1
|
Yuan Q, Yang H, Cheng J, Liu X. The fermentation of whey protein and mulberry polyphenols by forming protein-phenolic adducts: Improved digestions. J Nutr Biochem 2025:109921. [PMID: 40252708 DOI: 10.1016/j.jnutbio.2025.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
The impacts of forming adduct between whey protein (WP) and mulberry polyphenol (MP) on the digestion and fermentation of WP and MP were investigated using an in vitro model. The results showed that MP increased the in vitro antioxidant capacity of WP digestive products. After forming adduct the total extractable phenolic content of MP dropped from 440.20 mg GAE/g to 21.53 mg GAE/g. The total extractable phenolic content of WP-MP group decreased from 21.53 mg GAE/g to 11.77 mg GAE/g after the oral digestion, then slightly increased to 12.43 after the gastric digestion and continuously increased to 20.43 mg GAE/g after the intestinal digestion. Extractable individual phenolic compounts exhibited the similar tendency, in which cyandin-3-O-glucoside, cyandin-3-O-rutinoside, p-coumaric acid, quercetin and kaempferol were still detectable while protocatechuic and neochlorogenic acid increased after intestinal digestion of WP-MP adduct. Incorporation of MP inhibited the oral and gastric digestion but enhanced the intestinal digestion of WP, and the degree of hydrolysis of WP increased 9.70% after intestinal digestion compared to the control. The fermentation of non-dialyzable residue of WP-MP by gut flora decreased the pH value from 7.18 to 4.82 and increased the proliferation of beneficial bacteria and the production of short-chain fatty acids. These findings indicated that WP-MP adduct increased the digestion of WP and the bioaccessibility of MP, could improve the intestinal health and could be used as a new healthy food ingredient.
Collapse
Affiliation(s)
- Qi Yuan
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Park SY, Kim Y, Lee J, Cameron RG, Moon TW, Lee C, Mun S. Effects of charge distribution and degree of methylesterification of pectin emulsifier on bioaccessibility of curcumin incorporated in nanoemulsions. Int J Biol Macromol 2024; 279:135189. [PMID: 39216585 DOI: 10.1016/j.ijbiomac.2024.135189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this study were to elucidate the effects of degree of methyl esterification (DM) and charge distribution of pectin on the stability of emulsions and to analyze bioaccessibility of curcumin incorporated in emulsions stabilized by pectins. Three commercial pectins, CP72 (DM72), CP50 (DM50), and CP7 (DM7), were used. MP50 (DM50) with consecutive demethylesterified galacturonic acid residues was prepared from CP72 via demethylesterification to induce different charge distributions. Emulsions containing curcumin were prepared and were stored for 30 days. The CP72 and CP50 emulsions remained relatively stable for 30 days. However, MP50 and CP7 were less effective at forming stable emulsions. When the pectin emulsions passed through each phase of the simulated gastrointestinal tract (GIT), the CP72 and CP50 emulsions retained their initial droplet structures after in vitro mouth and gastric digestion, whereas the MP50 and CP7 emulsions exhibited gel-like clusters, although the gel-like formation of MP50 was distinct from that observed in CP7. MP50 emulsion showed a high degree of final lipid digestion and high bioaccessibility of curcumin while CP72 emulsion displayed a low degree of final lipid digestion. CP50 exhibited low bioaccessibility of curcumin, which might have been contributed by its fast lipid digestion profiles.
Collapse
Affiliation(s)
- Su Yeon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yang Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Randall G Cameron
- Citrus and Other Subtropical Products Research Unit, US Horticultural Research Laboratory, US Department of Agriculture, Agricultural Research Service, 2001 S. Rock Road, Fort Pierce, FL 34945, USA
| | - Tae-Wha Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Changjoo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Saehun Mun
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
3
|
de Castro Cogle K, Kubo MTK, Merlier F, Josse A, Anastasiadi M, Mohareb FR, Rossi C. Probabilistic Modelling of the Food Matrix Effects on Curcuminoid's In Vitro Oral Bioaccessibility. Foods 2024; 13:2234. [PMID: 39063318 PMCID: PMC11276217 DOI: 10.3390/foods13142234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The bioaccessibility of bioactive compounds plays a major role in the nutritional value of foods, but there is a lack of systematic studies assessing the effect of the food matrix on bioaccessibility. Curcuminoids are phytochemicals extracted from Curcuma longa that have captured public attention due to claimed health benefits. The aim of this study is to develop a mathematical model to predict curcuminoid's bioaccessibility in biscuits and custard based on different fibre type formulations. Bioaccessibilities for curcumin-enriched custards and biscuits were obtained through in vitro digestion, and physicochemical food properties were characterised. A strong correlation between macronutrient concentration and bioaccessibility was observed (p = 0.89) and chosen as a main explanatory variable in a Bayesian hierarchical linear regression model. Additionally, the patterns of food matrix effects on bioaccessibility were not the same in custards as in biscuits; for example, the hemicellulose content had a moderately strong positive correlation to bioaccessibility in biscuits (p = 0.66) which was non-significant in custards (p = 0.12). Using a Bayesian hierarchical approach to model these interactions resulted in an optimisation performance of r2 = 0.97 and a leave-one-out cross-validation score (LOOCV) of r2 = 0.93. This decision-support system could assist the food industry in optimising the formulation of novel food products and enable consumers to make more informed choices.
