1
|
Jarmakiewicz-Czaja S, Ferenc K, Sokal-Dembowska A, Filip R. Nutritional Support: The Use of Antioxidants in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:4390. [PMID: 38673974 PMCID: PMC11050446 DOI: 10.3390/ijms25084390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of treating inflammatory bowel disease continues to be a topic of great interest for researchers. Despite the complexity surrounding their treatment and strategies to prolong periods of remission, there is a promising exploration of various compounds that have potential in combating inflammation and alleviating symptoms. Selenium, calcium, magnesium, zinc, and iron are among these compounds, offering a glimpse of hope in the treatment of IBD. These essential minerals not only hold the promise of reducing inflammation in these diseases, but also show the potential to enhance immune function and possibly influence the balance of intestinal microflora. By potentially modulating the gut microbiota, they may help support overall immune health. Furthermore, these compounds could play a crucial role in mitigating inflammation and minimising complications in patients with IBD. Furthermore, the protective effect of these compounds against mucosal damage in IBD and the protective effect of calcium itself against osteoporosis in this group of patients are notable.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
2
|
Razola-Díaz MDC, De Montijo-Prieto S, Guerra-Hernández EJ, Jiménez-Valera M, Ruiz-Bravo A, Gómez-Caravaca AM, Verardo V. Fermentation of Orange Peels by Lactic Acid Bacteria: Impact on Phenolic Composition and Antioxidant Activity. Foods 2024; 13:1212. [PMID: 38672885 PMCID: PMC11049403 DOI: 10.3390/foods13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain's circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of orange peels by different lactic acid bacteria (LAB) strains and its impact on phenolic composition and antioxidant activity. Three different LAB strains, two Lactiplantibacillus plantarum, and one Levilactobacillus brevis were utilized. The phenolic compounds were measured by HPLC-ESI-TOF-MS, and antioxidant activity was assessed using DPPH and ABTS methods. The growth of the LAB strains varied, showing initial increases followed by gradual declines, with strain-specific patterns observed. Medium acidification occurred during fermentation. A phenolic analysis revealed an 11% increase in phenolic acids in peels fermented by La. plantarum CECT 9567-C4 after 24 h, attributed to glycosylation by LAB enzymes. The flavonoid content exhibited diverse trends, with Le. brevis showing an 8% increase. The antioxidant assays demonstrated strain- and time-dependent variations. Positive correlations were found between antioxidant activity and total phenolic compounds. The results underscore the importance of bacterial selection and fermentation time for tailored phenolic composition and antioxidant activity in orange peel extracts. LAB fermentation, particularly with La. plantarum CECT 9567 and Le. brevis, holds promise for enhancing the recovery of phenolic compounds and augmenting antioxidant activity in orange peels, suggesting potential applications in food and beverage processing.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| | - Soumi De Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Eduardo Jesús Guerra-Hernández
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| |
Collapse
|
3
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
4
|
Teixeira JLDP, Rebellato AP, Fioravanti MIA, Milani RF, Morgano MA. Selenium in plant-based beverages: Total content, estimated bioaccessibility and contribution to daily intake. J Trace Elem Med Biol 2024; 81:127329. [PMID: 37924611 DOI: 10.1016/j.jtemb.2023.127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The search for alternative protein sources has increased the consumption and commercialization of plant-based beverages (PBBs). This study aimed to determine the total Se content, estimate the bioaccessibility of selenium (Se) in commercial PBBs derived from different raw materials, and evaluate their contribution to the reference daily intake (RDI). METHODS An ultrasound assisted acid digestion method and ICP-MS was used to determine Se, and the INFOGEST method to estimate the bioaccessible percentages. Validation of this method was also performed, and the parameters obtained were: LOD and LOQ were 2.1 and 4.0 µg/kg, respectively. For accuracy, recovery percentages ranged from 99 % and 111 % (certified reference materials), and 95 % and 101 % (spiked experiments for bioaccessible extracts as recoveries). RESULTS The PBBs presented total Se content between 4 and 226 µg/kg. Bioaccessible percentages ranged from 63.5 % (mix of plant sources) to 95.9 % (produced with organic cashew nuts). Only one cashew nut PBBs supplied the daily demand of Se, representing 64.6 %, 75.3 % and 82.2 % of the RDI; for lactating and pregnant women, children (≥ 4 years) and adults, respectively. CONCLUSIONS The Se determination method through acid digestion assisted by ultrasound and ICP-MS was considered adequate for the PBBs samples. Se content varied according to the raw material used in sample preparation. High percentages (> 60 %) of bioaccessibility were observed and only one PBBs derived from organic cashew nuts supplied the recommended Se demand for different groups of individuals.
