1
|
Moradiyan Tehrani H, Goli M. Effects of pathogen diversity, farm type, and parity number on somatic cell profiles and histamine levels in milk and ultra-filtration white brined cheese from dairy cattle. Lebensm Wiss Technol 2025; 215:117277. [DOI: 10.1016/j.lwt.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Natrella G, Vacca M, Minervini F, Faccia M, De Angelis M. A Comprehensive Review on the Biogenic Amines in Cheeses: Their Origin, Chemical Characteristics, Hazard and Reduction Strategies. Foods 2024; 13:2583. [PMID: 39200510 PMCID: PMC11353796 DOI: 10.3390/foods13162583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Most of the biogenic amines are naturally found in fermented foods as a consequence of amino acid decarboxylation. Their formation is ascribable to microorganisms (starters, contaminants and autochthonous) present in the food matrix. The concentration of these molecules is important for food security reasons, as they are involved in food poisoning illnesses. The most frequent amines found in foods are histamine, putrescine, cadaverine, tyramine, tryptamine, phenylethylamine, spermine and spermidine. One of the most risk-prone foods are cheeses, mostly ripened ones, which could easily accumulate amines due to their peculiar manufacturing process and ripening. Cheeses represent a pivotal food in our diet, providing for nutrients such as amino acids, calcium, vitamins and others; thus, since they are widely consumed, it is important to evaluate the presence of toxic molecules to avoid consumers' poisoning. This review aimed to gather general information on the role of biogenic amines, their formation, the health issues and the microorganisms and processes that produce/reduce them, with a focus on their content in different types of cheese (from soft to hard cheeses) and the biotic and abiotic factors that influence their formation or reduction and concentration. Finally, a multivariate analysis was performed on the biogenic amine content, derived from data available in the literature, to obtain more information about the factors influencing their presence in cheeses.
Collapse
Affiliation(s)
- Giuseppe Natrella
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.); (M.F.); (M.D.A.)
| | | | | | | | | |
Collapse
|
3
|
Zhou X, Xu Q, Zhang X, Wang H, Bai Y, Wu Y, Liu X, Wang Z, Hu J, Huang M, Pi Y, Zhao J, Wang J, Han D. Mucin alleviates colonic barrier dysfunction by promoting spermine accumulation through enhanced arginine metabolism in Limosilactobacillus mucosae. mSystems 2024; 9:e0024624. [PMID: 38564708 PMCID: PMC11097634 DOI: 10.1128/msystems.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.
Collapse
Affiliation(s)
- Xingjian Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Sadighara P, Bekheir SA, Shafaroodi H, Basaran B, Sadighara M. Tyramine, a biogenic agent in cheese: amount and factors affecting its formation, a systematic review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:30. [DOI: 10.1186/s43014-024-00223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractTyramine is one of the most important biological amines in food, which leads to food poisoning if consumed in high amounts. In addition to food poisoning, tyramine leads to drug interactions. Foods high in tyramine can cause high blood pressure and migraines in people taking monoamine oxidase (MAO) inhibitors. Therefore, people taking MAO inhibitors should avoid foods high in tyramine. Cheese provides ideal conditions for the production of tyramine. Some cheeses contain high amounts of tyramine and lead to unwanted effects in people taking MAO inhibitors. These unwanted effects are called the cheese effect or tyramine interaction. Considering the importance of the subject, a systematic study was designed with the aim of determining the amount of tyramine in cheeses and the effect of effective factors on the amount of tyramine production. The search was done in three databases, including Scopus, PubMed, and Science Direct. The study was conducted in two phases. In the first stage, the amount of tyramine reported in cheeses, the analytical method, measurement, and characteristics of cheese were discussed. In the second phase, the influencing factors in its formation were investigated. Based on the extracted data, tyramine levels ranged from 3.23 to 1398 mg/kg. The most analytical method for measuring tyramine in the studies was the HPLC method. According to a detailed review of the literature, the influencing factors included bacterial species, animal species, the effect of storage conditions (time and temperature), pH, moisture, salt, and the number of somatic cells. Basically, by identifying the factors affecting the amount of tyramine in cheeses, it is possible to control the production of tyramine.
