1
|
Fu B, Che R, Yan F, Wu Y, Luo H, Yan J, Huang KJ, Ya Y, Tan X. Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor. Biosens Bioelectron 2025; 273:117182. [PMID: 39848002 DOI: 10.1016/j.bios.2025.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance. By integrating rolling circle amplification (RCA) with DNA nano-grid array, an sensitive detection platform is engineered based on biofuel cells that can specifically identify the sugarcane smut gene fragment (bE4'). Upon recognition of the target gene bE4', the arm strands of the locked bridge DNA is triggered to open to initiate a series of reactions. This process not only anchores DNA to the electrode, but also promotes RCA under the catalysis of enzymes to produce long single-stranded DNA to capture DNA nano-grid array. The formation of double-stranded DNA can capture [Ru(NH3)6]3+ to further amplify the output signal. Furthermore, a capacitor is integrated into the detection system and a 16.7-fold increase in sensitivity is therefore obtained. In the concentration from 10-4 to 104 pM, the method shows a robust linear response with a detection limit of 34.5 aM (S/N = 3). This work presents a dependable, high-sensitivity and portable detection solution for the early and efficient detection of sugarcane smut, exhibiting great potential for agricultural disease management and monitoring.
Collapse
Affiliation(s)
- Bingtao Fu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Rongshuai Che
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Feiyan Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yu Ya
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
2
|
Han J, Wang G, Liu X, Zhou Y, Hu J, Wu Y, Wang W, Shi J, Xu J. Ustiloxin A impairs oocyte quality by disrupting organelles function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125733. [PMID: 39842495 DOI: 10.1016/j.envpol.2025.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Oocyte quality is pivotal for fertilization and early embryonic development. Ustiloxin A (UA), is an emerging mycotoxin that has been frequently detected in rice and paddy. Because UA has been reported to be phytotoxic and cytotoxic, it poses a potential hazard to human and animal health. However, the effects of UA on oocyte maturation remain unknown. Here, we investigated the effects of acute UA exposure on mouse oocyte maturation. First, UA exposure inhibited oocyte maturation in a concentration-dependent manner and induced meiotic arrest by disrupting spindle assembly and reducing actin density. Moreover, mitochondrial function was substantially disrupted in oocytes upon UA exposure. Aberrant mitochondrial distribution, substantial downregulation of mitochondrial dynamics-associated genes Mfn1, Mfn2 and Fis1, decreased membrane potential and TOM20 expression were observed in UA-exposed oocytes; these effects further led to oxidative stress and DNA damage. Furthermore, UA induced ER and Golgi dysfunction and triggered ER stress by increasing GRP78 expression, which ultimately resulted in autophagy and early apoptosis in oocytes. Therefore, these results demonstrate that UA impairs oocyte quality by disrupting organelles function, providing new insight into the influence of UA on female reproduction in mammals.
Collapse
Affiliation(s)
- Jun Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - You Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuzhuo Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Che R, Tang D, Fu B, Yan F, Yan M, Wu Y, Yan J, Huang KJ, Ya Y, Tan X. Dual-modal improved biosensing platform for sugarcane smut pathogen based on biological enzyme-Mg 2+ DNAzyme coupled with DNA transporter cascading hybridization chain reaction. Int J Biol Macromol 2025; 286:138403. [PMID: 39643174 DOI: 10.1016/j.ijbiomac.2024.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Sugarcane smut is a major disease affecting the yield and quality of sugarcane, and its early detection is crucial for the healthy development of sugarcane industry. In this work, a dual-modal biosensing platform is designed based on Au-V-MOF and 3D DNA walker for highly sensitive and precise detection of the sugarcane smut pathogen. This detection system utilizes the catalytic properties of biocatalysts and the precise cleavage of DNAzymes, along with 3D DNA walker nanotechnology and a designed "walking track", to achieve amplified detection signals and accurate target recognition. The detection platform utilizes catalytic hairpin assembly for target recycling. Output strand T1 interacts with DNAzyme via a 3D transporter, cleaving S1 in Mg2+ presence. This triggers cascading hybridization chain reaction to form long double-stranded DNA structures that absorb substantial methylene blue (MB). This amplifies the electrical signal and causes a proportional color change due to the redox reaction of MB, which enables electrochemical and colorimetric detection of the target. The method shows a linear response range from 0.0001 to 10,000 pM with a detection limit of 56.76 aM (S/N = 3). It features high sensitivity, specificity, and accuracy, which offers significant potential for early warning and precise detection of sugarcane smut.
Collapse
Affiliation(s)
- Rongshuai Che
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Bingtao Fu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Feiyan Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Meixin Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yu Ya
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
4
|
Zhou L, Mubeen M, Iftikhar Y, Zheng H, Zhang Z, Wen J, Khan RAA, Sajid A, Solanki MK, Sohail MA, Kumar A, Massoud EES, Chen L. Rice false smut pathogen: implications for mycotoxin contamination, current status, and future perspectives. Front Microbiol 2024; 15:1344831. [PMID: 38585697 PMCID: PMC10996400 DOI: 10.3389/fmicb.2024.1344831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenhao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junli Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Ashara Sajid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ajay Kumar
- Amity University of Biotechnology, Amity University, Noida, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Peng Y, Jin Y, Sun D, Jin Z, Zhao Q, He Y, Jiao B, Cui Y, Zhang Y. Monoclonal antibody-based icELISA for sensitive monitoring fenpyroximate residue by hydrolysis conversion. Talanta 2024; 268:125288. [PMID: 37866304 DOI: 10.1016/j.talanta.2023.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Fenpyroximate is a systemic phenoxy pyrazole acaricide applied worldwide to prevent and control various phytophagous mites and has high activity against young mites, with residues increasingly being found in ecological environment and agricultural products. To identify its residues, four haptens of fenpyroximate were designed and an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on monoclonal antibodies (2G4C7) was developed. Because the icELISA had higher sensitivity to the hydrolysate (Hapten A) of fenpyroximate, a method for indirectly determining the concentration of fenpyroximate was established by measuring the content of Hapten A. The assay had a working range of 0.07-1.49 ng/mL and a half-maximal inhibitory concentration (IC50) of 0.34 ng/mL. It showed average recoveries of 77.0%-105.4 %, 72.3%-106.4 % in citrus and apple samples, respectively. The icELISA and UPLC-MS/MS test results for samples of various citrus cultivars are remarkably consistent. These results and data represent the icELISA is suitable and applicable for detecting fenpyroximate residuals in fruit and vegetable samples.