Collapse
Affiliation(s)
- José Luan da Paixão Teixeira
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil.
| | - Ana Paula Rebellato
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| | | | - Raquel Fernanda Milani
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| | - Marcelo Antonio Morgano
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| |
Collapse
|
5
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Zaguła G, Pawlos M. Bioavailability of Macroelements from Synbiotic Sheep's Milk Ice Cream. Nutrients 2023; 15:3230. [PMID: 37513648 PMCID: PMC10383885 DOI: 10.3390/nu15143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
To determine the potential bioavailability of macroelements (Ca, Mg, P, K), probiotic ice cream samples (Lactaseibacillus paracasei L-26, Lactobacillus casei 431, Lactobacillus acidophilus LA-5, Lactaseibacillus rhamnosus and Bifidobacterium animalis ssp. lactis BB-12) from sheep's milk with inulin, apple fiber and inulin, or apple fiber and control samples were submitted to in vitro digestion in the mouth, stomach and small intestine. The bioavailability of calcium in the ice cream samples ranged from 40.63% to 54.40%, whereas that of magnesium was 55.64% to 44.42%. The highest bioavailability of calcium and magnesium was shown for the control samples. However, adding 4% inulin reduced the bioavailability of calcium by about 3-5% and magnesium only by about 5-6%. Adding 4% apple fiber reduced the bioavailability of calcium by as much as 6-12% and magnesium by 7-8%. The highest bioavailability of calcium was determined in ice cream with L. paracasei, and the highest bioavailability of magnesium was determined in ice cream with L. casei. The bioavailability of phosphorus in ice cream ranged from 47.82% to 50.94%. The highest bioavailability of phosphorus (>50%) was in sheep ice cream fermented by B. animalis. In the control ice cream, the bioavailability of potassium was about 60%. In ice cream with inulin, the bioavailability of potassium was lower by 3-4%, and in ice cream with apple fiber, the bioavailability of potassium was lower by up to 6-9%. The bioavailability of potassium was significantly influenced only by the addition of dietary fiber. The results of the study confirmed the beneficial effect of bacteria on the bioavailability of Ca, Mg and P.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food and Nutrition Technology, College of Natural Science, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| |
Collapse
|
6
|
Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants (Basel) 2023; 12:antiox12020298. [PMID: 36829856 PMCID: PMC9952674 DOI: 10.3390/antiox12020298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The growing global consumption of avocados, associated with contents including bioactive compounds with numerous health-promoting properties, is producing a large amount of agro wastes around the world. Different management approaches are available for the recovery of bioactive compounds from wastes as potential ingredients for use in the production of functional foods and nutraceuticals. Lactic acid fermentation can be used to exploit nutritional potential and add value to agro wastes. In this study, fermentations with lactic acid bacteria were carried out in avocado leaves, and the total phenolic content and the antioxidant activity were determined by DPPH and FRAP assays from hydroalcoholic extracts obtained from fermented avocado leaves. Fifteen new phenolic compounds were identified for the first time in avocado leaves by HPLC-ESI-TOF-MS. L. plantarum CECT 748T and P. pentosaceus CECT 4695T showed the highest antioxidant activity. The sum of phenolic compounds was increased by 71, 62, 55 and 21% in fermentations with P. pentosaceus CECT 4695T, L. brevis CECT 5354, P. acidilactici CECT 5765T and L. plantarum CECT 9567, respectively, while it was reduced in the fermentation with L. plantarum 748T by 21% as demonstrated by HPLC-ESI-TOF-MS. Biotransformations induced by bacterial metabolism modified the phenolic compound profile of avocado leaves in a strain-specific-dependent manner. P. pentosaceus CECT 4695T significantly increased kaempferol, P. pentosaceus 4695T, L. brevis 5354 and L. plantarum 9567 increased rutin, and dihydro-p-coumaric acid was increased by the five selected lactic acid bacteria. Total flavonoids were highly increased after fermentations with the five selected lactic acid bacteria but flavonoid glucosides were decreased by L. plantarum 748T, which was related to its higher antioxidant activity. Our results suggest that lactic acid bacteria led the hydrolysis of compounds by enzymatic activity such as glycosidases or decarboxylase and the release of phenolics bound to the plant cell wall, thus improving their bioavailability.
