1
|
Bartolomei M, Li J, Capriotti AL, Fanzaga M, d’Adduzio L, Laganà A, Cerrato A, Mulinacci N, Cecchi L, Bollati C, Lammi C. Olive ( Olea europaea L.) Seed as New Source of Cholesterol-Lowering Bioactive Peptides: Elucidation of Their Mechanism of Action in HepG2 Cells and Their Trans-Epithelial Transport in Differentiated Caco-2 Cells. Nutrients 2024; 16:371. [PMID: 38337656 PMCID: PMC10857614 DOI: 10.3390/nu16030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The production of olive oil has important economic repercussions in Mediterranean countries but also a considerable impact on the environment. This production generates enormous quantities of waste and by-products, which can be exploited as new raw materials to obtain innovative ingredients and therefore make the olive production more sustainable. In a previous study, we decided to foster olive seeds by generating two protein hydrolysates using food-grade enzymes, alcalase (AH) and papain (PH). These hydrolysates have shown, both in vitro and at the cellular level, antioxidant and antidiabetic activities, being able to inhibit the activity of the DPP-IV enzyme and modulate the secretion of GLP-1. Given the multifunctional behavior of peptides, both hydrolysates displayed dual hypocholesterolemic activity, inhibiting the activity of HMGCoAR and impairing the PPI of PCSK9/LDLR, with an IC50 equal to 0.61 mg/mL and 0.31 mg/mL for AH and PH, respectively. Furthermore, both samples restored LDLR protein levels on the membrane of human hepatic HepG2 cells, increasing the uptake of LDL from the extracellular environment. Since intestinal bioavailability is a key component of bioactive peptides, the second objective of this work is to evaluate the capacity of AH and PH peptides to be transported by differentiated human intestinal Caco-2 cells. The peptides transported by intestinal cells have been analyzed using mass spectrometry analysis, identifying a mixture of stable peptides that may represent new ingredients with multifunctional qualities for the development of nutraceuticals and functional foods to delay the onset of metabolic syndrome, promoting the principles of environmental sustainability.
Collapse
Affiliation(s)
- Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Lorenza d’Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy;
| | - Lorenzo Cecchi
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 50144 Florence, Italy;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| |
Collapse
|
2
|
Li J, Bollati C, Bartolomei M, Mazzolari A, Arnoldi A, Vistoli G, Lammi C. Hempseed ( Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients 2022; 14:1804. [PMID: 35565772 PMCID: PMC9101684 DOI: 10.3390/nu14091804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 μM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (J.L.); (C.B.); (M.B.); (A.M.); (A.A.); (G.V.)
| |
Collapse
|
3
|
Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics 2022; 14:pharmaceutics14030665. [PMID: 35336039 PMCID: PMC8951016 DOI: 10.3390/pharmaceutics14030665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates the circulating cholesterol level. In this field, we discovered natural peptides derived from lupin that showed PCSK9 inhibitory activity. Among these, the most active peptide, known as P5 (LILPHKSDAD), reduced the protein-protein interaction between PCSK9 and LDLR with an IC50 equals to 1.6 µM and showed a dual hypocholesterolemic activity, since it shows complementary inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR). (2) Methods: In this study, by a computational approach, the P5 primary structure was optimized to obtain new analogs with improved affinity to PCSK9. Then, biological assays were carried out for fully characterizing the dual cholesterol-lowering activity of the P5 analogs by using both biochemical and cellular techniques. (3) Results: A new peptide, P5-Best (LYLPKHSDRD) displayed improved PCSK9 (IC50 0.7 µM) and HMG-CoAR (IC50 88.9 µM) inhibitory activities. Moreover, in vitro biological assays on cells demonstrated that, not only P5-Best, but all tested peptides maintained the dual PCSK9/HMG-CoAR inhibitory activity and remarkably P5-Best exerted the strongest hypocholesterolemic effect. In fact, in the presence of this peptide, the ability of HepG2 cells to absorb extracellular LDL was improved by up to 254%. (4) Conclusions: the atomistic details of the P5-Best/PCSK9 and P5-Best/HMG-CoAR interactions represent a reliable starting point for the design of new promising molecular entities endowed with hypocholesterolemic activity.