Collapse
Affiliation(s)
- Yilin Peng
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yaqi Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
6
|
Zhang G, Zhou X, Liu S, Ma Y, Li H, Du Y, Cao Z, Sun L. Full-length transcriptomics study of Ustiloxins-induced hepatocyte injury. Toxicon 2024; 238:107604. [PMID: 38181838 DOI: 10.1016/j.toxicon.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Ustiloxins is a mycotoxin produced by the metabolism of Rice false smut. Studies have shown that Ustiloxins may be toxic to animals, but there is still a lack of toxicological evidence. The liver, as the main organ for the biotransformation of foreign chemicals, may be the direct target organ of Ustiloxins toxicity. In this study, we found that cell viability decreased in a dose- and time-dependent manner when BNL CL.2 cells were treated with different concentrations of Ustiloxins (0, 5, 10, 20, 30, 40, 60, 80, 100, 150 and 200 μg/mL) for 24 and 48 h. In addition, scanning electron microscope observation showed that the cell membrane of the experimental group was damaged, with the appearance of apoptotic bodies. Moreover, the ROS and GSH levels were significantly increased in cells exposed to Ustiloxins. We analyzed the key action targets of Ustiloxins on hepatocyte injury using full-length transcriptomics. A total of 1099 differentially expressed genes were screened, of which 473 genes were up-regulated, and 626 genes were down-regulated. Besides, we also found that the expression of MCM7 and CDC45 in BNL CL.2 cells treated with Ustiloxins decreased, and the expression of CCl-2, CYP1b1, CYP4f13, and GSTM1 increased according to qRT-PCR. Ustiloxins might change CYP450 and GST-related genes, affect DNA replication and cell cycle, and lead to oxidative stress and liver cell injury.
Collapse
Affiliation(s)
- Guomei Zhang
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xuming Zhou
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Shanshan Liu
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Youning Ma
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Han Li
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yingchun Du
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China.
| | - Lihua Sun
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
7
|
Hu Z, Qian S, Fan K, Yu Y, Liu X, Liu H, Meng J, Zhao Z, Han Z. Natural occurrence of ustiloxins in rice from five provinces in China and the removal efficiencies of different milling steps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6272-6279. [PMID: 37163670 DOI: 10.1002/jsfa.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The widespread incidence of "false smut" disease in rice has caused extensive ustiloxin contamination around the world. Until now there has been a lack of knowledge regarding the natural occurrence of ustiloxins in paddy. The development of efficient removal methods is also still a challenge that remains unexplored. RESULTS In the current study, three main ustiloxins - ustiloxin A (UA), ustiloxin B (UB), and ustiloxin G (UG) - were determined simultaneously by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in 206 paddy samples collected in 2021 from five rice-producing provinces in China. The predominant ustiloxin was UA with an occurrence of 46.1% and an average concentration of 49.71 μg kg-1 . This was followed by UB (31.1%, 13.31 μg kg-1 ) and UG (18.4%, 9.19 μg kg-1 ). No targeted ustiloxins were detected in white rice samples randomly collected from supermarkets in Shanghai. To reveal the causes, two approaches were tested for the removal of the ustiloxins: most of the targeted ustiloxins (>93%) were removed in brown rice by husking and, subsequently, all targeted ustiloxins (100%) were removed by whitening. CONCLUSION A wide distribution of ustiloxins was discovered in paddy samples in this study. The UA contaminations were significantly different depending on their origin, with the highest occurrence in paddy from Shanghai and Jiangsu, southeast coast provinces in China. Contamination by UG was also found in paddy for the first time and was strongly correlated with those of UA and UB. A combination of husking and whitening has been verified to be a practicable and promising way to ensure efficient removal and food safety. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shen'an Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yinan Yu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xing Liu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Hu X, Wang J, Zhang Y, Wu X, Li R, Li M. Visualization of the entire process of rice spikelet infection by Ustilaginoidea virens through nondestructive inoculation. Front Microbiol 2023; 14:1228597. [PMID: 37637108 PMCID: PMC10450503 DOI: 10.3389/fmicb.2023.1228597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Rice false smut caused by Ustilaginoidea virens, is a destructive fungal disease encountered in many rice-producing areas worldwide. To determine the process by which U. virens infects rice spikelets in the field. Methods The green fluorescent protein-labeled U. virens was used as an inoculum to conduct artificial inoculation on rice at the booting stage via non-destructive panicle sheath instillation inoculation. Results The results showed that the conidia of U. virens germinated on the surface of rice glumes and produced hyphae, which clustered at the mouth of rice glumes and entered the glumes through the gap between the palea and lemma. The conidia of U. virens colonized in rice floral organs, which led to pollen abortion of rice. U. virens wrapped the whole rice floral organ, and the floral organ-hyphae complex gradually expanded to open the glumes to form a rice false smut ball, which was two to three times larger than that observed in normal rice. Discussion Panicle sheath instillation inoculation was shown to be a non-destructive inoculation method that could simulate the natural infection of U. virens in the field. The entire infection process of U. virens was visualized, providing a theoretical reference for formulating strategies to control rice false smut in the field.
