1
|
Santillo A, d'Angelo F, Lamberti C, Giuffrida MG, Romaniello F, Albenzio M. Distribution of β-Casein Variants and Effects on Milk Composition in Podolian Cows Reared in Gargano Promontory (Southern Italy). J Dairy Sci 2025:S0022-0302(25)00179-1. [PMID: 40139347 DOI: 10.3168/jds.2025-26317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
The aim of the study was to evaluate β-CN variants and their effects on milk nutritional composition and protein profile in Podolian cattle breeds reared in Gargano Promontory (Southern Italy). Individual milk samples of Podolian and Holstein Friesian (HF) cattle were analyzed for β-CN allele and genotype frequencies, chemical composition and protein fractions of milk. In both populations the most common allelic variant was A2, followed by A1, whereas alleles B and I had frequencies lower than 10% in both populations. A total of 6 genotypes in Podolian population (A1A2, A1B, A2B, A1I, A2I, A2A2), and 7 genotypes (A1A1, A1A2, A1B, A2B, A1I, A2I, A2A2) in HF were detected. Milk protein, lactose and casein percentages were affected by β-CN allele in both breeds. In particular, alleles A1 and A2 resulted in higher levels of both protein and casein in HF, whereas in Podolian allele I showed the highest, alleles A1 and A2 intermediate and B the lowest levels of the mentioned parameters. Protein fractions were influenced by β-casein alleles and the most abundant protein fractions were β- and αs1- CNs in both breeds, although with different percentage distribution. In Podolian milk, regardless of the detected allele, it was observed a similar behavior for β- and κ-CNs and opposite to that observed for αs2-CN. The study of the genetic variability of milk proteins offers the opportunity to valorise the nutritional, technological, and functional features of Podolian cattle dairy productions as a strategy to sustain the economic value of this ancient breed which is well adapted to the farming systems in marginal areas.
Collapse
Affiliation(s)
- Antonella Santillo
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia 71122, Italy.
| | - Francesca d'Angelo
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia 71122, Italy
| | - Cristina Lamberti
- Institute of Sciences of Food Production, Consiglio Nazionale delle Ricerche, largo P. Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Maria Gabriella Giuffrida
- Institute of Sciences of Food Production, Consiglio Nazionale delle Ricerche, largo P. Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Francesco Romaniello
- National Institute of Metrological Research (INRIM) Strada delle Cacce 91, Torino 10135, Italy
| | - Marzia Albenzio
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia 71122, Italy
| |
Collapse
|
2
|
Yang M, Yang Z, Everett DW, Gilbert EP, Singh H, Ye A. Digestion of food proteins: the role of pepsin. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39836113 DOI: 10.1080/10408398.2025.2453096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins. The interaction between pepsin and proteins from different food sources is highly dependent on the protein species, composition, processing treatment, and the presence of other food components. Coagulation of milk proteins under gastric conditions to form a coagulum is a unique behavior that affects gastric emptying and further hydrolysis of proteins. The processing treatment of proteins, either from milk or other sources, may change their structure, interactions with pepsin, and allergenicity. For example, the heat treatment of milk proteins results in the formation of a looser curd in the gastric phase and facilitates protein digestion by pepsin. Heated meat proteins undergo denaturation and conformational changes that enhance the rate of pepsin digestion. This review provides new ideas for the design of food products containing high protein concentrations that optimize nutrition while facilitating low allergenicity for consumers.
Collapse
Affiliation(s)
- Mengxiao Yang
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Zhi Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - David W Everett
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Sydney, New South Wales, Australia
- Centre for Nutrition and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Dubey SK, Thakur A, Jena MK, Kumar S, Sodhi M, Mukesh M, Kaushik JK, Mohanty AK. Effect of bovine beta-casomorphins on rat pancreatic beta cells (RIN-5F) under glucotoxic stress. Biochem Biophys Res Commun 2024; 739:150578. [PMID: 39178795 DOI: 10.1016/j.bbrc.2024.150578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Beta-casomorphins (BCMs) are the bio-active peptides having opioid properties which are formed by the proteolytic digestion of β-caseins in milk. BCM-7 forms when A1 milk is digested in the small intestine due to a histidine at the 67th position in β-casein, unlike A2 milk, which has proline at this position and produces BCM-9. BCM-7 has further degraded into BCM-5 by the dipeptidyl peptidase-IV (DPP-IV) enzyme in the intestine. The opioid-like activity of BCM-7 is responsible for eliciting signaling pathways which enable a wide range of physiological effects. The aim of our study was to find out the differential role of BCMs (BCM-7, BCM-9 and BCM-5) on pancreatic β-cell proliferation, insulin secretion, and opioid peptide binding receptors from β-cells (RIN-5F cell line) in normal (5.5 mM) and high glucose (27.5 mM) concentrations. Our results showed that BCM-7/9/5 did not affect β-cell viability, proliferation, and insulin secretion at normal glucose level. However, at higher glucose concentration, BCMs significantly protected β-cells from glucotoxicity but did not affect the insulin secretion. Interestingly, in the presence of Mu-opioid peptide receptor antagonist CTOP, BCMs did not protect β-cells from glucotoxicity. The results suggest that BCMs protect β-cells from glucotoxicity via non-opioid mediated pathways because BCMs did not modulate the gene expression of the mu, kappa and delta opioid peptide receptors.