Collapse
|
4
|
Assessment of the Cholesterol-Lowering Effect of MOMAST®: Biochemical and Cellular Studies. Nutrients 2022; 14:nu14030493. [PMID: 35276852 PMCID: PMC8838113 DOI: 10.3390/nu14030493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
MOMAST® is a patented phenolic complex derived from the olive oil vegetation water, a by-product of the olive oil supply chain, in which hydroxytyrosol (OH-Tyr) and tyrosol (Tyr) and verbascoside are the main compounds. This study was aimed at investigating its hypocholesterolemic effect by assessing the ability to modulate the low-density lipoprotein (LDL) receptor (LDLR)/sterol regulatory element-binding protein 2 (SREBP-2), and proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. MOMAST® inhibits the in vitro activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCOAR) with a dose-response trend. After the treatment of HepG2 cells, MOMAST® increases the SREBP-2, LDLR, and HMGCoAR protein levels leading, from a functional point of view to an improved ability of hepatic cells to up-take LDL from the extracellular environment with a final cholesterol-lowering effect. Furthermore, MOMAST® decreased the PCSK9 protein levels and its secretion in the extracellular environment, presumably via the reduction of the hepatic nuclear factor 1-α (HNF1-α). The experiments were performed in parallel, using pravastatin as a reference compound. Results demonstrated that MOMAST® may be exploited as a new ingredient for the development of functional foods and/or nutraceuticals for cardiovascular disease prevention.
Collapse
|
5
|
Trans-Epithelial Transport, Metabolism, and Biological Activity Assessment of the Multi-Target Lupin Peptide LILPKHSDAD (P5) and Its Metabolite LPKHSDAD (P5-Met). Nutrients 2021; 13:nu13030863. [PMID: 33808034 PMCID: PMC8000724 DOI: 10.3390/nu13030863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
P5 (LILPKHSDAD) is a hypocholesterolemic peptide from lupin protein with a multi-target activity, since it inhibits both 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) and proprotein convertase subtilisin/kexin type-9 (PCSK9). This work shows that, during epithelial transport experiments, the metabolic transformation mediated by intestinal peptidases produces two main detected peptides, ILPKHSDAD (P5-frag) and LPKHSDAD (P5-met), and that both P5 and P5-met are linearly absorbed by differentiated human intestinal Caco-2 cells. Extensive comparative structural, biochemical, and cellular characterizations of P5-met and the parent peptide P5 demonstrate that both peptides have unique characteristics and share the same mechanisms of action. In fact, they exert an intrinsically multi-target behavior being able to regulate cholesterol metabolism by modulating different pathways. The results of this study also highlight the dynamic nature of bioactive peptides that may be modulated by the biological systems they get in contact with.
Collapse
|
6
|
Nie Y, Xu X, Wang W, Ma N, Lendlein A. Spheroid formation of human keratinocyte: Balancing between cell-substrate and cell-cell interaction. Clin Hemorheol Microcirc 2020; 76:329-340. [PMID: 32925021 DOI: 10.3233/ch-209217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The formation of spheroids is tightly regulated by intrinsic cell-cell and cell-substrate interactions. OBJECTIVE The chitosan (CS)-coating was applied to investigate the driven force directed the spheroid formation. METHODS The effects of CS on cell functions were studied. Atomic force microscopy was employed to measure the cell- biomaterial interplay at single cell level. RESULTS HaCaT cells shifted from their flattened sheet to a compact 3D spheroidal morphology when increasing CS-coating concentration. The proliferative capacity of HaCaT was preserved in the spheroid. The expression and activation of integrin β1 (ITGB1) were enhanced on CS modified surfaces, while the active to total ratio of ITGB1 was decreased. The adhesive force of a single HaCaT cell to the tissue culture plate (TCP) was 4.84±0.72 nN. It decreased on CS-coated surfaces as CS concentration increased, from 2.16±0.26 nN to 0.96±0.17 nN. The adhesive force between the single HaCaT cell to its neighbor cell increased as CS concentration increased, from 1.15±0.09 nN to 2.60±0.51 nN. CONCLUSIONS Conclusively, the decreased cell- substrate adhesion was the main driven force in the spheroid formation. This finding might serve as a design criterion for biomaterials facilitating the formation of epithelial spheroids.