Collapse
Affiliation(s)
- Xianfeng Hu
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Jian Wang
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Khanal S, Gaire SP, Zhou XG. Kernel Smut and False Smut: The Old-Emerging Diseases of Rice-A Review. PHYTOPATHOLOGY 2023; 113:931-944. [PMID: 36441871 DOI: 10.1094/phyto-06-22-0226-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Kernel smut, caused by Tilletia horrida, is a disease characterized by the replacement of rice grains with black sooty masses of teliospores or chlamydospores. Kernel smut differs from rice false smut, caused by Ustilaginoidea virens, in the color of chlamydospores. False smut is characterized by globose, velvety spore balls ranging from orangish yellow to greenish black in color. Both kernel smut and false smut have been persistent but are considered minor diseases in many countries since they were discovered in the late 1870s to the 1980s due to their sporadic outbreaks and limited economic impacts. In recent years, however, kernel smut and false smut have emerged as two of the most economically important diseases in rice, including organic rice, in many countries, especially in the United States. The increased use of susceptible rice cultivars, especially hybrids, excessive use of nitrogen fertilizer, and short crop rotations have resulted in an increase in kernel smut and false smut, causing significant losses in grain yield and quality. In this article, we provide a review of the distribution and economic importance of kernel smut; our current understanding of the taxonomy, biology, and epidemiology of kernel smut; and the genomics of the kernel smut fungus as compared with false smut and its causal agent. We also provide an update on the current management strategies of pathogen exclusion, cultivar resistance, fungicides, biological control, and cultural practices for kernel smut and false smut of rice.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| | | | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| |
Collapse
|
10
|
Zhang Y, Xu Q, Sun Q, Kong R, Liu H, Yi X, Liang Z, Letcher RJ, Liu C. Ustiloxin A inhibits proliferation of renal tubular epithelial cells in vitro and induces renal injury in mice by disrupting structure and respiratory function of mitochondria. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130791. [PMID: 36706486 DOI: 10.1016/j.jhazmat.2023.130791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Recently, we found that Ustiloxin A (UA, a mycotoxin) was widely detected in paddy environment and rice samples from several countries, and was also detected in human urine samples from China. However, the current knowledge about the health risks of UA are limited. In this research, the cytotoxicity of UA in mice renal tubular epithelial cells (mRTECs) was evaluated, and the results indicated that UA arrested cell cycle in G2/M phase via altering cellular morphology and microtubule, and inhibited the proliferation and division of mRTECs. Furthermore, UA could inhibit mitochondrial respiration via binding to the CoQ-binding site in dihydro-orotate dehydrogenase (DHODH) protein, and resulted in mitochondrial damage. These adverse effects of UA on mitochondria might be responsible for the cytotoxicity observed in vitro. In vivo, UA at concentrations that were comparable to the realistic concentrations of human exposure induced renal insufficiency in mice, and this might be associated with the renal mitochondrial damage in mice. However, exposure to UA at those realistic concentrations did not promote the progression from renal insufficiency to renal fibrosis and chronic kidney disease was not observed in mice.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengqi Liang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6, ON, Canada
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
11
|
Wu K, Liu Y, Liao X, Yang X, Chen Z, Mo L, Zhong S, Zhang X. Fungal Diversity and Its Relationship with Environmental Factors in Coastal Sediments from Guangdong, China. J Fungi (Basel) 2023; 9:jof9010101. [PMID: 36675922 PMCID: PMC9866456 DOI: 10.3390/jof9010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
As one core of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Guangdong is facing some serious coastal environmental problems. Fungi are more vulnerable to changes in coastal environments than bacteria and archaea. This study investigated the fungal diversity and composition by high-throughput sequencing and detected basic parameters of seven environmental factors (temperature, dissolved oxygen, pH, salinity, total organic carbon, total nitrogen, and total phosphorus) at 11 sites. A total of 2056 fungal operational taxonomic units (OTUs) belonging to 147 genera in 6 phyla were recovered; Archaeorhizomyces (17.5%) and Aspergillus (14.19%) were the most dominant genera. Interestingly, a total of 14 genera represented the first reports of coastal fungi in this study. Furthermore, there were nine genera of fungi that were significantly correlated with environmental factors. FUNGuild analysis indicated that saprotrophs and pathogens were the two trophic types with the highest proportions. Saprotrophs were significantly correlated with total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), while pathogens were significantly correlated with pH. This study provides new scientific data for the study of the diversity and composition of fungal communities in coastal ecosystems.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (X.Z.)