Collapse
Affiliation(s)
- Shivam Kumar Dubey
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Abhishek Thakur
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Jai Kumar Kaushik
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Ashok Kumar Mohanty
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India; ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut, Uttar Pradesh, 250001, India.
| |
Collapse
|
4
|
Sun Y, Ding Y, Liu B, Guo J, Su Y, Yang X, Man C, Zhang Y, Jiang Y. Recent advances in the bovine β-casein gene mutants on functional characteristics and nutritional health of dairy products: Status, challenges, and prospects. Food Chem 2024; 443:138510. [PMID: 38281416 DOI: 10.1016/j.foodchem.2024.138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
β-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of β-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of β-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 β-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 β-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 β-casein, providing a valuable reference for the development of the functional dairy market.
Collapse
Affiliation(s)
- Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinfeng Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
5
|
Gard F, Flad LM, Weißer T, Ammer H, Deeg CA. Effects of A1 Milk, A2 Milk and the Opioid-like Peptide β-Casomorphin-7 on the Proliferation of Human Peripheral Blood Mononuclear Cells. Biomolecules 2024; 14:690. [PMID: 38927093 PMCID: PMC11201611 DOI: 10.3390/biom14060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of β-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide β-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from β-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the β-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 β-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.
Collapse
Affiliation(s)
- Felix Gard
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Lili M. Flad
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Tanja Weißer
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Hermann Ammer
- Chair of Pharmacology, Toxicology and Pharmacy, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-80539 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
6
|
de Vasconcelos ML, Oliveira LMFS, Hill JP, Vidal AMC. Difficulties in Establishing the Adverse Effects of β-Casomorphin-7 Released from β-Casein Variants-A Review. Foods 2023; 12:3151. [PMID: 37685085 PMCID: PMC10486734 DOI: 10.3390/foods12173151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
β-Casomorphin-7 (BCM-7) is a peptide released through the proteolysis of β-casein (β-CN), which is considered a bioactive peptide displaying evidence of promoting the binding and activation of the μ-opioid receptor located in various body parts, such as the gastrointestinal tract, the immune system and potentially the central nervous system. The possible effects of BCM-7 on health are a theme rising in popularity due to evidence found in several studies on the modulation of gastrointestinal proinflammatory responses that can trigger digestive symptoms, such as abdominal discomfort. With the advancement of studies, the hypothesis that there is a correlation of the possible effects of BCM-7 with the microbiota-gut-brain axis has been established. However, some studies have suggested the possibility that these adverse effects are restricted to a portion of the population, and the topic is controversial due to the small number of in vivo studies, which makes it difficult to obtain more conclusive results. In addition, a threshold of exposure to BCM-7 has not yet been established to clarify the potential of this peptide to trigger physiological responses at gastrointestinal and systemic levels. The proportion of the population that can be considered more susceptible to the effects of BCM-7 are evidenced in the literature review. The challenges of establishing the adverse effects of BCM-7 are discussed, including the importance of quantifying the BCM-7 release in the different β-CN genotypes. In summary, the reviewed literature provides plausible indications of the hypothesis of a relationship between β-CN A1/BCM-7 and adverse health effects; however, there is need for further, especially in vivo studies, to better understand and confirm the physiological effects of this peptide.
Collapse
Affiliation(s)
- Marta Liliane de Vasconcelos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| | - Luisa Maria F. S. Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| | - Jeremy Paul Hill
- Department Sustainable Nutrition Initiative, Riddet Institute, Palmerston North, New Zealand, and Fonterra Research & Development Centre, Palmerston North 4472, New Zealand;
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.L.d.V.); (L.M.F.S.O.)
| |
Collapse
|
7
|
Impact of in vitro static digestion method on the release of β-casomorphin-7 from bovine milk and cheeses with A1 or A2 β-casein phenotypes. Food Chem 2023; 404:134617. [DOI: 10.1016/j.foodchem.2022.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
8
|
Cieślińska A, Fiedorowicz E, Rozmus D, Sienkiewicz-Szłapka E, Jarmołowska B, Kamiński S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health-An Update. Int J Mol Sci 2022; 23:15637. [PMID: 36555278 PMCID: PMC9779325 DOI: 10.3390/ijms232415637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
For over 20 years, bovine beta-casein has been a subject of increasing scientific interest because its genetic A1 variant during gastrointestinal digestion releases opioid-like peptide β-casomorphin-7 (β-CM-7). Since β-CM-7 is involved in the dysregulation of many physiological processes, there is a growing discussion of whether the consumption of the β-casein A1 variant has an influence on human health. In the last decade, the number of papers dealing with this problem has substantially increased. The newest clinical studies on humans showed a negative effect of variant A1 on serum glutathione level, digestive well-being, cognitive performance score in children, and mood score in women. Scientific reports in this field can affect the policies of dairy cattle breeders and the milk industry, leading to the elimination of allele A1 in dairy cattle populations and promoting milk products based on milk from cows with the A2A2 genotype. More scientific proof, especially in well-designed clinical studies, is necessary to determine whether a little difference in the β-casein amino acid sequence negatively affects the health of milk consumers.