Collapse
Affiliation(s)
- Kevin de Castro Cogle
- Université de Technologie de Compiègne, CNRS, UPJV, GEC, 60203 Compiègne, France; (K.d.C.C.); (M.T.K.K.); (F.M.); (A.J.)
- Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, College Rd, Cranfield, Bedford MK43 0AL, UK;
| | - Mirian T. K. Kubo
- Université de Technologie de Compiègne, CNRS, UPJV, GEC, 60203 Compiègne, France; (K.d.C.C.); (M.T.K.K.); (F.M.); (A.J.)
| | - Franck Merlier
- Université de Technologie de Compiègne, CNRS, UPJV, GEC, 60203 Compiègne, France; (K.d.C.C.); (M.T.K.K.); (F.M.); (A.J.)
| | - Alexandra Josse
- Université de Technologie de Compiègne, CNRS, UPJV, GEC, 60203 Compiègne, France; (K.d.C.C.); (M.T.K.K.); (F.M.); (A.J.)
| | - Maria Anastasiadi
- Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, College Rd, Cranfield, Bedford MK43 0AL, UK;
| | - Fady R. Mohareb
- Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, College Rd, Cranfield, Bedford MK43 0AL, UK;
| | - Claire Rossi
- Université de Technologie de Compiègne, CNRS, UPJV, GEC, 60203 Compiègne, France; (K.d.C.C.); (M.T.K.K.); (F.M.); (A.J.)
| |
Collapse
|
4
|
Zhou Z, Wang D, Luo D, Zhou Z, Liu W, Zeng W, Dinnyés A, Xiong YL, Sun Q. Non-covalent binding of chlorogenic acid to myofibrillar protein improved its bio-functionality properties and metabolic fate. Food Chem 2024; 440:138208. [PMID: 38159322 DOI: 10.1016/j.foodchem.2023.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
As natural antioxidants added to meat products, polyphenols can interact with proteins, and the acid-base environment influenced the extent of non-covalent and covalent interactions between them. This study compared the bio-functional characteristics and metabolic outcomes of the myofibrillar protein-chlorogenic acid (MP-CGA) complexes binding in different environments (pH 6.0 and 8.5). The results showed that CGA bound with MP significantly enhanced its antioxidant activity and inhibitory effect on metabolism enzymes. CGA bound deeply into the MP structure hydrophobic cavity at pH 6.0, which reduced its degradation by digestive enzymes, thus increasing its bio-accessibility from 59.5% to 71.6%. The digestion products of the two complexes exhibited significant differences, with the non-covalent MP-CGA complexes formed at pH 6.0 showing significantly higher concentrations of rhetsinine and piplartine, two well-known compounds to modulate diabetes. This study demonstrated that non-covalent binding between protein and polyphenol in the acidic environment held greater promising prospects for improving health.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Wei Liu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Weicai Zeng
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos str. 26., 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
5
|
Hameed A, Anwar MJ, Perveen S, Amir M, Naeem I, Imran M, Hussain M, Ahmad I, Afzal MI, Inayat S, Awuchi CG. Functional, industrial and therapeutic applications of dairy waste materials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1470-1496. [DOI: 10.1080/10942912.2023.2213854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqra Naeem
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhamad Inam Afzal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saima Inayat
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
6
|
Assessment of Feed Value of Chicory and Lucerne for Poultry, Determination of Bioaccessibility of Their Polyphenols and Their Effects on Caecal Microbiota. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chicory and lucerne possess high feed value for poultry being good sources of protein and fiber. In addition, they are rich in polyphenols that help the body build an integrated antioxidant system to prevent damage from free radicals and positively modulate microbial populations in the gastrointestinal tract. These health-promoting effects of polyphenols depend on their bioaccessibility and absorption in the animal body. The present paper aimed to study the bioaccessibility of polyphenols from chicory and lucerne after subjecting the samples to gastric and intestinal phases of digestion in an in vitro model of chicken gut and assessment of their feed value by measuring the presence of fermentable substrates (in terms of gas production), SCFAs produced and their effects on gut microbiota population during in vitro cecal fermentation. Results revealed that the bioaccessibility of polyphenols varied with different polyphenol compounds. The