Graphical Abstract
Collapse
|
5
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
6
|
Moniente M, Botello-Morte L, García-Gonzalo D, Pagán R, Ontañón I. Analytical strategies for the determination of biogenic amines in dairy products. Compr Rev Food Sci Food Saf 2022; 21:3612-3646. [PMID: 35726745 DOI: 10.1111/1541-4337.12980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/08/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Biogenic amines (BA) are mainly produced by the decarboxylation of amino acids by enzymes from microorganisms that emerge during food fermentation or due to incorrectly applied preservation processes. The presence of these compounds in food can lead to a series of negative effects on human health. To prevent the ingestion of high amounts of BA, their concentration in certain foods needs to be controlled. Although maximum legal levels have not yet been established for dairy products, potential adverse effects have given rise to a substantial number of analytical and microbiological studies: they report concentrations ranging from a few mg/kg to several g/kg. This article provides an overview of the analytical methods for the determination of biogenic amines in dairy products, with particular focus on the most recent and/or most promising advances in this field. We not only provide a summary of analytical techniques but also list the required sample pretreatments. Since high performance liquid chromatography with derivatization is the most widely used method, we describe it in greater detail, including a comparison of derivatizing agents. Further alternative techniques for the determination of BA are likewise described. The use of biosensors for BA in dairy products is emerging, and current results are promising; this paper thus also features a section on the subject. This review can serve as a helpful guideline for choosing the best option to determine BA in dairy products, especially for beginners in the field.
Collapse
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
7
|
Schirone M, Visciano P, Conte F, Paparella A. Formation of biogenic amines in the cheese production chain: favouring and hindering factors. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Lactoperoxidase potential in diagnosing subclinical mastitis in cows via image processing. PLoS One 2022; 17:e0263714. [PMID: 35176036 PMCID: PMC8853571 DOI: 10.1371/journal.pone.0263714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
This report describes how image processing harnessed to multivariate analysis techniques can be used as a bio-analytical tool for mastitis screening in cows using milk samples collected from 48 animals (32 from Jersey, 7 from Gir, and 9 from Guzerat cow breeds), totalizing a dataset of 144 sequential images was collected and analyzed. In this context, this methodology was developed based on the lactoperoxidase activity to assess mastitis using recorded images of a cuvette during a simple experiment and subsequent image treatments with an R statistics platform. The color of the sample changed from white to brown upon its exposure to reagents, which is a consequence of lactoperoxidase enzymatic reaction. Data analysis was performed to extract the channels from the RGB (Red-Green-Blue) color system, where the resulting dataset was evaluated with Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Second-Order Regression (SO). Interesting results in terms of enzymatic activity correlation (R2 = 0.96 and R2 = 0.98 by MLR and SO, respectively) and of somatic cell count (R2 = 0.97 and R2 = 0.99 by MLR and SO, respectively), important mastitis indicators, were obtained using this simple method. Additionally, potential advantages can be accessed such as quality control of the dairy chain, easier bovine mastitis prognosis, lower cost, analytical frequency, and could serve as an evaluative parameter to verify the health of the mammary gland.
Collapse
|
9
|
Moradi M, Omer AK, Razavi R, Valipour S, Guimarães JT. The relationship between milk somatic cell count and cheese production, quality and safety: A review. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Effect of somatic cells count in cow milk on the formation of biogenic amines in cheese. Journal of Food Science and Technology 2021; 58:3409-3416. [PMID: 34366458 DOI: 10.1007/s13197-020-04935-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Comparative studies on physicochemical characteristics of milk with different somatic cells count (SCC) (L-low < 400,000 cells/ml, M-medium between 500,000 and 600,000 cells/ml and H-high > 1,000,000 cells/ml) and obtained cheeses, were conducted. No significant differences between samples were found. The H SCC milk was characterized by the highest total viable count. Higher levels of proteolysis were established in cheeses made from milk with SCC exceeding 500,000 cells/ml. After 10 months of ripening and cold storage the water-soluble nitrogen in total nitrogen (WSN/TN), noncasein nitrogen in total nitrogen (NCN/TN), nonprotein nitrogen in total nitrogen (NPN/TN) and free amino groups values of the sample with the highest SCC reached 28.4 ± 0.8%, 24.8 ± 0.9%, 18.3 ± 0.9% and 83.6 ± 0.3 mg/kg respectively. The biogenic amine concentration in the cheese samples from the L and M batches remained below 10 mg/kg throughout the ripening and cold storage period. The present study established an increase in the biogenic amine content during the ripening period and the cold storage of the cheeses made from milks with high SCC (batch H). The main amines accumulated at the end of the storage period (10th month) were tyramine (31.7 ± 0.3 mg/kg), putrescine (20.5 ± 0.2 mg/kg) and cadaverine (14.6 ± 0.2 mg/kg). Histamine was not found in any of the studied cheese samples.