Collapse
Affiliation(s)
- Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| |
Collapse
|
9
|
Caira S, Pinto G, Picariello G, Vitaglione P, De Pascale S, Scaloni A, Addeo F. In vivo absorptomics: Identification of bovine milk-derived peptides in human plasma after milk intake. Food Chem 2022; 385:132663. [PMID: 35290952 DOI: 10.1016/j.foodchem.2022.132663] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
A dedicated two-step purification procedure prior to nanoliquid chromatography-electrospray-tandem mass spectrometry analysis enabled the identification of bovine milk-derived peptides absorbed and circulating in the plasma of three healthy volunteers who received 250 mL of pasteurized milk after a 10-days washout. The appearance and clearance of milk peptides in plasma were monitored at various time points. Overall, 758, 273 and 212 unique peptides derived from 15, 15 and 18 bovine milk proteins, respectively, were identified in the plasma of these volunteers, evidencing a substantial inter-individual variability. Peptides encrypting possible bioactive and/or immunogenic molecules originating from caseins, β-lactoglobulin and minor milk proteins were detected. Peptide representation data revealed the combined action of endoproteases involved in primary hydrolysis during gastroduodenal digestion and exopeptidases that hydrolyse peptides in the small intestine. It remains to be established whether the half-life and concentration ranges of circulating milk-derived peptides may have any impacts on human health.
Collapse
Affiliation(s)
- Simonetta Caira
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici (NA), Italy.
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy
| | - Paola Vitaglione
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, Parco Gussone, 80055 Portici (NA), Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici (NA), Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici (NA), Italy
| | - Francesco Addeo
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, Parco Gussone, 80055 Portici (NA), Italy
| |
Collapse
|
10
|
Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (Bos indicus) of India. 3 Biotech 2022; 12:167. [PMID: 35845115 PMCID: PMC9276908 DOI: 10.1007/s13205-022-03232-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic variations of the beta casein gene hold importance because of their probable association with human health. Comparative sequence analysis of β-casein gene across Indian native, crossbred and exotic breeds in India revealed 15 SNPs and 4 INDELs corresponding to 14 haplotypes. The frequency of A2 type haplotype was maximum (0.941) across all Indian native breeds. Among the 15 variants reported for taurine breeds, only three (A1, A2 and B) were observed in analysed populations. Allelic profiling of A1/A2 β-casein variants in ~ 4000 animals belonging to three cattle types and breeding bulls also revealed the predominance of A2 allele (0.95) in Indian cattle. The high proportion of A2 allele/haplotype indicates that Indian native cattle are the best suited to meet the demands for A2 milk globally. However, a higher percentage of heterozygous genotype (A1A2) in breeding bulls warrants the need to screen sire lines so as to drift the herd towards A2. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03232-0.
Collapse
|
11
|
Kaplan M, Baydemir B, Günar BB, Arslan A, Duman H, Karav S. Benefits of A2 Milk for Sports Nutrition, Health and Performance. Front Nutr 2022; 9:935344. [PMID: 35911103 PMCID: PMC9326461 DOI: 10.3389/fnut.2022.935344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine milk is one of the best pre-and pro-workout sources for athletes owing to its rich nutritional content. Even though bovine milk consumption significantly benefits athletes' health and performance, many athletes cannot consume bovine milk since they struggle with gastrointestinal problems caused after milk consumption. Especially, the consumption of regular milk, which contains A1 β-casein, is associated with a variety of diseases ranging from gastrointestinal discomfort to ischemic heart diseases. The main reason behind this is related to β-casomorphine 7 (BCM-7), which is derived from A1 β-casein during the digestion of A1 milk. A1 β-casein is formed as a result of a point mutation in the position of 67th in the amino acid sequence A2 β-casein by changing proline to histidine. Therefore, this mutated form of β-casein in regular milk cannot easily be digested by the human-associated digestion enzymes. A2 milk, which includes A2 β-casein instead of A1 β-casein, is the best substitute for regular milk with the same nutritional content. This natural form of milk positively affects the athlete's health as well as performance without causing any gastrointestinal discomfort or more serious problems which are seen in the consumption of regular milk. In this review, A2 milk and its potential health effects in comparison to diseases related to A1 milk consumption are discussed.