highest bioaccessibility was recorded for p-hydroxybenzoic acid (90.8%) from chicory following the intestinal phase of digestion. The lowest bioaccessibility was observed for quercetin-3-rhamnoside (12.6%) from chicory after the gastric phase of digestion. From lucerne, the highest bioaccessibility was recorded for kaempferol-3-glucoside (77.5%) after the intestinal phase of digestion. Total gas production was higher for lucerne (39.9 mL/g) than chicory (28.1 mL/g). Similarly, total SCFAs production was higher after 24 h of cecal fermentation with lucerne (42.2 mmol L−1) as compared to chicory (38.1 mmol L−1). Results also revealed that the relative abundance of Clostridium was reduced with chicory (0.225%) and lucerne (0.176%) as compared to the control (0.550%) after 24 h of cecal fermentation. The relative abundance of Streptococcus was reduced by lucerne (4.845%) but was increased with chicory (17.267%) as compared to the control (5.204%) after 24 h of fermentation. These findings indicated that chicory and lucerne differentially affected the microbial populations during in vitro cecal fermentation.
Collapse
|
7
|
Shen W, Hu X, Niu Y, Lu Y, Wang B, Wang H. Bioaccessibility and Absorption of Flavonoid C-glycosides from Abrus mollis Using Simulated Digestion, Caco-2 Cell, and In Situ Single-pass Perfusion Models. PLANTA MEDICA 2021; 87:570-580. [PMID: 33545720 DOI: 10.1055/a-1363-2088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abrus mollis is commonly used as a traditional Chinese medicine for the treatment of liver diseases due to its hepatoprotection and anti-inflammation, but the absorption properties of its main bioactive ingredients remain unclear. Our previous studies verified that the flavonoid C-glycosides, including vicenin-2 (1: ), isoschaftoside (2: ), and schaftoside (3: ), were the major active components in A. mollis for hepatic protection against nonalcoholic fatty liver disease, hepatitis, and hepatic fibrosis. This study investigated the bioaccessibility and transport mechanisms of total flavonoid C-glycoside, as well as vicenin-2 (1: ), isoschaftoside (2: ), and schaftoside (3: ), in A. mollis by simulated digestion and use of the Caco-2 cell model. Moreover, this study attempted to verify their absorption properties by in situ gastrointestinal perfusion in rats. Total flavonoid C-glycoside and 1, 2: , and 3: exhibited similar bioaccessibility of 84.58%, 85.13%, 83.05%, and 81.65% respectively after simulated digestion. The transport of total flavonoid C-glycoside in the Caco-2 cell model increased with the concentration, and the transport showed saturation characteristics with the time and concentration of total flavonoid C-glycoside to a certain degree. The Papp values of total flavonoid C-glycoside and the 3 flavonoid C-glycosides were significantly improved by verapamil, probenecid, and EDTA-Na2. Their absorption properties in the gastrointestinal tract were consistent with that found in Caco-2 cells, and superior absorption rates were observed in the duodenum and jejunum. The absorption pattern of total flavonoid C-glycoside may involve multiple transport pathways, including active transport, passive diffusion, and the paracellular pathway. TFC was actively pumped out by P-glycoprotein and multidrug resistance-associated protein. These results revealed that the bioaccessibility and intestinal absorption characteristic of total flavonoid C-glycoside were consistent with the 3 major flavonoids.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yajun Niu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yimeng Lu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Baolin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Yun YR, Oh SJ, Lee MJ, Choi YJ, Park SJ, Lee MA, Min SG, Seo HY, Park SH. Antioxidant activity and calcium bioaccessibility of Moringa oleifera leaf hydrolysate, as a potential calcium supplement in food. Food Sci Biotechnol 2020; 29:1563-1571. [PMID: 33088605 DOI: 10.1007/s10068-020-00820-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Abstract