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (S.Z.); (X.Z.)
| |
Collapse
|
12
|
Guan K, Huang R, Liu H, Huang Y, Chen A, Zhao X, Wang S, Zhang L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods 2022; 11:foods11192983. [PMID: 36230059 PMCID: PMC9562022 DOI: 10.3390/foods11192983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/02/2023] Open
Abstract
Indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) is an ideal immunoassay method for large-scale screenings to detect mycotoxin contaminants. However, the matrix effect of complicated samples has always been challenging when performing immunoassays, as it leads to false-positive or negative results. In this study, convenient QuEChERS technology combined with optimizing the dilution solvent was ingeniously used to eliminate interference from the sample matrix to greatly improve the detection accuracy, and reliable ic-ELISAs for the two official tolerance levels of 60 and 500 μg/kg were developed to screen zearalenone (ZEN) in edible and medical coix seeds without any further correction. Then, the 122 batches of coix seeds were determined, and the positive rate was up to 97.54%. The contaminated distribution was further analyzed, and risk assessment was subsequently performed for its edible and medical purposes. The findings indicated that consumption of coix seeds with higher ZEN contamination levels may cause adverse health effects for both medical and edible consumption in the adult population; even under the condition of average contamination level, ZEN from coix seeds was the more prominent contributor to the total risk compared to other sources when used as food; thus, effective prevention and control should be an essential topic in the future.
Collapse
Affiliation(s)
- Kaiyi Guan
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rentang Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yuxin Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
- Correspondence: (X.Z.); (L.Z.)
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.Z.); (L.Z.)
| |
Collapse
|
13
|
Sun Q, Qian Z, Liu H, Zhang Y, Yi X, Kong R, Cheng S, Man J, Zheng L, Huang J, Su G, Letcher RJ, Giesy JP, Liu C. Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119460. [PMID: 35568292 DOI: 10.1016/j.envpol.2022.119460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Ustiloxin A (UA) and ustiloxin B (UB), two major mycotoxins produced by the pathogen of rice false smut (RFS) during rice cultivation, have attracted increasing attentions due to their potential health risks. However, limited data are available about their occurrence and fate in paddy fields and contamination profiles in rice. In this study, a field study was performed to investigate the occurrence and translocation of UA and UB in RFS-occurred paddies. For the first time to our knowledge, we reported a ubiquitous occurrence of the two ustiloxins in the paddy water (range: 0.01-3.46 μg/L for UA and <0.02-1.15 μg/L for UB) and brown rice (range: 0.09-154.08 μg/kg for UA and <0.09-23.57 μg/kg for UB). A significant positive correlation was observed between ustiloxin levels in paddy water and brown rice (rs = 0.48-0.79, p < 0.01). The occurrence of ustiloxin uptake in water-rice system was also evidenced by the rice exposure experiment, suggesting paddy water might be an important source for ustiloxin accumulation in rice. These results suggested that the contamination of ustiloxins in rice might occur widely, which was supported by the significantly high detection frequencies of UA (96.6%) and UB (62.4%) in polished rice (149 samples) from Hubei Province, China. The total concentrations of ustiloxins in the polished rice samples collected from Hubei Province ranged from <20.7 ng/kg (LOD) to 55.1 μg/kg (dry weight). Further studies are needed to evaluate the potential risks of ustiloxin exposure in the environment and humans.
Collapse
Affiliation(s)
- Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhisong Qian
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Man
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zheng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Robert J Letcher
- Department of Chemistry, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Sun Q, Liu H, Zhang Y, Yi X, Kong R, Cheng S, Man J, Zheng L, Huang J, Su G, Letcher RJ, Giesy JP, Liu C. Global distribution of ustiloxins in rice and their male-biased hepatotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118992. [PMID: 35157931 DOI: 10.1016/j.envpol.2022.118992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Ustiloxins, a group of bioactive metabolites produced by the pathogen of rice false smut (RFS), have emerged as ubiquitous contaminants in RFS-occurred paddy fields and could accumulate in rice. Nevertheless, the prevalence of ustiloxins in rice and exposure risks of humans are limited. In this study, concentrations of ustiloxin A (UA) and ustiloxins B (UB), which are two predominant ustiloxins, were measured in 240 rice samples from China and 72 rice samples from 12 other counties. The detection rates (DRs) of UA and UB were 82.1% and 49.3%, respectively, and their concentrations in rice ranged from below detection limit (LOD: 0.22 μg/kg) to 85.96 μg/kg dw. Furthermore, for the first time, we reported the occurrence of UA (DR = 22.8%) in urine collected from residues of Enshi city, China. Urinary UA were significantly correlated with the activities of alanine aminotransferase in male, and this male-biased hepatotoxicity was further confirmed in mice exposure experiment. This study for the first time reported the widespread geographical distribution of ustiloxins in rice, as well as emphasized the occurrence of internal exposure and potential health risk in humans.