Collapse
Affiliation(s)
- Merve Kaplan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Barış Baydemir
- Department of Coaching Education, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bilgetekin Burak Günar
- Department of Physical Education and Sports Teaching, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
12
|
Review: The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Li X, Spencer GW, Ong L, Gras SL. Beta casein proteins – A comparison between caprine and bovine milk. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Ehling S, Wang M, Weber L. Determination of Total and A1-Type β-Casein in Milk and Milk-Derived Ingredients by Liquid Chromatography-Mass Spectrometry Using Characteristic Tryptic Peptides. J AOAC Int 2021; 104:1559-1566. [PMID: 33252693 DOI: 10.1093/jaoacint/qsaa162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Gastrointestinal digestion of A1-type β-casein is conducive to β-casomorphin-7 with potential adverse digestive health effects. Monitoring of A1-type β-casein concentration in milk and milk-derived ingredients used in the formulation of A2-type nutritional products with associated health claims is important from a quality standpoint. OBJECTIVE New analytical methods were developed and validated for total and A1-type β-casein in milk and milk-derived ingredients. Data on total and A1-type β-casein concentrations in milk, nonfat dry milk, and whey protein concentrate was generated. METHOD The methods are based on a bottom-up proteomic approach using tryptic marker peptides and stable isotope dilution liquid chromatography-mass spectrometry. The measurement includes all protein sequences (intact, modified, and partial) which are potential sources of β-casomorphin-7. RESULTS Total β-casein was quantified using a neat calibration curve. Recovery and between-day precision RSD were 98% and 5.8%, respectively. A1-type β-casein was quantified by the method of standard additions. Between-day precision RSD was 7.2% and limit of quantitation was 0.01% in nonfat dry milk. The mass fraction of A1-type β-casein in the β-casein standard was 0.444. Samples manufactured from A2-type milk contained 0.26-5.0% A1-type β-casein relative to total β-casein. CONCLUSIONS The methods described enable the monitoring of the A1-type β-casein concentration in milk and milk-derived ingredients destined for the manufacture of A2-type products with associated health claims. HIGHLIGHTS New methods are presented for the analysis of total and A1-type β-casein in milk and milk-derived ingredients. The mass fraction of A1-type β-casein in a commercial β-casein standard was determined to enable its use as a calibrant.
Collapse
Affiliation(s)
- Stefan Ehling
- Abbott, 3300 Stelzer Road, RP43, Columbus, OH 43219, USA
| | - Meibo Wang
- Abbott, Building 14, Caohejing SBP Phase III, 1036 Tian Lin Road, Minhang, Shanghai 200233, People's Republic of China
| | - Luke Weber
- Abbott, 3300 Stelzer Road, RP43, Columbus, OH 43219, USA
| |
Collapse
|
15
|
Lambers TT, Broeren S, Heck J, Bragt M, Huppertz T. Processing affects beta-casomorphin peptide formation during simulated gastrointestinal digestion in both A1 and A2 milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Mayer HK, Lenz K, Halbauer EM. "A2 milk" authentication using isoelectric focusing and different PCR techniques. Food Res Int 2021; 147:110523. [PMID: 34399501 DOI: 10.1016/j.foodres.2021.110523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Genetic variants of milk proteins have attracted great interest for decades as they are related to important issues such as the composition and technological properties of milk. More recently, an "A1/A2 hypothesis" was developed saying that β-casein variant A1 may be a dietary risk factor for cardiovascular diseases, type 1 diabetes, sudden infant death syndrome and neurological disorders due to the release of β-casomorphin-7, whereas no evidence for such adverse effects was assumed for β-casein A2. Thus, the aim of this study was to adapt and establish analytical methods for the identification of genetic variants of β-casein using isoelectric focusing of milk proteins as well as appropriate PCR techniques. Allele-specific polymerase chain reaction (AS-PCR) proved to be a reliable method for differentiating most common β-casein variants (A1, A2, B, C), amplification-created restriction site (ACRS)-PCR using three different restriction enzymes allowed also the detection of variant A3, and the restriction fragment length polymorphism (RFLP)-PCR method enabled the reliable discrimination between A2 (homozygote/heterozygote) and non-A2 animals. Since traces of β-casein A1 were also found in commercial "A2 milk" in Austria, the authentication of such expensive dairy products is urgently recommended, both by genotyping of all dairy cows at farm level (to confirm that all cows are homozygous β-casein A2A2) and by screening commercial products on the market (to confirm the absence of β-casein variants A1, B, and C in dairy products labelled "A2 milk") to protect consumers from this unexpected fraud.