Moringa oleifera leaf (ML) is rich in vitamins and minerals, specially abundant calcium, therefore it is widely used as a calcium supplement for food. This study aimed to investigate the antioxidant activity and calcium bioaccessibility of M. oleifera leaf hydrolysate (MLH) as a calcium supplement for kimchi. MLH was prepared under three different proteases, two different protease contents, and three different incubation times. Total phenol content (TPC), total flavonoid content (TFC), and antioxidant activities were investigated. Cellular activity and calcium bioaccessibility were also investigated. The highest calcium level of MLH was observed in 3% Protamex treatment for 4 h. TPC, TFC, and antioxidant activities of MLH in Protamex and Alcalase treatments were higher than those in Flavourzyme treatment (p < 0.05). Moreover, high cell viability and alkaline phosphatase activity were also observed in C2C12 cells. Kimchi containing MLH showed high calcium accessibility compared to kimchi alone. Taken together, the application of MLH could have potential as a calcium supplement for kimchi production.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Su-Jin Oh
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Min-Jung Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Yun-Jung Choi
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung Jin Park
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Mi-Ai Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Gi Min
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Hye-Young Seo
- Hygienic Safety and Analysis Center, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Hee Park
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| |
Collapse
|
9
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
10
|
Balasooriya H, Dasanayake K, Ajlouni S. Bioaccessibility of micronutrients in fresh and frozen strawberry fruits grown under elevated carbon dioxide and temperature. Food Chem 2019; 309:125662. [PMID: 31704072 DOI: 10.1016/j.foodchem.2019.125662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/22/2019] [Accepted: 10/06/2019] [Indexed: 01/18/2023]
Abstract
Strawberry cultivar "San Andreas" was grown under ambient (400 ppm CO2, 25 °C) and elevated (950 ppm CO2, 30 °C) growth conditions. The strawberries were subjected to in vitro gastrointestinal digestion and colonic fermentation to examine the accessibility of polyphenols, vitamin C and folates in fresh and frozen fruits using HPLC-UV analyses. Results revealed that elevated CO2 and higher temperature enhanced the amounts of accessible bioactive compounds in strawberries. Bioaccessibility of pelargonidin-3-glucoside increased from 67% to 88% in strawberries grown under elevated growth. Fresh strawberries grown under ambient growth contained 93.09 ± 6.2 µg/100 g folates and 18.55 ± 0.5 mg/100 g vitamin C as bioaccessible fractions under fed state while, elevated growth enhanced soluble folates and vitamin C up to 188.63 ± 7.5 µg/100 g and 30.48 ± 0.3 mg/100 g, respectively. Fresh strawberries contained higher amounts of accessible micronutrients than frozen strawberries, while increased bile contents in intestinal fluid (fed state) facilitated the release of bioactive compounds to gastrointestinal fluid.
Collapse
Affiliation(s)
- Himali Balasooriya
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Kithsiri Dasanayake
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Infrastructure Engineering, Faculty of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
11
|
Fu S, Ajlouni S, Sanguansri L, Ng K, Augustin MA. In vitro degradation of curcuminoids by faecal bacteria: Influence of method of addition of curcuminoids into buttermilk yoghurt. Food Chem 2019; 283:414-421. [PMID: 30722892 DOI: 10.1016/j.foodchem.2018.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 11/29/2022]
Abstract
The mode of delivery of curcuminoids in the manufacture of curcuminoid-fortified buttermilk yoghurts was investigated. Curcuminoids were added prior to the addition of yoghurt cultures as powdered curcuminoids or curcuminoids pre-dissolved in ethanol and added to buttermilk prior to or after yoghurt manufacture. Only a small portion (4.6-7.7%) of the total added curcuminoids in yoghurts (299 mg/100 g) was bioaccessible after sequential exposure to simulated gastric and intestinal fluids compared to 10.9% when curcuminoids in ethanolic buffer were delivered. The total potential curcuminoid bioavailability (i.e. bioaccessible curcuminoids + curcuminoids converted by faecal bacteria) delivered in yoghurts was 19-34%, depending on the delivery formats, compared to 37% for curcuminoids delivered in ethanolic buffer. The addition of powdered curcuminoids into buttermilk prior to yoghurt fermentation had 33% total potential bioavailability. This study demonstrated the feasibility of preparing curcuminoid-fortified yoghurt for the functional food market.