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Hu J, Wang J, Gan QX, Ran Q, Lou GH, Xiong HJ, Peng CY, Sun JL, Yao RC, Huang QW. Impact of Red Yeast Rice on Metabolic Diseases: A Review of Possible Mechanisms of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10441-10455. [PMID: 32854499 DOI: 10.1021/acs.jafc.0c01893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metabolic diseases constitute a major public health burden and are linked with high morbidity and mortality. They comprise atherosclerosis dyslipidemia, diabetes, hypertension, and obesity. However, there is no single drug that can simultaneously treat multiple diseases with complex underlying mechanisms. Therefore, it is necessary to identify a class of adjuvant drugs that block the development of metabolic diseases from a preventive perspective. Red yeast rice is a food fermentation product widely used to promote blood circulation and remove blood stasis. Modern pharmacology has shown that red yeast rice exerts potential protective effects on the liver, pancreas, blood vessels, and intestines. Therefore, this study was carried out to analyze and summarize the effect of red yeast rice on several metabolic diseases and the mechanisms of action involved. It was found that red yeast rice may be beneficial in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hai-Jun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Cheng-Yi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Ji-Lin Sun
- Sichuan Fuzheng Pharmaceutical Company, Limited, Chengdu, Sichuan 610041, People's Republic of China
| | - Ren-Chuan Yao
- Sichuan Fermentation Traditional Chinese Medicine Engineering Research Center, Chengdu, Sichuan 611130, People's Republic of China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
8
|
Lammi C, Mulinacci N, Cecchi L, Bellumori M, Bollati C, Bartolomei M, Franchini C, Clodoveo ML, Corbo F, Arnoldi A. Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism: Comparison between Oils Obtained with Traditional and Innovative Processes. Antioxidants (Basel) 2020; 9:antiox9090798. [PMID: 32867071 PMCID: PMC7555338 DOI: 10.3390/antiox9090798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
This study was aimed at demonstrating the substantial equivalence of two extra virgin olive oil samples extracted from the same batch of Coratina olives with (OMU) or without (OMN) using ultrasound technology, by performing chemical, biochemical, and cellular investigations. The volatile organic compounds compositions and phenolic profiles were very similar, showing that, while increasing the extraction yields, the innovative process does not change these features. The antioxidant and hypocholesterolemic activities of the extra virgin olive oil (EVOO) phenol extracts were also preserved, since OMU and OMN had equivalent abilities to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals in vitro and to protect HepG2 cells from oxidative stress induced by H2O2, reducing intracellular reactive oxygen species (ROS) and lipid peroxidation levels. In addition, by inhibiting 3-hydroxy-3-methylglutarylcoenzyme a reductase, both samples modulated the low-density lipoprotein receptor (LDLR) pathway leading to increased LDLR protein levels and activity.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
- Correspondence: ; Tel.: +39-025-031-9372
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Lorenzo Cecchi
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Maria Bellumori
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy; (N.M.); (L.C.); (M.B.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| | - Carlo Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (C.F.); (F.C.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (C.F.); (F.C.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (A.A.)
| |
Collapse
|
9
|
Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation. Nutrients 2020; 12:nu12061723. [PMID: 32526887 PMCID: PMC7352813 DOI: 10.3390/nu12061723] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023] Open
Abstract
This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity.