Collapse
Affiliation(s)
- Helmut K Mayer
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Kathrin Lenz
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria
| | - Eva-Maria Halbauer
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
18
|
Daniloski D, Cunha NM, McCarthy NA, O'Callaghan TF, McParland S, Vasiljevic T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wang X, Yu Z, Zhao X, Han R, Huang D, Yang Y, Cheng G. Comparative proteomic characterization of bovine milk containing β-casein variants A1A1 and A2A2, and their heterozygote A1A2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:718-725. [PMID: 32710442 DOI: 10.1002/jsfa.10684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Genetic variants of β-casein are cosnidered to affect the components of milk. However, limited data are available on the bovine protein components correlated with β-casein variants at the proteome level. In the present study, cows producing milk containing β-casein variants (A1A1 and A2A2) and their heterozygote (A1A2) were identified using a high-resolution melting method, and milk samples were collected and tested. Comparative analyses of casein micelles, whey and milk fat globule membrane fractions in each milk variant were performed using a label-free proteomics approach. RESULTS The results obtained showed that ceruloplasmin and cathelicidin-2 were the most abundant proteins in milk containing variant A1A1; lactoferrin and CD5 molecule-like were the most abundant proteins in milk containing variant A2A2; and selenoprotein P and osteopontin were the most abundant proteins in milk containing heterozygote A1A2. Differences in protein components in milk containing the different β-casein variants were visualized using hierarchical clustering, and profiles were separated using principal components analysis. The differentially expressed proteins in milk containing A1A1, A2A2 or A1A2 were predominantly involved in response to stress and defense response according to their Gene Ontology annotations. CONCLUSION Our findings provide new insights into differentially expressed milk proteins corresponding to the presence of different β-casein variants. This knowledge will help determine their potential biological functions in dairy products and the effects on human health. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaxia Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
20
|
Release of beta-casomorphins during in-vitro gastrointestinal digestion of reconstituted milk after heat treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Occurrence of quantitative genetic polymorphism at the caprine β-CN locus, as determined by a proteomic approach. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Beta-Casein Gene Polymorphism in Serbian Holstein-Friesian Cows and Its Relationship with Milk Production Traits. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The most common types of beta-casein in cow’s milk are A1 and A2, which differ in one amino acid. During the gastrointestinal proteolysis of A1 beta-casein in humans this difference results in the release of beta-casomorphin-7, an opioid which may lead to severe effects on human health, causing various ailments (type-1 diabetes mellitus, ischemic heart disease, arteriosclerosis, sudden infant death syndrome, autism, schizophrenia, gastrointestinal digestive discomfort, as well as increased gastrointestinal transit time). By contrast, A2 beta-casein cannot exert these effects owing to its different composition and metabolism. Furthermore, studies have shown that it can influence milk productivity traits. Our research aimed to screen the frequency of A1 and A2 alleles of beta-casein gene in a population of Serbian Holstein-Friesian cows and to detect how the genotypes influence milk production, and milk protein and fat yields. Out of 106 animals, 13 (12.26%) were of A1A1 genotype, 58 (54.72%) of A1A2, and 35 (33.02%) of A2A2 genotype. Milk yield was significantly (P<0.01) higher in A2A2 compared to both A1A1 and A1A2 genotypes. Milk protein concentrations were significantly (P<0.01) higher in A2A2 compared to A1A2 genotype, while milk fat concentrations were significantly (P<0.01) higher in A2A2 compared to both A1A1 and A1A2 genotypes.
Collapse
|
23
|
Ramakrishnan M, Eaton TK, Sermet OM, Savaiano DA. Milk Containing A2 β-Casein ONLY, as a Single Meal, Causes Fewer Symptoms of Lactose Intolerance than Milk Containing A1 and A2 β-Caseins in Subjects with Lactose Maldigestion and Intolerance: A Randomized, Double-Blind, Crossover Trial. Nutrients 2020; 12:E3855. [PMID: 33348621 PMCID: PMC7766938 DOI: 10.3390/nu12123855] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Acute-feeding and multiple-day studies have demonstrated that milk containing A2 β-casein only causes fewer symptoms of lactose intolerance (LI) than milk containing both A1 and A2 β-caseins. We conducted a single-meal study to evaluate the gastrointestinal (GI) tolerance of milk containing different concentrations of A1 and A2 β-casein proteins. This was a randomized, double-blind, crossover trial in 25 LI subjects with maldigestion and an additional eight lactose maldigesters who did not meet the QLCSS criteria. Subjects received each of four types of milk (milk containing A2 β-casein protein only, Jersey milk, conventional milk, and lactose-free milk) after overnight fasting. Symptoms of GI intolerance and breath hydrogen concentrations were analyzed for 6 h after ingestion of each type of milk. In an analysis of the 25 LI subjects, total symptom score for abdominal pain was lower following consumption of milk containing A2 β-casein only, compared with conventional milk (p = 0.004). Post hoc analysis with lactose maldigesters revealed statistically significantly improved symptom scores (p = 0.04) and lower hydrogen production (p = 0.04) following consumption of milk containing A2 β-casein only compared with conventional milk. Consumption of milk containing A2 β-casein only is associated with fewer GI symptoms than consumption of conventional milk in lactose maldigesters.
Collapse
Affiliation(s)
| | | | | | - Dennis A. Savaiano
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.R.); (T.K.E.); (O.M.S.)
| |
Collapse
|
24
|
Thiruvengadam M, Venkidasamy B, Thirupathi P, Chung IM, Subramanian U. β-Casomorphin: A complete health perspective. Food Chem 2020; 337:127765. [PMID: 32799161 DOI: 10.1016/j.foodchem.2020.127765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
β-Casomorphin-7 (BCM-7) is a heptapeptide dietary molecule derived from the digestion of the β-casein of dairy and dairy products. In this review, we have covered the extensive details about BCM and its derived peptides out of the gastrointestinal and enzymatic digestion of milk and milk products, its structure and properties, and its immunological aspects related to human health among infants and adults of both genders. We have left judgment about BCM's pros and cons to the reader by describing the details in a cyclopedic perspective. In addition, a section on the possible ways to detect BCMs from their sources using proteomics, genome-based techniques, such as PCR and aptamers, and other analytical techniques equip the reader to get an idea about the details of the diagnostics available and possible applications in future. Overall, this review will provide information to the end-users of milk and milk products to enable them to make their own decisions about BCMs.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Prabhu Thirupathi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India.