Collapse
Affiliation(s)
- Shishan Fu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria 3010, Australia; CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria 3010, Australia
| | - Luz Sanguansri
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria 3010, Australia
| | - Mary Ann Augustin
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
12
|
Li L, Wan W, Cheng W, Liu G, Han L. Oxidatively stable curcumin‐loaded oleogels structured by β‐sitosterol and lecithin: physical characteristics and release behaviour
in vitro. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wenbo Wan
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Lipeng Han
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
13
|
Ali AH. Current knowledge of buttermilk: Composition, applications in the food industry, nutritional and beneficial health characteristics. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University 44511 Zagazig Egypt
| |
Collapse
|
14
|
Zhang YY, Panozzo J, Hall MS, Ajlouni S. Bioaccessibility of Some Essential Minerals in Three Selected Australian Pulse Varieties Using an In Vitro Gastrointestinal Digestion Model. J Food Sci 2018; 83:2873-2881. [PMID: 30370926 DOI: 10.1111/1750-3841.14377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022]
Abstract
Australian produced pulse grains are exported worldwide, predominantly to developing countries where severe essential mineral deficiencies putatively subsist. An in vitro digestion model that simulates human gastric, intestinal and colonic digestion and fermentation, was used to examine the bioaccessibility of Fe, Mg, K, Ca, P, Zn, Mn, and Cu in commercially available cultivars of Australian field pea, lentil, and sweet lupin. The hull and dehulled seeds were prepared following a traditional cooking method, and quantities of bioaccessible minerals were assessed at each stage of in vitro digestion using ICP-OES elemental analyses. Results revealed that dehulled field pea (100 g dry weight) had the highest bioaccessible quantity of Fe (2.44 ± 0.73 mg), K (717.10 ± 56.66 mg), P (272.88 ± 9.30 mg), Zn (1.72.028 ± 0.28 mg), and Cu (0.41 ± 0.02 mg). Dehulled lupin was the best source of Mg (138.62 ± 1.53 mg) and Mn (1.28 ± 0.0.06 mg), and lentil hull showed the greatest Ca bioaccessible quantity (116.33 ± 16.73 mg/100 g dry weight). Additionally, the fed state digestion (11.7 mg bile/mL sample) increased the bioaccessibility of all elements significantly (P < 0.05) compared to fasted (1.95 mg bile/mL sample), except for Zn and Mn in lupin and lentils. These results demonstrated that dehulled seeds possess higher mineral bioaccessibility on a percentage basis compared with hulls, and that the fed state of in vitro digestion generally improved the mineral solubility significantly (P < 0.05). PRACTICAL APPLICATION: This research aimed to assess the prospective biological accessibility of various essential elements in three commercially available Australian pulses. Results of the study provided an insight into the contents of essential minerals in Australian pulses and illustrated the impact of traditional cooking of dehulled pulses on these minerals bioaccessibility. These findings will provide the consumers with information about some nutritional aspects of major Australian pulses.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Horsham, VIC 3400, Australia
| | - Michael S Hall
- Trace Analysis for Chemical, Earth and Environmental Sciences, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Yang F, Oyeyinka SA, Xu W, Ma Y, Zhou S. In vitro bioaccessibility and physicochemical properties of phytosterol linoleic ester synthesized from soybean sterol and linoleic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Patil L, Gogate PR. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects. ULTRASONICS SONOCHEMISTRY 2018; 40:135-146. [PMID: 28946407 DOI: 10.1016/j.ultsonch.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes.