Collapse
|
10
|
Lammi C, Sgrignani J, Arnoldi A, Lesma G, Spatti C, Silvani A, Grazioso G. Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. J Med Chem 2019; 62:6163-6174. [DOI: 10.1021/acs.jmedchem.9b00402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Istituto di Ricerca in Biomedicina (IRB), Universitá della Svizzera Italiana (USI), Via V. Vela 6, CH-6500 Bellinzona, Switzerland
| | - Anna Arnoldi
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giordano Lesma
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Claudia Spatti
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
11
|
Lammi C, Arnoldi A, Aiello G. Soybean Peptides Exert Multifunctional Bioactivity Modulating 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Dipeptidyl Peptidase-IV Targets in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4824-4830. [PMID: 30969121 DOI: 10.1021/acs.jafc.9b01199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was aimed at evaluating the cellular mechanism through which peptic (P) and tryptic (T) soybean hydrolysates modulate the targets involved in hypocholesterolemic pathways in HepG2 and antidiabetic pathways in Caco-2 cells. Both hydrolysates (tested in the concentration range of 0.5-2.5 mg/mL) inhibited the 3-hydroxy-3-methylglutaryl-CoA reductase activity in HepG2 cells. In addition, Soybean P increased LDLR protein levels on HepG2 membranes by 51.5 ± 11.6% and 63.0 ± 6.9% (0.5-1.0 mg/mL) whereas Soybean T increased them by 55.2 ± 9.7% and 85.8 ± 21.5% (0.5-1.0 mg/mL) vs the control, with a final improved HepG2 capacity in the uptake of extracellular LDL. Soybean P reduced in vitro the dipeptidyl peptidase-IV activity by 16.3 ± 3.0% and 31.4 ± 0.12% (1.0 and 2.5 mg/mL), whereas Soybean T reduced it by 15.3 ± 11.0% and 11.0 ± 0.30% (1.0 and 2.5 mg/mL) vs the control. Finally, both hydrolysates inhibited dipeptidyl peptidase-IV activity in situ in human intestinal Caco-2 cells. This investigation may help to explain the activities observed in experimental and clinical studies.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences , University of Milan , 20133 Milan , Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences , University of Milan , 20133 Milan , Italy
| | - Gilda Aiello
- Department of Pharmaceutical Sciences , University of Milan , 20133 Milan , Italy
| |
Collapse
|
12
|
Lammi C, Sgrignani J, Roda G, Arnoldi A, Grazioso G. Inhibition of PCSK9 D374Y/LDLR Protein-Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Med Chem Lett 2019; 10:425-430. [PMID: 30996774 DOI: 10.1021/acsmedchemlett.8b00464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
The inhibition of the PCSK9/LDLR protein-protein interaction is a promising strategy for developing new hypocholesterolemic agents. Familial hypercholesterolemia is linked to specific PCSK9 mutations: the D374Y is the most potent gain-of-function (GOF) PCSK9 mutation among clinically relevant ones. Recently, a lupin peptide (T9) showed inhibitory effects on this mutant PCSK9 form, being also capable to increase liver uptake of low density lipoprotein cholesterol. In this Letter, aiming to improve the potency of this peptide, the T9 residues mainly responsible for the interaction with PCSK9D374Y (hot spots) were computationally predicted. Then, the "non-hot" residues were suitably substituted by new amino acids capable to theoretically increase the structural complementarity between T9 and PCSK9D374Y. The outcomes of this study were confirmed by in vitro biochemical assays and cellular investigations, showing that a new T9 analog is able to increase the LDLR expression on the liver cell surface by 84% at the concentration of 10 μM.
Collapse
Affiliation(s)
- Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera Italiana (USI), Via V. Vela 6, CH-6500 Bellinzona, Switzerland
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
13
|
Biological Characterization of Computationally Designed Analogs of peptide TVFTSWEEYLDWV (Pep2-8) with Increased PCSK9 Antagonistic Activity. Sci Rep 2019; 9:2343. [PMID: 30787312 PMCID: PMC6382862 DOI: 10.1038/s41598-018-35819-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
The inhibition of the PCSK9/LDLR protein-protein interaction (PPI) is a promising strategy for developing new hypocholesterolemic agents. Recently, new antibodies have been approved for therapy, but the high cost and low patients' compliance stimulate the development of alternatives. Starting from the structural information available for the complex between PCSK9 and TVFTSWEEYLDWV (Pep2-8) peptide inhibitor and using computational methods, in this work we identified two Pep2-8 analogs as potential inhibitors of the PCSK9/LDLR PPI. Their biological characterization confirmed the theoretical outcomes. Remarkably, the treatment of HepG2 cells with these peptides increased the LDLR protein level on the cellular membrane, with activities that were 100 and 50 times better than the one of Pep2-8 tested at a 50 μM concentration. Moreover, they were 50 and 5 times more active than Pep2-8 in improving the functional ability of HepG2 cells to uptake extracellular LDL.