| |
Collapse
|
25
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
26
|
Oh NS, Kim K, Oh S, Kim Y. Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15. Food Sci Anim Resour 2019; 39:725-741. [PMID: 31728443 PMCID: PMC6837896 DOI: 10.5851/kosfa.2019.e55] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
In the current study, we first investigated a method for directly transforming
lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and
GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by
inoculating five strains of Bifidobacterium spp. In addition,
fermented GSM (FGSM) was prepared using a potentially probiotic
Lactobacillus strain and its fermentation characteristics
and antioxidant capacities were determined. We found that GOS in GSM were
metabolized by all five Bifidobacterium strains after
incubation and promoted their growth. The levels of antioxidant activities
including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA
reductase inhibition rate in GSM were significantly increased by fermentation
with the probiotic Lactobacillus strain. Moreover, thirty-nine
featured peptides in FGSM was detected. In particular, six peptides derived from
β-casein, two peptides originated from αs1-casein and
κ-casein were newly identified, respectively. Our findings indicate that
GSM can potentially be used as a prebiotic substrate and FGSM can potentially
prevent oxidative stress during the production of synbiotic fermented milk in
the food industry.
Collapse
Affiliation(s)
- Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
| | - Kyeongmu Kim
- R&D Center, Seoul Dairy Cooperative, Ansan, Kyunggi 15407, Korea.,Department of Food Bioscience and Technology, Korea University, Seoul 02841, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Effects of Conventional Milk Versus Milk Containing Only A2 β-Casein on Digestion in Chinese Children: A Randomized Study. J Pediatr Gastroenterol Nutr 2019; 69:375-382. [PMID: 31305326 PMCID: PMC6727941 DOI: 10.1097/mpg.0000000000002437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES In this study, we hypothesized that replacing conventional milk, which contains A1 and A2 β-casein proteins, with milk that contains only A2 β-casein in the diet of dairy or milk-intolerant preschoolers (age 5 to 6 years) would result in reduced gastrointestinal symptoms associated with milk intolerance, and that this would correspond with cognitive improvements. METHODS This randomized, double-blind, crossover study aimed to compare the effects of 5 days' consumption of conventional milk versus milk containing only A2 β-casein on gastrointestinal symptoms, as assessed via visual analog scales, average stool frequency and consistency, and serum inflammatory and immune biomarkers in healthy preschoolers with mild-to-moderate milk intolerance. The study also aimed to compare changes in the cognitive behavior of preschoolers, based on Subtle Cognitive Impairment Test scores. RESULTS Subjects who consumed milk containing only A2 β-casein had significantly less severe gastrointestinal symptoms as measured by visual analog scales, reduced stool frequency, and improvements in stool consistency, compared with subjects consuming conventional milk. There were significant increases from baseline in serum interleukin-4, immunoglobulins G, E, and G1, and beta-casomorphin-7 coupled to lower glutathione levels, in subjects consuming conventional milk compared with milk containing only A2 β-casein. Subtle Cognitive Impairment Test analysis showed significant improvements in test accuracy after consumption of milk containing only A2 β-casein. There were no severe adverse events related to consumption of either milk product. CONCLUSIONS Replacing conventional milk with milk containing only A2 β-casein reduced gastrointestinal symptoms associated with milk intolerance in Chinese preschool children, with corresponding improvements in aspects of cognitive performance.
Collapse
|
28
|
Nguyen DD, Solah VA, Johnson SK, Nguyen HA, Nguyen TLD, Tran TLH, Mai TK, Busetti F. Identification and quantification of beta-casomorphin peptides naturally yielded in raw milk by liquid chromatography-tandem mass spectrometry. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Abstract
Milk samples with twelve combinations of κ- and β-casein (CN) and β-lactoglobulin (β-Lg) variants were obtained to investigate the effect of protein variant on the mechanism/s of age gelation in ultra-high temperature (UHT) skim milk. Only milk groups with κ-CN/β-CN/β-Lg combinations AB/A1A2/AB and AB/A2A2/AB suffered from the expected age gelation over nine months storage, although this could not be attributed to the milk protein genetic variants. Top-down proteomics revealed three general trends across the twelve milk groups: (1) the abundance of intact native proteins decreases over storage time; (2) lactosylated proteoforms appear immediately post-UHT treatment; and (3) protein degradation products accumulate over storage time. Of the 151 identified degradation products, 106 (70.2%) arose from β-CN, 33 (21.9%) from αs1-CN, 4 (2.7%) from β-Lg, 4 (2.7%) from α-La, 3 (2%) from κ-CN and 1 (0.7%) from αs2-CN. There was a positive correlation between milk viscosity and 47 short peptides and four intact proteoforms, while 20 longer polypeptides and 21 intact proteoforms were negatively correlated. Age gelation was associated with specific patterns of proteolytic degradation and also with the absence of the families Bacillaceae, Aerococcaceae, Planococcaceae, Staphylococcaceae and Enterobacteriaceae, present in all the non-gelling milk groups pre-UHT.