Collapse
Affiliation(s)
- Leena Patil
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
17
|
Sirisena S, Ajlouni S, Ng K. Simulated gastrointestinal digestion andin vitrocolonic fermentation of date (Phoenix dactyliferaL.) seed polyphenols. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13599] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sameera Sirisena
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Melbourne Vic. 3010 Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Melbourne Vic. 3010 Australia
| | - Ken Ng
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Melbourne Vic. 3010 Australia
| |
Collapse
|
18
|
Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem 2017; 229:172-177. [DOI: 10.1016/j.foodchem.2017.02.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/04/2016] [Accepted: 02/16/2017] [Indexed: 11/21/2022]
|
19
|
Influence of dietary fibers on lipid digestion: Comparison of single-stage and multiple-stage gastrointestinal models. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
21
|
Asano H, Kida R, Muto K, Nara TY, Kato K, Hashimoto O, Kawada T, Matsui T, Funaba M. Modulation of brown adipocyte activity by milk by-products: Stimulation of brown adipogenesis by buttermilk. Cell Biochem Funct 2016; 34:647-656. [PMID: 27935133 DOI: 10.1002/cbf.3241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Brown adipocytes dissipate chemical energy in the form of heat through the expression of mitochondrial uncoupling protein 1 (Ucp1); Ucp1 expression is further upregulated by the stimulation of β-adrenergic receptors in brown adipocytes. An increase in energy expenditure by activated brown adipocytes potentially contributes to the prevention of or therapeutics for obesity. The present study examined the effects of milk by-products, buttermilk and butter oil, on brown adipogenesis and the function of brown adipocytes. The treatment with buttermilk modulated brown adipogenesis, depending on the product tested; during brown adipogenesis, buttermilk 1 inhibited the differentiation of HB2 brown preadipocytes. In contrast, buttermilk 3 and 5 increased the expression of Ucp1 in the absence of isoproterenol (Iso), a β-adrenergic receptor agonist, suggesting the stimulation of brown adipogenesis. In addition, the Iso-induced expression of Ucp1 was enhanced by buttermilk 2 and 3. The treatment with buttermilk did not affect the basal or induced expression of Ucp1 by Iso in HB2 brown adipocytes, except for buttermilk 5, which increased the basal expression of Ucp1. Conversely, butter oil did not significantly affect the expression of Ucp1, irrespective of the cell phase of HB2 cells, ie, treatment during brown adipogenesis or of brown adipocytes. The results of the present study indicate that buttermilk is a regulator of brown adipogenesis and suggest its usefulness as a potential food material for antiobesity.
Collapse
Affiliation(s)
- Hiroki Asano
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryosuke Kida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kengo Muto
- Milk Science Research Institute, Megmilk Snow Brand Co, Ltd, Kawagoe, Japan
| | - Takayuki Y Nara
- Milk Science Research Institute, Megmilk Snow Brand Co, Ltd, Kawagoe, Japan
| | - Ken Kato
- Milk Science Research Institute, Megmilk Snow Brand Co, Ltd, Kawagoe, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Cermeño S, Martínez G, Oliva J, Cámara M, Barba A. Influence of the presence of ethanol on in vitro bioavailability of fungicide residues. Food Chem Toxicol 2016; 93:1-4. [DOI: 10.1016/j.fct.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/27/2022]
|
23
|
Fu S, Augustin MA, Sanguansri L, Shen Z, Ng K, Ajlouni S. Enhanced Bioaccessibility of Curcuminoids in Buttermilk Yogurt in Comparison to Curcuminoids in Aqueous Dispersions. J Food Sci 2016; 81:H769-76. [PMID: 26824961 DOI: 10.1111/1750-3841.13235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/28/2015] [Indexed: 01/24/2023]
Abstract
Curcuminoids have low bioavailability due to low aqueous solubility. We compared the bioaccessibility of curcuminoids delivered in buttermilk yogurt to that of curcuminoid powder in an aqueous dispersion. Buttermilk containing added curcuminoids (300 mg/100 g, 0.3% w/w) was used for yogurt manufacture. We measured percentage of curcuminoids remaining in yogurts after manufacture and after exposure to simulated gastrointestinal fluids, and the in vitro bioaccessibility of the curcuminoids. Curcuminoids were stable during yogurt manufacture. At the end of in vitro digestion, approximately 11% of the curcuminoids delivered in yogurt was degraded compared to <1% for curcuminoids in an aqueous dispersion. However, curcuminoids delivered in yogurt was 15-fold more bioaccessible than curcuminoids in aqueous dispersion. The small change in yogurt properties (decrease in total lactic acid bacteria counts of <1 log and increased viscosity) on addition of curcuminoids has to be balanced against the benefits of increased bioaccessibility of curcuminoids when delivered in yogurts.
Collapse
Affiliation(s)
- Shishan Fu
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, VIC 3010, Australia
| | - Mary Ann Augustin
- CSIRO Food & Nutrition Flagship, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Luz Sanguansri
- CSIRO Food & Nutrition Flagship, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Zhiping Shen
- CSIRO Food & Nutrition Flagship, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Ken Ng
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, VIC 3010, Australia
| | - Said Ajlouni
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Abstract
The physicochemical parameters controlling the transfer of lipophilic micro-constituents from emulsion droplets to mixed micelles (bioaccessibility) are reviewed.
Collapse
Affiliation(s)
- Sébastien Marze
- INRA
- UR1268 Biopolymères Interactions Assemblages
- F-44300 Nantes
- France
| |
Collapse
|