Collapse
|
14
|
Zhang M, Zhang M, Wang J, Cai Q, Zhao R, Yu Y, Tai H, Zhang X, Xu C. Retro-inverso follicle-stimulating hormone peptide-mediated polyethylenimine complexes for targeted ovarian cancer gene therapy. Drug Deliv 2018; 25:995-1003. [PMID: 29667478 PMCID: PMC6058519 DOI: 10.1080/10717544.2018.1461956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/03/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The development of nanoparticle drug delivery systems with targeted ligands has the potential to increase treatment efficiency in ovarian cancer. METHODS We developed a 21-amino acid peptide, YTRDLVYGDPARPGIQGTGTF (L-FP21) conjugated to polyethylenimine (PEI) and methoxy polyethylene glycol (mPEG) to prepare a nanoparticle drug vehicle to target follicle-stimulating hormone receptor (FSHR) in ovarian cancer. At the same time, we optimized the ligand of the nanoparticle vehicle using D-peptides, which consist of D-amino acids (D-FP21). Nanoparticle vehicles carrying the therapeutic gene plasmid growth-regulated oncogene alpha (pGRO-α) short hairpin RNA (shRNA) (FP21-PEG-PEI/pGRO-α) were prepared for further investigation. RESULTS Compared with L-FP21, D-FP21 exhibited improved biological stability and higher uptake rate for FSHR-expressing ovarian cancer cells. The cytotoxicity of the L, D-FP21-PEG-PEI/pGRO-α complexes were significantly lower than that of the PEI/pGRO-α complex. The nanoparticle drug with the targeted ligand showed higher transfection efficiencies and improved anti-proliferation effects for ovarian cancer cells than that without the targeted ligand (mPEG-PEI/pGRO-α). Furthermore, an in vivo evaluation of an antitumor assay indicated that D-FP21-PEG-PEI/pGRO-α inhibited the growth of tumor spheroids considerably more than L-FP21-PEG-PEI/pGRO-α; their tumor inhibition rates were 58.5% and 33.3%, respectively. CONCLUSIONS D-FP21-PEG-PEI/plasmid DNA is a safe and efficient gene delivery vehicle for ovarian cancer targeted therapy.
Collapse
Affiliation(s)
- Mengyu Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Gynecology, 411 Military Hospital Affiliated to Changhai Hospital of Shanghai, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mingxing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qingqing Cai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ran Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yi Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiyan Tai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
15
|
Grazioso G, Bollati C, Sgrignani J, Arnoldi A, Lammi C. First Food-Derived Peptide Inhibitor of the Protein-Protein Interaction between Gain-of-Function PCSK9 D374Y and the Low-Density Lipoprotein Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10552-10557. [PMID: 30226051 DOI: 10.1021/acs.jafc.8b03233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in cholesterol homeostasis, because it induces the low-density lipoprotein receptor (LDLR) degradation. This protein may carry some positive or negative mutations: PCSK9D374Y is one of the most dangerous gain-of-function mutations. This paper reports the identification of the first food-derived peptide able to inhibit the protein-protein interaction (PPI) between PCSK9D374Y and LDLR. In fact, T9 (GQEQSHQDEGVIVR), an absorbable peptide deriving from lupin β-conglutin, is able to impair the PPI between PCSK9D374Y and the LDLR, with an IC50 value equal to 285.6 ± 2.46 μM. The consequence of this inhibition is an increase of the protein level of the LDLR located on hepatic cell membranes up to 74.3 ± 4.4% and the restoration of the functional capability of HepG2 cells to uptake extracellular low-density lipoprotein up to 83.1 ± 1.6%. Finally, the putative binding mode of T9 to the LDLR binding site located on PCSK9D374Y was postulated by in silico tools.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Luigi Mangiagalli 25 , 20133 Milan , Italy
| | - Carlotta Bollati
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Luigi Mangiagalli 25 , 20133 Milan , Italy
| | - Jacopo Sgrignani
- Istituto di Ricerca in Biomedicina (IRB) , Università della Svizzera Italiana (USI) , Via Vincenzo Vela 6 , CH-6500 Bellinzona , Switzerland
| | - Anna Arnoldi
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Luigi Mangiagalli 25 , 20133 Milan , Italy
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Luigi Mangiagalli 25 , 20133 Milan , Italy
| |
Collapse
|
16
|