Collapse
Affiliation(s)
- Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Man
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Zheng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Development of a Highly Sensitive and Specific Monoclonal Antibody Based on Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Zearalenone in Food and Feed Samples. Toxins (Basel) 2022; 14:toxins14030220. [PMID: 35324717 PMCID: PMC8950616 DOI: 10.3390/toxins14030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Zearalenone (ZEN) contamination in food and feed is prevalent and has severe effects on humans and animals post-consumption. Therefore, a sensitive, specific, rapid, and reliable method for detecting a single residue of ZEN is necessary. This study aimed to establish a highly sensitive and specific ZEN monoclonal antibody (mAb) and an indirect competitive enzyme-linked immunosorbent assay (icELISA) for the detection of ZEN residues in food and feed. The immunogen ZEN-BSA was synthesized via the amino glutaraldehyde (AGA) and amino diazotization (AD) methods and identified using 1H nuclear magnetic resonance (1H NMR), a high-resolution mass spectrometer (HRMS), and an ultraviolet spectrometer (UV). The coating antigens ZEN-OVA were synthesized via the oxime active ester (OAE), formaldehyde (FA), 1,4-butanediol diglycidyl ether (BDE), AGA, and AD methods. These methods were used to screen the best antibody/antigen combination of a heterologous icELISA. Balb/c mice were immunized with a low ZEN-BSA dose at long intervals and multiple sites. Suitable cell fusion mice and positive hybridoma cell lines were screened using a homologous indirect non-competitive ELISA (inELISA) and an icELISA. The ZEN mAbs were prepared by inducing ascites in vivo. The immunological characteristics of ZEN mAbs were then assessed. The standard curves of the icELISA for ZEN were constructed under optimal experimental conditions, and the performance of the icELISA was validated. The two ZEN-BSA immunogens (conjugation ratios, 11.6:1 (AGA) and 9.2:1 (AD)) were successfully synthesized. Four hybridoma cell lines (2B6, 4D9, 1A10, and 4G8) were filtered, of which 2B6 had the best sensitivity and specificity. The mAb 2B6-based icELISA was then developed. The limit of detection (LOD), the 50% inhibitive concentration (IC50), and the linear working range (IC20 to IC80) values of the icELISA were 0.76 μg/L, 8.69 μg/L, and 0.92–82.24 μg/L, respectively. The cross-reactivity (CR) of the icELISA with the other five analogs of ZEN was below 5%. Three samples were spiked with different concentrations of ZEN and detected using the icELISA. The average intra-assay recoveries, inter-assay recoveries, intra-assay coefficients of variations (CVs), and inter-assay CVs were 93.48–99.48%, 94.18–96.13%, 12.55–12.98%, and 12.53–13.58%, respectively. The icELISA was used to detect ZEN in various samples. The results were confirmed using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) (correlation coefficient, 0.984). The proposed icELISA was highly sensitive, specific, rapid, and reliable for the detection of ZEN in food and feed samples.
Collapse
|
16
|
Huang Y, Tang X, Zheng L, Huang J, Zhang Q, Liu H. Development of Generic Immuno-Magnetic Bead-Based Enzyme-Linked Immunoassay for Ustiloxins in Rice Coupled with Enrichment. Toxins (Basel) 2021; 13:toxins13120907. [PMID: 34941744 PMCID: PMC8705705 DOI: 10.3390/toxins13120907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ustiloxins are a group of mycotoxins produced by rice false smut pathogen. Previous studies have shown that the false smut balls contain six types of ustiloxins, and these toxins are toxic to living organisms. Thus, immunoassay for on-site monitoring of ustiloxins in rice is urgently required. The current immunoassays are only for detecting single ustiloxin, and they cannot meet the demand for synchronous and rapid detection of the group toxins. Therefore, this study designed and synthesized a generic antigen with ustiloxin G as material based on the common structure of the mycotoxins. Ustiloxin G was conjugated to two carrier proteins including bovine serum albumin (BSA) and ovalbvmin (OVA) by carbon diimide method. The mice were immunized with ustiloxin-G-BSA to generate the antibody serum, which was further purified to obtain the generic antibody against ustiloxins. The conjugated ustiloxin G-OVA and generic antibodies were used for establishing the enzyme-linked immunosorbent assay (ELISA) for ustiloxin detection and optimizing experiment conditions. The characterization of the antibody showed that the semi-inhibitory concentrations (IC50) of ustiloxin A, B, and G were 0.53, 0.34, and 0.06 µg/mL, respectively, and that their corresponding cross-reactivities were 11.9%, 18.4%, and 100%, respectively. To increase ELISA detection efficiency, generic antibody was combined with magnetic beads to obtain sensitive and class-specific immune-magnetic beads. Based on these immuno-magnetic beads, a high-efficiency enzyme-linked immunoassay method was developed for ustiloxin detection, whose sensitivity to ustiloxin A, B, and G was improved to 0.15 µg/mL, 0.14 µg/mL, and 0.04 µg/mL, respectively. The method accuracy was evaluated by spiking ustiloxin G as standard, and the spiked samples were tested by the immune-magnetic bead-based ELISA. The result showed the ustiloxin G recoveries ranged from 101.9% to 116.4% and were accepted by a standard HPLC method, indicating that our developed method would be promising for on-site monitoring of ustiloxins in rice.
Collapse
Affiliation(s)
- Yi Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Correspondence: (Q.Z.); (H.L.)
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
- Correspondence: (Q.Z.); (H.L.)
| |
Collapse
|
17
|
Zhao J, Zhang Y, Zhao Q, He Y, Li Z, Chen A, Wang C, Wang B, Jiao B, Cui Y. A sensitive and practical ELISA for analyzing naringenin in pummelo and herb samples. Food Chem 2021; 362:130223. [PMID: 34091161 DOI: 10.1016/j.foodchem.2021.130223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
Naringenin, a flavonoid compound found in pummelo, is a key biological active compound in some traditional Chinese medicines, including Citri reticulatae pericarpium, Citri reticulatae pericarpium viride, Aurantii fructus immaturus, and Aurantii fructus. These Chinese medicinal preparations are the peels or immature fruits of certain citrus species. Aiming at detecting naringenin in complex matrices such as pummelo and traditional Chinese medicines, we put forward a sensitive and practical indirect competitive enzyme-linked immunosorbent assay (icELISA) based on anti-naringenin monoclonal antibodies (anti-Nar-mAbs). The median inhibitory concentration (IC50) was 4.43 ng/mL, and the working range was 1.15-15.81 ng/mL. The findings of the icELISA for the analysis of naringenin in pummelo and herb samples had a good correlation with the ultra performance liquid chromatography (UPLC) methodology and showed good accuracy and reproducibility. These data demonstrated that the developed icELISA is reliable, accurate, and suitable for detecting naringenin in pummelo and traditional Chinese medicines.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yaohai Zhang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zhixia Li
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Aihua Chen
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chengqiu Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| | - Yongliang Cui
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| |
Collapse
|
18
|
Detection of Ustiloxin A in urine by ultra-high-performance liquid chromatography-tandem mass spectrometry coupled with two-step solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122916. [PMID: 34500402 DOI: 10.1016/j.jchromb.2021.122916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Due to global outbreak of rice false smut disease, ustiloxin A (UA) was detected in rice. However, accurate methods for monitoring UA in human body fluids were lacking. In this context, a UPLC-MS/MS method based on two-step SPE was constructed for measuring UA in urine. The limits of UA quantification in human and mice urine were 58.3 and 108.7 ng/L, respectively. The proposed method was applied to detect UA in urine samples collected from human and mice. After dietary exposure, the contents of UA in mice urine were from 6.03 to 16.76 μg/g of creatine, accounting for approximate 14% of daily intake dose. Furthermore, due to the trace residues in rice (78-109 ng/kg), no detectable UA was observed in the urine of 20 volunteers. To the best of our knowledge, it is the first time to report the occurrence of UA in mammal urine.