Collapse
|
7
|
Yao X, Zuo N, Guan W, Fu L, Jiang S, Jiao J, Wang X. Association of Gut Microbiota Enterotypes with Blood Trace Elements in Women with Infertility. Nutrients 2022; 14:3195. [PMID: 35956371 PMCID: PMC9370633 DOI: 10.3390/nu14153195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infertility is defined as failure to achieve pregnancy within 12 months of unprotected intercourse in women. Trace elements, a kind of micronutrient that is very important to female reproductive function, are affected by intestinal absorption, which is regulated by gut microbiota. Enterotype is the classification of an intestinal microbiome based on its characteristics. Whether or not Prevotella-enterotype and Bacteroides-enterotype are associated with blood trace elements among infertile women remains unclear. The study aimed to explore the relationship between five main whole blood trace elements and these two enterotypes in women with infertility. This retrospective cross-sectional study recruited 651 Chinese women. Whole blood copper, zinc, calcium, magnesium, and iron levels were measured. Quantitative real-time PCR was performed on all fecal samples. Patients were categorized according to whole blood trace elements (low levels group, <5th percentile; normal levels group, 5th‒95th percentile; high levels group, >95th percentile). There were no significant differences in trace elements between the two enterotypes within the control population, while in infertile participants, copper (P = 0.033), zinc (P < 0.001), magnesium (P < 0.001), and iron (P < 0.001) in Prevotella-enterotype was significantly lower than in Bacteroides-enterotype. The Chi-square test showed that only the iron group had a significant difference in the two enterotypes (P = 0.001). Among infertile patients, Prevotella-enterotype (Log(P/B) > −0.27) predicted the low levels of whole blood iron in the obesity population (AUC = 0.894; P = 0.042). For the high levels of iron, Bacteroides-enterotype (Log(P/B) <−2.76) had a predictive power in the lean/normal group (AUC = 0.648; P = 0.041) and Log(P/B) <−3.99 in the overweight group (AUC = 0.863; P = 0.013). We can infer that these two enterotypes may have an effect on the iron metabolism in patients with infertility, highlighting the importance of further research into the interaction between enterotypes and trace elements in reproductive function.
Collapse
Affiliation(s)
- Xinrui Yao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Na Zuo
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Wenzheng Guan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Lingjie Fu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| |
Collapse
|
8
|
Alteration in Gut Microbiota Associated with Zinc Deficiency in School-Age Children. Nutrients 2022; 14:nu14142895. [PMID: 35889856 PMCID: PMC9319427 DOI: 10.3390/nu14142895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Zinc deficiency could lead to a dynamic variation in gut microbial composition and function in animals. However, how zinc deficiency affects the gut microbiome in school-age children remains unclear. The purpose of this study was to profile the dynamic shifts in the gut microbiome of school-age children with zinc deficiency, and to determine whether such shifts are associated with dietary intake. A dietary survey, anthropometric measurements, and serum tests were performed on 177 school-age children, and 67 children were selected to explore the gut microbial community using amplicon sequencing. School-age children suffered from poor dietary diversity and insufficient food and nutrient intake, and 32% of them were zinc deficient. The inflammatory cytokines significantly increased in the zinc deficiency (ZD) group compared to that in the control (CK) group (p < 0.05). There was no difference in beta diversity, while the Shannon index was much higher in the ZD group (p < 0.05). At the genus level, Coprobacter, Acetivibrio, Paraprevotella, and Clostridium_XI were more abundant in the ZD group (p < 0.05). A functional predictive analysis showed that the metabolism of xenobiotics by cytochrome P450 was significantly depleted in the ZD group (p < 0.05). In conclusion, gut microbial diversity was affected by zinc deficiency with some specific bacteria highlighted in the ZD group, which may be used as biomarkers for further clinical diagnosis of zinc deficiency.
