8:antiox8120649. [PMID: 31888242 PMCID: PMC6943522 DOI: 10.3390/antiox8120649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/18/2023] Open
Abstract
Phenolic compounds are a widespread group of secondary metabolites found in all plants, representing the most desirable antioxidants due to their potential to be used as additives in the food industry (inhibition of lipid oxidation), and in cosmetology and medicine (protection against oxidative stress). In recent years, demand for the identification of edible sources rich in phenolic antioxidants, as well as the development of new natural plant products to be used as dietary supplements or pharmaceuticals, has been a great preoccupation. At present, from the "circular economy" perspective, there is an increased interest to use agricultural waste resources to produce high-value compounds. Vaccinium leaves and stems are considered essentially an agro-waste of the berry industry. Scientific studies have shown that phenolic compounds were found in a markedly higher content in the leaves and stems of Vaccinium plants than in the fruits, in agreement with the strongest biological and antioxidant activities displayed by these aerial parts compared to fruits. This paper aims to review the current state of the art regarding the phenolic antioxidants from leaves and stems of two wild Vaccinium species, bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.), as promising natural resources with pharmaceutical and biological activity.
Collapse
|
13
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
14
|
The protective effects of whortleberry extract against cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol 2017; 85:55-62. [PMID: 29174583 PMCID: PMC9442816 DOI: 10.1016/j.bjorl.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/20/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Cisplatin is one of the main chemotherapeutic agents used for the treatment of many types of cancer. However, ototoxicity, one of the most serious side effects of cisplatin, restricts its usage. OBJECTIVE We aimed to investigate the protective effects of whortleberry extract against cisplatin-induced ototoxicity by evaluating hearing and histopathological cochlear damage and by measuring the biochemical parameters affected byoxidative stress. METHODS Forty-eight male rats were included in the study after performing Distortion Product Otoacoustic Emission test to confirm that their hearing levels were normal. The rats were randomly divided into six groups: the control group, the sham group, and, which received only whortleberry extract, only cisplatin, cisplatin+100mg whortleberry extract, cisplatin+200mg whortleberry extract, respectively. Audiologic investigation was performed by performing the Distortion Product Otoacoustic Emission test at the beginning and at the eighth day of the study. Cardiac blood samples were collected for biochemical analysis, and the rats were sacrificed to obtain cochlear histopathological specimens on the eighth day. RESULTS The results revealed that whortleberry protects hearing against cisplatin-induced ototoxicity independent of the dose. However, high doses of whortleberry extract are needed to prevent histopathological degeneration and oxidative stress. CONCLUSION The results obtained in this study show that whortleberry extract has a protective effect against cisplatin-induced ototoxicity.
Collapse
|
15
|
Xiao J, Lu X, Huang Q. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Zorenc Z, Veberic R, Stampar F, Koron D, Mikulic-Petkovsek M. White versus blue: Does the wild 'albino' bilberry (Vaccinium myrtillus L.) differ in fruit quality compared to the blue one? Food Chem 2016; 211:876-82. [PMID: 27283708 DOI: 10.1016/j.foodchem.2016.05.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
Wild albino and blue bilberry fruit were analyzed to compare different fruit characteristics linked to the composition of primary and secondary metabolites. Compounds were identified using HPLC-MS and standard quality parameters were determined. Albino berries were significantly smaller, accumulated less water and were characterized by 23% higher dry weight. Soluble solids content and pH value were higher in albino bilberry and their surface was lighter and characterized by a yellow hue. Both bilberry forms accumulated identical individual sugars and organic acids; however, the albino form had 33% higher content of total sugars and 9% higher content of total organic acids compared to the blue type. Fifteen anthocyanins were identified in both forms, but in albino bilberries, individual anthocyanins were only detected in traces. Blue bilberry contained 1.6-fold higher levels of flavanols, 2.1-fold higher levels of flavonols, 2.5-fold higher levels of hydroxycinnamic acid derivatives and consequently, 4.6-fold higher total phenolic content.
Collapse
Affiliation(s)
- Zala Zorenc
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Robert Veberic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Franci Stampar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Darinka Koron
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
de Mejia EG, Dia VP, West L, West M, Singh V, Wang Z, Allen C. Temperature dependency of shelf and thermal stabilities of anthocyanins from corn distillers' dried grains with solubles in different ethanol extracts and a commercially available beverage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10032-41. [PMID: 26556543 DOI: 10.1021/acs.jafc.5b03888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The objective was to determine the shelf and thermal stabilities of anthocyanins from distillers' dried grains with solubles (DDGS) extracted with different ethanol concentrations as well as a semi-purified Maiz Morado (purple corn) anthocyanin extract added to a commercially available beverage. Storage for 6 weeks of DDGS showed an overall reduction of anthocyanins from 6.8 to 73.7%. In DDGS, an ethanol increase from 0 to 25% resulted in less sensitivity of anthocyanin to temperature changes. Acylation resulted in faster degradation and higher reaction rate constants than their corresponding non-acylated forms. Anthocyanin changes were accompanied by an overall increase in lightness and a decrease in redness. Storage of beverage for 12 weeks at 4 °C resulted in a 25.5% reduction of anthocyanin. Results have important implications in selecting colored corn as an economical source of food colorants.