Collapse
|
30
|
Arısoy S, Üstün-Aytekin Ö. Hydrolysis of food-derived opioids by dipeptidyl peptidase IV from Lactococcus lactis spp. lactis. Food Res Int 2018; 111:574-581. [DOI: 10.1016/j.foodres.2018.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
|
31
|
Buffalo Milk Casein Derived Decapeptide (YQEPVLGPVR) Having Bifunctional Anti-inflammatory and Antioxidative Features Under Cellular Milieu. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9708-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Use of urea-polyacrylamide electrophoresis for discrimination of A1 and A2 beta casein variants in raw cow's milk. Journal of Food Science and Technology 2018; 55:1942-1947. [PMID: 29666547 DOI: 10.1007/s13197-018-3088-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
Beta-casein (BC) in cow's milk occurs in several genetic variants, where BC A1 (BCA1) and BC A2 (BCA2) are the most frequent. This work deals with a method based on modified polyacrylamide gel electrophoresis using urea PAGE to discriminate BCA1 and BCA2 variants from Holstein Friesian (HF) and genetically selected Jersey A2/A2 (JA2) cow's milk. Two well defined bands were obtained from BC fraction of HF milk, while that of JA2 showed a single band. Proteins from these bands were sequenced by HPLC-quadrupole linear ion trap/mass spectrometry, resulting in BCA1 and BCA2 separation from the BC fraction of HF milk, whereas BCA2 was the only constituent of JA2 fraction. This method represents a feasible and useful tool to on site phenotyping of BC fraction of cow's milk for pharmaceutical and food industries applications.
Collapse
|
33
|
Abstract
Complex, diverse and rarely appearing without comorbidity, the autism spectrum disorders continue to be a source of research interest. With core symptoms variably impacting on social communication skills, the traditional focus of many research efforts has centred on the brain and how genetic and environmental processes impact on brain structure, function and/or connectivity to account for various behavioural presentations. Alongside emerging ideas on autistic traits being present in various clinical states, the autisms, and the overrepresentation of several comorbid conditions impacting on quality of life, other research avenues have opened up. The central role of the brain in relation to autism may be at least partially influenced by the functions of other organs. The gastrointestinal (GI) tract represents an important biological system pertinent to at least some autism. The notion of a gut-brain-behaviour axis has garnered support from various findings: an overrepresentation of functional and pathological bowel states, bowel and behavioural findings showing bidirectional associations, a possible relationship between diet, GI function and autism and recently, greater focus on aspects of the GI tract such as the collected gut microbiota in relation to autism. Gaps remain in our knowledge of the functions of the GI tract linked to autism, specifically regarding mechanisms of action onward to behavioural presentation. Set however within the context of diversity in the presentation of autism, science appears to be moving towards defining important GI-related autism phenotypes with the possibility of promising dietary and other related intervention options onward to improving quality of life.
Collapse
|
34
|
Brooke-Taylor S, Dwyer K, Woodford K, Kost N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv Nutr 2017; 8:739-748. [PMID: 28916574 PMCID: PMC5593102 DOI: 10.3945/an.116.013953] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This is the first systematic review, to our knowledge, of published studies investigating the gastrointestinal effects of A1-type bovine β-casein (A1) compared with A2-type bovine β-casein (A2). The review is relevant to nutrition practice given the increasing availability and promotion in a range of countries of dairy products free of A1 for both infant and adult nutrition. In vitro and in vivo studies (all species) were included. In vivo studies were limited to oral consumption. Inclusion criteria encompassed all English-language primary research studies, but not reviews, involving milk, fresh-milk products, β-casein, and β-casomorphins published through 12 April 2017. Studies involving cheese and fermented milk products were excluded. Only studies with a specific gastrointestinal focus were included. However, inclusion was not delimited by specific gastrointestinal outcome nor by a specific mechanism. Inclusion criteria were satisfied by 39 studies. In vivo consumption of A1 relative to A2 delays intestinal transit in rodents via an opioid-mediated mechanism. Rodent models also link consumption of A1 to the initiation of inflammatory response markers plus enhanced Toll-like receptor expression relative to both A2 and nonmilk controls. Although most rodent responses are confirmed as opioid-mediated, there is evidence that dipeptidyl peptidase 4 stimulation in the jejunum of rodents is via a nonopioid mechanism. In humans, there is evidence from a limited number of studies that A1 consumption is also associated with delayed intestinal transit (1 clinical study) and looser stool consistency (2 clinical studies). In addition, digestive discomfort is correlated with inflammatory markers in humans for A1 but not A2. Further research is required in humans to investigate the digestive function effects of A1 relative to A2 in different populations and dietary settings.