Collapse
|
19
|
Wu Y, Mao J, Ao C, Sun D, Wang X, Hu Q, Du X, Sheng F. Facile Preparation of Wormlike Graphitic Carbon Nitride for Photocatalytic Degradation of Ustiloxin A. NANOMATERIALS 2020; 10:nano10112256. [PMID: 33202563 PMCID: PMC7698057 DOI: 10.3390/nano10112256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Natural toxic contaminants have been recognized as threats to human health. Ustiloxins are the toxic secondary metabolites of fungus generated from rice false smut disease, which are harmful to animal/human reproduction and growth. However, there are rare researches on the control and reduction of ustiloxins through physical, chemical and biological ways. Herein, we demonstrated that photocatalysis of semiconductor nanomaterials could be as a potential way to degrade or mitigate the contamination of ustiloxin A. A kind of wormlike graphitic carbon nitride (g-C3N4) was facilely prepared from modified dicyandiamide precursor via pyrolysis method and characterized by X-ray diffraction, high-resolution transmission electron microscope and X-ray photoelectron spectroscopy etc. It was found that g-C3N4 from modified dicyandiamide precursor showed better activity for ustiloxin A degradation under visible light irradiation than that of pristine g-C3N4. This was ascribed to the lager specific surface area, more uniform microstructure, better photogenerated charges separation and transformation of wormlike g-C3N4 compared with pristine g-C3N4. Most important, the structure of degradation intermediates and the possible pathway were proposed based on the results of high-performance liquid chromatography-mass spectrometry after 80 min photoreaction treatment. Our findings may provide a green, efficient way for ustiloxins mitigation and useful information for future study.
Collapse
Affiliation(s)
- Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Correspondence: (J.M.); (F.S.); Tel.: +86-(27)-86812862 (J.M.); +86-(27)-88663882 (F.S.)
| | - Chuanwei Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
| | - Di Sun
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaorui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
| | - Qin Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.W.); (C.A.); (X.W.); (Q.H.); (X.D.)
- Correspondence: (J.M.); (F.S.); Tel.: +86-(27)-86812862 (J.M.); +86-(27)-88663882 (F.S.)
| |
Collapse
|
20
|
Hu Z, Zheng L, Huang J, Zhou L, Liu C, Liu H. Ustiloxin A is Produced Early in Experimental Ustilaginoidea virens Infection and Affects Transcription in Rice. Curr Microbiol 2020; 77:2766-2774. [PMID: 32529481 DOI: 10.1007/s00284-020-02072-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023]
Abstract
Ustiloxin is a kind of 13-membered cyclic peptides found in mature rice false smut generated by Ustilaginoidea virens infecting rice spikelet. So far, six kinds of ustiloxins have been identified from false smut balls (FSBs) in which ustiloxin A is the main component. The toxins can not only inhibit the growth of rice, wheat, and corn, but also poison people and animals. However, so far, there have been few studies of the content of ustiloxin except that in mature FSB. The effect of ustiloxins on the process of infection has not been clarified. In this study, the technique of artificial inoculation coupled with UPLC-ESI-MS was introduced to investigate the content of ustiloxins in the course of infection. The initial formation time of ustiloxin A, B, C, D, F, and G was no later than 5, 5, 9, 7, 7, and 9 days post inoculation (dpi) prior to FSB's formation, respectively. The content of ustiloxin A per spikelet was increased rapidly from 6.0 ng at 5 dpi to 14,157.1 ng at 25 dpi. Meanwhile, the content of ustiloxin A per dry weight (DW) of the FSBs also peaked at 1321.2 μg/g at 25 dpi. Interestingly, both the contents of ustiloxin A per dry weight and per spikelet were significantly reduced from 25 to 30 dpi. Transcriptome sequencing revealed that a total of 146 transcripts (103 upregulated and 43 downregulated) were significantly changed in rice spikelets after 3-h acute exposure to 100 ng ustiloxin A. In addition, several of the significantly altered genes were validated by RT-qPCR.