Collapse
|
9
|
In Vitro Digestion Assays Using Dynamic Models for Essential Minerals in Brazilian Goat Cheeses. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Teixeira JLDP, Pallone JAL, Andrade CD, Mesías M, Seiquer I. Bioavailability evaluation of calcium, magnesium and zinc in Brazilian cheese through a combined model of in vitro digestion and Caco-2 cells. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Barone M, D'Amico F, Brigidi P, Turroni S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors 2022; 48:307-314. [PMID: 35294077 PMCID: PMC9311823 DOI: 10.1002/biof.1835] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Micronutrients, namely, vitamins and minerals, are necessary for the proper functioning of the human body, and their deficiencies can have dramatic short- and long-term health consequences. Among the underlying causes, certainly a reduced dietary intake and/or poor absorption in the gastrointestinal tract play a key role in decreasing their bioavailability. Recent evidence from clinical and in vivo studies suggests an increasingly important contribution from the gut microbiome. Commensal microorganisms can in fact regulate the levels of micronutrients, both by intervening in the biosynthetic processes and by modulating their absorption. This short narrative review addresses the pivotal role of the gut microbiome in influencing the bioavailability of vitamins (such as A, B, C, D, E, and K) and minerals (calcium, iron, zinc, magnesium, and phosphorous), as well as the impact of these micronutrients on microbiome composition and functionality. Personalized microbiome-based intervention strategies could therefore constitute an innovative tool to counteract micronutrient deficiencies by modulating the gut microbiome toward an eubiotic configuration capable of satisfying the needs of our organism, while promoting general health.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| |
Collapse
|
12
|
Bielik V, Kolisek M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int J Mol Sci 2021; 22:ijms22136803. [PMID: 34202712 PMCID: PMC8268569 DOI: 10.3390/ijms22136803] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adequate amounts of a wide range of micronutrients are needed by body tissues to maintain health. Dietary intake must be sufficient to meet these micronutrient requirements. Mineral deficiency does not seem to be the result of a physically active life or of athletic training but is more likely to arise from disturbances in the quality and quantity of ingested food. The lack of some minerals in the body appears to be symbolic of the modern era reflecting either the excessive intake of empty calories or a negative energy balance from drastic weight-loss diets. Several animal studies provide convincing evidence for an association between dietary micronutrient availability and microbial composition in the gut. However, the influence of human gut microbiota on the bioaccessibility and bioavailability of trace elements in human food has rarely been studied. Bacteria play a role by effecting mineral bioavailability and bioaccessibility, which are further increased through the fermentation of cereals and the soaking and germination of crops. Moreover, probiotics have a positive effect on iron, calcium, selenium, and zinc in relation to gut microbiome composition and metabolism. The current literature reveals the beneficial effects of bacteria on mineral bioaccessibility and bioavailability in supporting both the human gut microbiome and overall health. This review focuses on interactions between the gut microbiota and several minerals in sport nutrition, as related to a physically active lifestyle.
Collapse
Affiliation(s)
- Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 81469 Bratislava, Slovakia
- Correspondence:
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
13
|
Teixeira JLDP, Caramês ETDS, Baptista DP, Gigante ML, Pallone JAL. Rapid adulteration detection of yogurt and cheese made from goat milk by vibrational spectroscopy and chemometric tools. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Nieto JA, Soriano-Romaní L, Tomás-Cobos L, Sharma L, Budde T. Improved in vitro bioavailability of a newly developed functionalized calcium carbonate salt as a food ingredient and its comparison with available commercial calcium salts. Food Chem 2020; 348:128740. [PMID: 33493844 DOI: 10.1016/j.foodchem.2020.128740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The bioaccessibility and bioavailability of a functionalized Calcium (Ca) salt as food ingredient, based on modified Ca carbonate and hydroxyapatite (FCC), was determined and compared with frequently used Ca sources (Ca citrate tetrahydrate (CCT), tri-Ca phosphate (triCP) and Ca carbonate (CC). Results showed a similar Ca bioaccessibility for CCT (76.44 ± 9.73%), CC (73.7 ± 8.18%) and FCC (74.4 ± 1.87%) and a lower value for tri-CP (46.07 ± 8.68%). FCC showed the highest bioavailability, 5.68 ± 0.26%, compared to CC, CCT and tri-CP (3.93 ± 0.99%, 3.41 ± 0.33%, 1.85 ± 0.34%, respectively). The innovative chemical composition and structure of FCC based on amorphous hydroxyapatite combined with Ca carbonate, a greater porosity, lower agglomerates and particle size, improve the Ca solubility in the intestinal media, explaining the similar bioaccessibility but higher bioavailability of FCC compared to CCT, tri-CP and CC.