Collapse
|
11
|
Poveda JM, Jiménez L, Perea JM, Arias R, Palop ML. Farming Practices Influence Antibiotic Resistance and Biogenic Amine Capacity of Staphylococci from Bulk Tank Ewe's Milk. Animals (Basel) 2020; 10:E1622. [PMID: 32927840 PMCID: PMC7552206 DOI: 10.3390/ani10091622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococci are one of the main microorganisms responsible for intramammary infections in sheep, causing important economic losses for farmers and eventually health problems in humans, especially by the consumption of dairy products made with raw milk containing toxic compounds, such as biogenic amines or antibiotic resistant bacteria. This study aimed to check the presence and safety of staphylococci in bulk tank ewe's milk from different farms, and to determine the relationship between the presence of these staphylococci and farming practices, by applying nonlinear canonical correlation models (OVERALS). Two-hundred and fifty-nine staphylococci from milk samples from eighteen farms were genotyped and representative isolates of the major clusters were identified as belonging to Staphylococcus (S.) aureus, S. epidermidis, S. arlettae, S. lentus, S. simulans, and S. chromogenes species. Identified isolates were assayed in terms of their safety, by evaluating resistance to antimicrobial drugs and the aminobiogenic capacity, using both phenotypic and genetic assays. Antibiotic resistance phenotypic assay revealed that 82.9% were resistant to some antibiotics, although in the genotypic assay only the genes tetM, ermB, ermC, and grlA were detected. Fifty-three percent were high biogenic amine (BA) producers, being putrescine the most produced amine. A lowered risk of finding antibiotic-resistant and BA-producing staphylococci is related to some farming methods such as enrolling in a breeding program, use of good farming practices, postdipping teat disinfection, hygienic livestock housing, or periodic check of the milking machine.
Collapse
Affiliation(s)
- Justa María Poveda
- Department of Analytical Chemistry and Food Technology, Regional Institute of Applied Scientific Research (IRICA)/Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela, 1B, 13071 Ciudad Real, Spain;
| | - Lorena Jiménez
- Regional Center of Animal Selection and Reproduction (CERSYRA), Agri-food and Forestry Regional Research and Development Center (IRIAF), JCCM, 13300 Valdepeñas, Spain;
| | - José Manuel Perea
- Department of Animal Production, Faculty of Veterinary, University of Cordoba, Campus Rabanales, 14071 Córdoba, Spain;
| | - Ramón Arias
- Regional Center of Animal Selection and Reproduction (CERSYRA), Agri-food and Forestry Regional Research and Development Center (IRIAF), JCCM, 13300 Valdepeñas, Spain;
| | - María Llanos Palop
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain;
| |
Collapse
|
12
|
CAVALCANTE RBM, MORGANO MA, GLÓRIA MBA, ROCHA MDM, ARAÚJO MADM, MOREIRA-ARAÚJO RSDR. Mineral content, phenolic compounds and bioactive amines of cheese bread enriched with cowpea. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.11718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Moreira GM, Costa RG, Teodoro VA, Paula JC, Sobral D, Fernandes C, Gloria MBA. Effect of ripening time on proteolysis, free amino acids, bioactive amines and texture profile of Gorgonzola-type cheese. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Mechanisms of the antilipolytic response of human adipocytes to tyramine, a trace amine present in food. J Physiol Biochem 2018; 74:623-633. [PMID: 30039351 DOI: 10.1007/s13105-018-0643-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Tyramine is found in foodstuffs, the richest being cheeses, sausages, and wines. Tyramine has been recognized to release catecholamines from nerve endings and to trigger hypertensive reaction. Thereby, tyramine-free diet is recommended for depressed patients treated with irreversible inhibitors of monoamine oxidases (MAO) to limit the risk of hypertension. Tyramine is a substrate of amine oxidases and also an agonist at trace amine-associated receptors. Our aim was to characterize the dose-dependent effects of tyramine on human adipocyte metabolic functions. Lipolytic activity was determined in adipocytes from human subcutaneous abdominal adipose tissue. Glycerol release was increased by a fourfold factor with classical lipolytic agents (1 μM isoprenaline, 1 mM isobutylmethylxanthine) while the amine was ineffective from 0.01 to 100 μM and hardly stimulatory at 1 mM. Tyramine exhibited a partial antilipolytic effect at 100 μM and 1 mM, which was similar to that of insulin but weaker than that obtained with agonists at purinergic A1 receptors, α2-adrenoceptors, or nicotinic acid receptors. Gi-protein blockade by Pertussis toxin abolished all these antilipolytic responses save that of tyramine. Indeed, tyramine antilipolytic effect was impaired by MAO-A inhibition. Tyramine inhibited protein tyrosine phosphatase activities in a manner sensitive to ascorbic acid and amine oxidase inhibitors. Thus, millimolar tyramine restrained lipolysis via the hydrogen peroxide it generates when oxidized by MAO. Since tyramine plasma levels have been reported to reach 0.2 μM after ingestion of 200 mg tyramine in healthy individuals, the direct effects we observed in vitro on adipocytes could be nutritionally relevant only when the MAO-dependent hepato-intestinal detoxifying system is overpassed.
Collapse
|
15
|
Les F, Iffiú-Soltész Z, Mercarder J, Carpéné C. Tyramine activates lipid accumulation in rat adipocytes: influences of <em>in vitro</em> and <em>in vivo</em> administration. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|