Collapse
Affiliation(s)
| | | | | | - Megan West
- Kraft Foods , 801 Waukegan Road, Glenview, Illinois 60025, United States
| | | | | | - Charlotte Allen
- Kraft Foods , 801 Waukegan Road, Glenview, Illinois 60025, United States
| |
Collapse
|
19
|
Kamiloglu S, Capanoglu E, Grootaert C, Van Camp J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review. Int J Mol Sci 2015; 16:21555-74. [PMID: 26370977 PMCID: PMC4613267 DOI: 10.3390/ijms160921555] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
| |
Collapse
|
20
|
Orena S, Owen J, Jin F, Fabian M, Gillitt ND, Zeisel SH. Extracts of Fruits and Vegetables Activate the Antioxidant Response Element in IMR-32 Cells. J Nutr 2015; 145:2006-11. [PMID: 26224749 DOI: 10.3945/jn.115.216705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The biological effects of antioxidant nutrients are mediated in part by activation of antioxidant response elements (AREs) on genes for enzymes involved in endogenous pathways that prevent free radical damage. Traditional approaches for identifying antioxidant molecules in foods, such as total phenolic compound (TP) content or oxygen radical absorption capacity (ORAC), do not measure capacity to activate AREs. OBJECTIVES The goal of this study was to develop an assay to assess the ARE activation capacity of fruit and vegetable extracts and determine whether such capacity was predicted by TP content and/or ORAC activity. METHODS Fruits and vegetables were homogenized, extracted with acidified ethanol, lyophilized, and resuspended in growth medium. Human IMR-32 neuroblastoma cells, transfected with an ARE-firefly luciferase reporter, were exposed to extracts for 5 h. Firefly luciferase was normalized to constitutively expressed Renilla luciferase with tertiary butylhydroquinone (tBHQ) as a positive control. TP content and ORAC activity were measured for each extract. Relations between TPs and ORAC and ARE activity were determined. RESULTS A total of 107 of 134 extracts tested significantly activated the ARE-luciferase reporter from 1.2- to 58-fold above that of the solvent control (P < 0.05) in human IMR-32 cells. ARE activity, TP content, and ORAC ranked higher in peels than in associated flesh. Despite this relation, ARE activity did not correlate with TP content (Spearman ρ = 0.05, P = 0.57) and only modestly but negatively correlated with ORAC (Spearman ρ = -0.24, P < 0.01). Many extracts activated the ARE more than predicted by the TP content or ORAC. CONCLUSIONS The ARE reporter assay identified many active fruit and vegetable extracts in human IMR-32 cells. There are components of fruits and vegetables that activate the ARE but are not phenolic compounds and are low in ORAC. The ARE-luciferase reporter assay is likely a better predictor of the antioxidant benefits of fruits and vegetables than TP or ORAC.
Collapse
Affiliation(s)
- Stephen Orena
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, NC
| | - Jennifer Owen
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, NC
| | - Fuxia Jin
- Dole Nutrition Research Laboratory, Kannapolis, NC; and
| | - Morgan Fabian
- Dole Nutrition Research Laboratory, Kannapolis, NC; and
| | | | - Steven H Zeisel
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, NC; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
21
|
El-Refaei MF, Abduljawad SH, Alghamdi AH. Alternative Medicine in Diabetes - Role of Angiogenesis, Oxidative Stress, and Chronic Inflammation. Rev Diabet Stud 2015; 11:231-44. [PMID: 26177484 PMCID: PMC5397289 DOI: 10.1900/rds.2014.11.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that is characterized by hyperglycemia due to lack of or resistance to insulin. Patients with diabetes are frequently afflicted with ischemic vascular disease and impaired wound healing. Type 2 diabetes is known to accelerate atherosclerotic processes, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. Herbal medicines and naturally occurring substances may positively affect diabetes management, and could thus be utilized as cost-effective means of supporting treatment in developing countries. Natural treatments have been used in these countries for a long time to treat diabetes. The present review analyses the features of aberrant angiogenesis, abnormalities in growth factors, oxidative stress, and metabolic derangements relevant to diabetes, and how herbal substances and their active chemical constituents may counteract these events. Evidence for possible biochemical effectiveness and limitations of herbal medicines are given, as well as details regarding the role of cytokines and nitric oxide.
Collapse
|