Collapse
Affiliation(s)
| | | | | | - Lalit Sharma
- Omya International Ag, 4665, Oftringen, Switzerland
| | - Tanja Budde
- Omya International Ag, 4665, Oftringen, Switzerland
| |
Collapse
|
15
|
Balthazar C, Santillo A, Guimarães J, Capozzi V, Russo P, Caroprese M, Marino R, Esmerino E, Raices RS, Silva M, Silva H, Freitas M, Granato D, Cruz A, Albenzio M. Novel milk–juice beverage with fermented sheep milk and strawberry (Fragaria × ananassa): Nutritional and functional characterization. J Dairy Sci 2019; 102:10724-10736. [DOI: 10.3168/jds.2019-16909] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
|
16
|
De Montijo-Prieto S, Castro DJ, Reina JC, Jimenez-Valera M, Ruiz-Bravo A. Draft genome sequence of Lactobacillus plantarum C4 (CECT 9567), a potential probiotic strain isolated from kefir. Arch Microbiol 2019; 201:409-414. [PMID: 30759265 DOI: 10.1007/s00203-019-01629-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
Lactobacillus plantarum C4 (CECT 9567) was isolated from kefir and has been extensively studied because of its probiotic properties. Here we report the genome sequence of this strain. The genome consists of 3,221,350 bp, and contains 3058 CDSs with an average G + C content of 44.5%. The genome harbors genes encoding the AraC-family transcription regulator, the penicillin-binding protein Pbp2A, and the Na+/H+ antiporter NapA3, which have important roles in the survival of lactobacilli in the gastrointestinal tract. Also, the genome encodes the catalase KatE, NADH peroxidase and glutathione peroxidase, which enable anaerobic respiration, and a nitrate reductase complex, which enable anaerobic respiration. Additionally, genes encoding plantaricins and sactipeptides, and genes involved in the use of fructooligosaccharides and in the production of butyric acid were also identified. BLASTn analysis revealed that 91.4% of CDSs in C4 genome aligned with those of the reference strain L. plantarum WCFS1, with a mean identity of 98.96%. The genome information of L. plantarum C4 provides the basis for understanding the probiotic properties of C4 and to consider its use as a potential component of functional foods.
Collapse
Affiliation(s)
- Soumi De Montijo-Prieto
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - David J Castro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Jose C Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Maria Jimenez-Valera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
17
|
Verruck S, Dantas A, Prudencio ES. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Teneva‐Angelova T, Balabanova T, Boyanova P, Beshkova D. Traditional Balkan fermented milk products. Eng Life Sci 2018; 18:807-819. [PMID: 32624874 PMCID: PMC6999267 DOI: 10.1002/elsc.201800050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 11/08/2022] Open
Abstract
Traditional fermented milk products have been prepared since ancient time by various civilizations. Despite their long history, popularity, and nutritive and healthy value, the acceleration and industrialization of food production leads to increase of the diversity of fermented milk products in the Balkan Peninsula. As a result of the multitude of food-microbe combinations, there are thousands of different types of fermented milk products - yoghurts, yogurt-like products, and various types of cheeses with proven health benefits. Among those products is the domestic Bulgarian yoghurt "kiselo mlyako", whose anti-aging effect has been scientifically studied yet at the beginning of 20th century. The current review summerizes the wide range of traditional fermented milk products at the Balkan countries, which are the primary source for their production.