Shin EJ, Park JH, Sung MJ, Chung MY, Hwang JT. Citrus junos Tanaka peel ameliorates hepatic lipid accumulation in HepG2 cells and in mice fed a high-cholesterol diet. Altern Ther Health Med 2016; 16:499. [PMID: 27912736 PMCID: PMC5135759 DOI: 10.1186/s12906-016-1460-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
Background Citrus junos Tanaka (yuja), a yellow-coloured citrus fruit has traditionally been consumed in Korea, Japan, and China and has been found effective in preventing certain diseases. However, the inhibitory effect of yuja on hepatic lipid accumulation has not been clearly elucidated thus far. Methods The inhibitory effect of yuja on hepatic lipid accumulation was investigated in both cell culture and mouse models. We investigated the inhibitory effect of ethanol extract of yuja peel (YE) using HepG2 cells. We next confirmed the effect of YE in mice fed a high cholesterol diet. Animals were divided into 4 groups (n = 8): a normal diet group (ND), a high-cholesterol diet group (HC), high-cholesterol diet plus 1% YE (YL), high-cholesterol diet plus 5% YE (YH). Result Seventy percent ethanolic extracts of yuja peel (YE) reduced oleic acid-induced hepatic lipid accumulation in HepG2 cells. Treatment with YE at 100, 200 μg/mL up-regulated expression levels of cholesterol metabolism-related proteins such as AMPK, ACC, PPAR-α, and CPT1 and down-regulated the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. The hypocholesterolemic effect of YE was further confirmed in mice fed a high-cholesterol diet. Compared to ND (normal diet) mice, HC (high-cholesterol diet) mice showed increased body weight, liver fat content, liver weight, and content of total cholesterol and low-density lipoprotein (LDL) cholesterol. On the contrary, administrations of YL (HC + 1% YE) or YH (HC + 5% YE) significantly reduced body weight, liver fat content, liver weight, total cholesterol, and LDL cholesterol compared to those of only HC fed mice group. As a result of in vitro data, protein expressions of PPAR-α and CPT1 were induced in mice fed YE diet compared to HC diet but HMGCR expression was decreased. Conclusions Yuja peel ameliorates hepatic lipid accumulation in both cell culture and mouse models and therefore, could serve as a useful supplement for hypercholesterolemia.
Collapse
|
17
|
Wang J, Ji J, Song Z, Zhang W, He X, Li F, Zhang C, Guo C, Wang C, Yuan C. Hypocholesterolemic effect of emodin by simultaneous determination of in vitro and in vivo bile salts binding. Fitoterapia 2016; 110:116-22. [PMID: 26964768 DOI: 10.1016/j.fitote.2016.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/13/2022]
Abstract
Emodin is an active anthraquinone derivative from Rheum palmatum and some other Chinese herbs and it is traditionally used for treating a variety of diseases. In this study, we investigated the hypocholesterolemic effects and mechanism of emodin on hypercholesterolemia rats. In vitro, capability of emodin binding to sodium deoxycholate which is one kind of bile salts (BAs) was evaluated by detection of surplus content of sodium deoxycholate. In vivo, hypocholesterolemic effects were assessed by determining total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) level of serum and TC, TG level of the liver. Oil red O staining was employed to determine lipid droplet of the liver. The mechanism was explored by BAs in feces, the liver and small intestine. Furthermore, cholesterol 7α-hydroxylase (CYP7A1) activity was measured to evaluate cholesterol's transforming to BAs. The results indicated that TC level of emodin group apparently decreased comparing with model group (p<0.05). Emodin could bind to BAs both in vivo (p<0.05) and in vitro. CYP7A1 activity in emodin group apparently increased comparing with model group (p<0.05). Data suggested that emodin had the potential value for treatment of hypercholesterolemia. The underlying mechanism is probably associated with binding capability to BAs and subsequent increasing expression of CYP7A1.
Collapse
Affiliation(s)
- Jiaoying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zijing Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xin He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chunfeng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Changrun Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chongzhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chunsu Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|