Collapse
Affiliation(s)
- Zheng Hu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ligang Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
21
|
Cheng S, Liu H, Sun Q, Kong R, Letcher RJ, Liu C. Occurrence of the fungus mycotoxin, ustiloxin A, in surface waters of paddy fields in Enshi, Hubei, China, and toxicity in Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:901-909. [PMID: 31234256 DOI: 10.1016/j.envpol.2019.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 05/22/2023]
Abstract
There has been an increasing incidence rate of rice false smut in global rice cultivation areas. However, there is a dearth of studies on the environmental concentrations and hazards of ustiloxin A (UA), which is the major mycotoxin produced by a pathogenic fungus of the rice false smut. Here, the concentrations of UA in the surface waters of two paddy fields located in Enshi city, Hubei province, China, were measured, and its toxicity in T. Thermophila was evaluated. This is the first study to detect UA in the surface waters of the two paddy fields, and the measured mean concentrations were 2.82 and 0.26 μg/L, respectively. Exposure to 2.19, 19.01 or 187.13 μg/L UA for 5 days significantly reduced the theoretical population and cell size of T. thermophila. Furthermore, treatment with 187.13 μg/L UA changed the percentages of T. thermophila cells in different cell-cycle stages, and with an increased malformation rate compared with the control, suggesting the disruption of the cell cycle. The expressions of 30 genes involved in the enriched proteasome pathway, 7 cyclin genes (cyc9, cyc10, cyc16, cyc22, cyc23, cyc26, cyc33) and 2 histone genes (mlh1 and hho1) were significantly down-regulated, which might be the modes of action responsible for the disruption of cell cycling due to UA exposure.
Collapse
Affiliation(s)
- Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Liu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, K1A 0H3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
22
|
Cui Y, Zhao J, Zhou J, Tan G, Zhao Q, Zhang Y, Wang B, Jiao B. Development of a sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for analysing nobiletin in citrus and herb samples. Food Chem 2019; 293:144-150. [PMID: 31151594 DOI: 10.1016/j.foodchem.2019.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 11/27/2022]
Abstract
Nobiletin, a polymethoxyflavone mainly found in citrus fruits, have been reported to exhibit various beneficial biological activities for human health. It is an important bioactive compound in traditional Chinese medicine, Pericarpium Citri Reticulatae and Fructus Aurantii. To detect the contents of nobiletin in citrus and herb samples, we developed an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on monoclonal antibodies. It possessed a median inhibition concentration (IC50) of 2.43 ± 0.19 ng/mL and a working range of 0.52-12.3 ng/mL. The assay exhibited the average recoveries of 72.5-85.3% in citrus peel, pulp and juice samples. Moreover, eleven citrus cultivars samples and four herb samples were also detected by the icELISA. The nobiletin content varied in different citrus cultivars samples and herb samples, which were confirmed by the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS). These results indicated that the developed immunoassay was suitable for detecting nobiletin in citrus and herb samples.
Collapse
Affiliation(s)
- Yongliang Cui
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| | - Jing Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Guiyu Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yaohai Zhang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| |
Collapse
|
23
|
Fu X, Wang W, Li Y, Wang X, Tan G, Lai D, Wang M, Zhou L, Wang B. Development of a monoclonal antibody with equal reactivity to ustiloxins A and B for quantification of main cyclopeptide mycotoxins in rice samples. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Yong M, Liu Y, Chen T, Fan L, Wang Z, Hu D. Cytological studies on the infection of rice root by Ustilaginoidea virens. Microsc Res Tech 2018; 81:389-396. [PMID: 29356275 DOI: 10.1002/jemt.22990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/11/2017] [Accepted: 12/28/2017] [Indexed: 11/08/2022]
Abstract
In recent years, false smut disease of rice has been one of the most important diseases of cultivated rice in China. Ustilaginoidea virens is an ascomycete fungal pathogen that causes false smut in rice. There is always controversy about whether the pathogen can infect the rice root and cause the occurrence of false smut, mainly due to lack direct cytological evidence. In our study, we observed the cytological structure of rice root invaded by U. virens. The results showed that U. virens could attach to the surface of young roots and penetrate into the intercellular space of the root epidermis. The cellulose microfibrils in root epidermal cell wall are very loose and soft, and their structural features are similar to filaments of rice. After the fungus infected the roots, a large number of fungal secretions were accumulated outside of the cell walls. At 40 days, the fungus began to degrade, but pathogens still had not infected the sclerenchyma, in which the cells are arranged densely and the cell walls are thicker. U. virens could not cross the sclerenchyma layer into the endodermis and phloem of the root. To some extent, the U. virens infection affected the leaf and root growth of the rice. After inoculation, there was no fungal mycelium found in transverse sections of the rice young stem. These results suggested that root colonization of U. virens does not lead to systemic invasion in rice.
Collapse
Affiliation(s)
- Mingli Yong
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yijia Liu
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tianqi Chen
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linlin Fan
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengyi Wang
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongwei Hu
- Department of Plant Pathology, The State Kay Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
Fu X, Xie R, Wang J, Chen X, Wang X, Sun W, Meng J, Lai D, Zhou L, Wang B. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and SemiQuantitative Analysis of Ustiloxins A and B in Rice Samples. Toxins (Basel) 2017; 9:E79. [PMID: 28245594 PMCID: PMC5371834 DOI: 10.3390/toxins9030079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen-infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB both were 50-100 ng/mL. The cross-reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C) after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point-of-care device for rapid evaluation of the rice samples contaminated by UA and UB.
Collapse
Affiliation(s)
- Xiaoxiang Fu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Rushan Xie
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jian Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaojiao Chen
- Department of Crop Physiology and Cultivation, College of Agronomy and Biotechnology, Beijing 100193, China.
| | - Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Weibo Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jiajia Meng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Baomin Wang
- Department of Crop Physiology and Cultivation, College of Agronomy and Biotechnology, Beijing 100193, China.
| |
Collapse
|
26
|
Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2016; 1476:46-52. [DOI: 10.1016/j.chroma.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
|
27
|
Fan J, Yang J, Wang Y, Li G, Li Y, Huang F, Wang W. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1321-1330. [PMID: 26720072 PMCID: PMC6638446 DOI: 10.1111/mpp.12362] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 05/13/2023]
Abstract
Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain-filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv-rice interaction. Current understandings of the Vv-rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant-pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball-shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3-5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200-500 nm in length. The sclerotia are black, horseshoe-shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark-green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs.