Collapse
Affiliation(s)
| | - Karen Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Keith Woodford
- Agri-Food Systems, Lincoln University, Lincoln, New Zealand; and
| | - Natalya Kost
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
35
|
Identification of bioactive peptides and quantification of β-casomorphin-7 from bovine β-casein A1, A2 and I after ex vivo gastrointestinal digestion. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Production of Cow's Milk Free from Beta-Casein A1 and Its Application in the Manufacturing of Specialized Foods for Early Infant Nutrition. Foods 2017; 6:foods6070050. [PMID: 28704923 PMCID: PMC5532557 DOI: 10.3390/foods6070050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022] Open
Abstract
Beta-casein (BC) is frequently expressed as BC A2 and BC A1 in cow’s milk. Gastrointestinal digestion of BC A1 results in the release of the opioid peptide beta-casomorphin 7 (BCM7) which is less likely to occur from BC A2. This work was aimed to produce milk containing BC A2 with no BC A1 (BC A2 milk) using genetically selected CSN2 A2A2 Jersey cows. Additionally, we aimed to develop an infant formula (IF) suitable for healthy full-term infants during the first six months of life based on BC A2 milk. The concentration of BCM7 released from BC A2 IF, from commercially available IFs as well as from human milk and raw cow’s milk was evaluated after simulated gastrointestinal digestion (SGID). BC A2 IF presented the lowest mean relative abundance of BC A1 (IF 1 = 0.136 ± 0.010), compared with three commercially available IFs (IF 2 = 0.597 ± 0.020; IF 3 = 0.441 ± 0.014; IF 4 = 0.503 ± 0.011). Accordingly, SGID of whole casein fraction from BC A2 IF resulted in a significantly lower release of BCM7 (IF 1 = 0.860 ± 0.014 µg/100 mL) compared to commercially available IFs (IF 2 = 2.625 ± 0.042 µg/100 mL; IF 3 = 1.693 ± 0.012 µg/100 mL; IF 4 = 1.962 ± 0.067 µg/100 mL). Nevertheless, BCM7 levels from BC A2 IF were significantly higher than those found in SGID hydrolysates of BC A2 raw milk (0.742 ± 0.008 µg/100 mL). Interestingly, results showed that BCM7 was also present in human milk in significantly lower amounts (0.697 ± 0.007 µg/100 mL) than those observed in IF 1 and BC A2 milk. This work demonstrates that using BC A2 milk in IF formulation significantly reduces BCM7 formation during SGID. Clinical implications of BC A2 IF on early infant health and development need further investigations.
Collapse
|
37
|
Atacan K, Çakıroğlu B, Özacar M. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int J Biol Macromol 2017; 97:148-155. [DOI: 10.1016/j.ijbiomac.2017.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
|
38
|
Caroli AM, Savino S, Bulgari O, Monti E. Detecting β-Casein Variation in Bovine Milk. Molecules 2016; 21:141. [PMID: 26821001 PMCID: PMC6273733 DOI: 10.3390/molecules21020141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 11/16/2022] Open
Abstract
In bovine species, β-casein (β-CN) is characterized by genetic polymorphism. The two most common protein variants are β-CN A² (the original one) and A¹, differing from A² for one amino acid substitution (Pro67 to His67). Several bioactive peptides affecting milk nutritional properties can originate from β-CN. Among them, β-casomorphin-7 (BCM7) ranging from amino acid 60 to 66 can be released more easily from β-CN variants carrying His67 (A¹ type) instead of Pro67 (A² type). Nowadays, "A2 milk" is produced in different countries claiming its potential benefits in human health. The aim of this study was to further develop and apply an isoelectric focusing electrophoresis (IEF) method to bulk and individual milk samples in order to improve its use for β-CN studies. We succeeded in identifying A2 milk samples correctly and quantifying the percentage of A², A¹, and B variants in bulk samples not derived from A2 milk as well as in individual milk samples. The method allows us to quantify the relative proportion of β-CN variants in whole milk without eliminating whey protein by acid or enzymatic precipitation of caseins. The aim of this study was also to study the different behavior of β-CN and β-lactoglobulin (β-LG) in the presence of trichloroacetic acid (TCA). The higher sensitivity of β-CN to TCA allows quantifying β-CN variants after TCA fixation because β-LG is not visible. Monitoring β-CN variation in cattle breeds is important in order to maintain a certain balance between Pro67 and His67 in dairy products. Overall, the debate between A1 and A2 milk needs further investigation.
Collapse
Affiliation(s)
- Anna Maria Caroli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Salvatore Savino
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Omar Bulgari
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Eugenio Monti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| |
Collapse
|
39
|
Nguyen D, Busetti F, Johnson S, Solah V. Identification and quantification of native beta-casomorphins in Australian milk by LC–MS/MS and LC–HRMS. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Pal S, Woodford K, Kukuljan S, Ho S. Milk Intolerance, Beta-Casein and Lactose. Nutrients 2015; 7:7285-97. [PMID: 26404362 PMCID: PMC4586534 DOI: 10.3390/nu7095339] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022] Open
Abstract
True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.
Collapse
Affiliation(s)
- Sebely Pal
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA 6845, Australia.
| | - Keith Woodford
- Agricultural Management Group, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand.
| | - Sonja Kukuljan
- The a2 Milk Company (Australia) Pty Ltd, PO Box 180, Kew East, Victoria 3102, Australia.
| | - Suleen Ho
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth WA 6845, Australia.
| |
Collapse
|