Collapse
Affiliation(s)
- Jing Fan
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Juan Yang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yu‐Qiu Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Guo‐Bang Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yan Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Fu Huang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
- College of Agronomy & Institute of Agricultural EcologySichuan Agricultural UniversityChengdu611130China
| | - Wen‐Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
28
|
The Contents of Ustiloxins A and B along with Their Distribution in Rice False Smut Balls. Toxins (Basel) 2016; 8:toxins8090262. [PMID: 27608042 PMCID: PMC5037488 DOI: 10.3390/toxins8090262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Ustiloxins are cyclopeptide mycotoxins isolated from rice false smut balls (FSBs), the ball-like colonies transformed from the individual grains through the filament infection by the fungal pathogen Villosiclava virens. There were no obvious relations between ustiloxin content and any of the collection areas, collection times, or average weight of each FSB. The rice false smut balls at early, middle, and late maturity stages were respectively divided into different parts (glume, chlamydospores, mycelia, and pseudoparenchyma). The highest content of ustiloxins A and B of rice FSBs was found at the early maturity stage. Both ustiloxins A and B were mainly distributed in the middle layer containing mycelia and immature chlamydospores of the FSBs. When the rice FSBs were at the early maturity stage, the total yield of ustiloxins A and B in the middle layer of each ball was 48.3 µg, which was 3.20-fold of the yield (15.1 µg) of the inner part of the ball. The rice FSBs at the early maturity stage are the appropriate materials for the production of ustiloxins A and B.
Collapse
|
29
|
Meng J, Sun W, Mao Z, Xu D, Wang X, Lu S, Lai D, Liu Y, Zhou L, Zhang G. Main Ustilaginoidins and Their Distribution in Rice False Smut Balls. Toxins (Basel) 2015; 7:4023-34. [PMID: 26473920 PMCID: PMC4626718 DOI: 10.3390/toxins7104023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/27/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Rice false smut has become an increasingly serious fungal disease in rice (Oryza sativa L.) production worldwide. Ustilaginoidins are bis-naphtho-γ-pyrone mycotoxins previously isolated from the rice false smut balls (FSBs) infected by the pathogen Villosiclava virens in rice spikelets on panicles. To investigate the main ustilaginoidins and their distribution in rice FSBs, five main bis-naphtho-γ-pyrones, namely ustilaginoidins A (1), G (2), B (3), I (4) and C (5), were isolated and identified by NMR and high-resolution mass spectrometry as well as by comparison with the data in the literature. The rice FSBs at early, middle and late maturity stages were divided into their different parts and the contents of five main ustilaginoidins for each part were determined by HPLC analysis. The results revealed that the highest levels of ustilaginoidins were in late stage rice FSBs, followed by those at middle stage. Most ustilaginoidins, 96.4% of the total quantity, were distributed in the middle layer at early stage. However, ustilaginoidins were mainly distributed in the outer and middle layers at middle and late stages. Small amounts of ustilaginoidins A (1) and G (2) were found in the inner part of rice FSBs at each maturity stage. The contents of ustilaginoidins A (1) and G (2) without hydroxymethyl groups at C-2 and C-2’ of the γ-pyrone rings in rice FSBs were relatively high at early stage, while the contents of ustilaginoidins B (3), I (4), and C (5) with hydroxymethyl groups at C-2 or C-2’ were relatively high at late stage.
Collapse
Affiliation(s)
- Jiajia Meng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Weibo Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Ziling Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xiaohan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shiqiong Lu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Ligang Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Guozhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Development of a Monoclonal Antibody-Based icELISA for the Detection of Ustiloxin B in Rice False Smut Balls and Rice Grains. Toxins (Basel) 2015; 7:3481-96. [PMID: 26343725 PMCID: PMC4591656 DOI: 10.3390/toxins7093481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022] Open
Abstract
Rice false smut is an emerging and economically-important rice disease caused by infection by the fungal pathogen Villosiclava virens. Ustiloxin B is an antimitotic cyclopeptide mycotoxin isolated from the rice false smut balls that formed in the pathogen-infected rice spikelets. A monoclonal antibody (mAb) designated as mAb 1B5A10 was generated with ustiloxin B—ovalbumin conjugate. A highly-sensitive and specific indirect competitive enzyme-linked immunosorbent assay (icELISA) was then developed. The median inhibitory concentration (IC50) of the icELISA was 18.0 ng/mL for the detection of ustiloxin B; the limit of detection was 0.6 ng/mL, and the calibration range was from 2.5 to 107.4 ng/mL. The LOD/LOQ values of the developed ELISA used for the determination of ustiloxin B in rice false smut balls and rice grains were 12/50 μg/g and 30/125 ng/g, respectively. The mAb 1B5A10 cross-reacted with ustiloxin A at 13.9% relative to ustiloxin B. Average recoveries of ustiloxin B ranged from 91.3% to 105.1% for rice false smut balls at spiking levels of 0.2 to 3.2 mg/g and from 92.6% to 103.5% for rice grains at spiking levels of 100 to 5000 ng/g. Comparison of ustiloxin B content in rice false smut balls and rice grains detected by both icELISA and high performance liquid chromatography (HPLC) demonstrated that the developed icELISA can be employed as an effective and accurate method for the detection of ustiloxin B in rice false smut balls, as well as rice food and feed samples.
Collapse
|