Collapse
Affiliation(s)
- Tsvetanka Teneva‐Angelova
- Laboratory of Applied BiotechnologiesDepartment Applied MicrobiologyThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| | - Tatyana Balabanova
- Department of Technology of Milk and Milk ProductsUniversity of Food TechnologiesPlovdivBulgaria
| | - Petya Boyanova
- Department of Technology of Milk and Milk ProductsUniversity of Food TechnologiesPlovdivBulgaria
| | - Dora Beshkova
- Laboratory of Applied BiotechnologiesDepartment Applied MicrobiologyThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| |
Collapse
|
19
|
Silva HL, Balthazar CF, Rocha RS, Moraes J, Esmerino EA, Silva MC, Raices RS, Pimentel TC, Freitas MQ, Cruz AG. Sodium reduction and flavor enhancers addition: is there an impact on the availability of minerals from probiotic Prato cheese? Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Moreno-Montoro M, Jauregi P, Navarro-Alarcón M, Olalla-Herrera M, Giménez-Martínez R, Amigo L, Miralles B. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Anal Bioanal Chem 2018. [PMID: 29523944 DOI: 10.1007/s00216-018-0983-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, ultrafiltered goat milks fermented with the classical starter bacteria Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and/or high performance liquid chromatography-ion trap (HPLC-IT-MS/MS). Partial overlapping of the identified sequences with regard to fermentation culture was observed. Evaluation of the cleavage specificity suggested a lower proteolytic activity of the probiotic strain. Some of the potentially identified peptides had been previously reported as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antibacterial and might account for the in vitro activity previously reported for these fermented milks. Simulated digestion of the products was conducted in the presence of a dialysis membrane to retrieve the bioaccessible peptide fraction. Some sequences with reported physiological activity resisted digestion but were found in the non-dialyzable fraction. However, new forms released by digestion, such as the antioxidant αs1-casein 144YFYPQL149, the antihypertensive αs2-casein 90YQKFPQY96, and the antibacterial αs2-casein 165LKKISQ170, were found in the dialyzable fraction of both fermented milks. Moreover, in the fermented milk including the probiotic strain, the k-casein dipeptidyl peptidase IV inhibitor (DPP-IV) 51INNQFLPYPY60 as well as additional ACE inhibitory or antioxidant sequences could be identified. With the aim of anticipating further biological outcomes, quantitative structure activity relationship (QSAR) analysis was applied to the bioaccessible fragments and led to potential ACE inhibitory sequences being proposed. Graphical abstract Ultrafiltered goat milks were fermented with the classical starter bacteria (St) and with St plus the L. plantarum C4 probiotic strain. Samples were analyzed using HPLC-IT-MS/MS and UPLC-Q-TOF-MS/MS. After simulated digestion and dialysis, some of the active sequences remained and new peptides with reported beneficial activities were released.
Collapse
Affiliation(s)
- Miriam Moreno-Montoro
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Manuel Olalla-Herrera
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Rafael Giménez-Martínez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Lourdes Amigo
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Beatriz Miralles
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Solís Carvajal CA, Vélez Pasos CA, Ramírez-Navas JS. Tecnología de membranas: Ultrafiltración. ACTA ACUST UNITED AC 2017. [DOI: 10.31908/19098367.3546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Schuchardt JP, Hahn A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium-An Update. CURRENT NUTRITION & FOOD SCIENCE 2017; 13:260-278. [PMID: 29123461 PMCID: PMC5652077 DOI: 10.2174/1573401313666170427162740] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022]
Abstract
Background: Information on the bioavailability of the essential mineral Mg2+ is sparse. Objective/Method: Evaluation of the present knowledge on factors influencing the bioavailability and intestinal absorption of Mg2+. Results: Mg2+ is absorbed via a paracellular passive and a transcellular active pathway that involves TRPM6/7 channel proteins. The bioavailability of Mg2+ varies within a broad range, depending on the dose, the food matrix, and enhancing and inhibiting factors. Dietary factors impairing Mg2+ up-take include high doses of other minerals, partly fermentable fibres (e.g., hemicellulose), non-fermentable fibres (e.g., cellulose, lignin), phytate and oxalate, whereas proteins, medium-chain-triglycerides, and low- or indigestible carbohydrates (e.g., resistant starch, oligosaccharides, inulin, mannitol and lactulose) enhance Mg2+ uptake. The Mg2+ dose is a major factor controlling the amount of Mg2+ absorbed. In principle, the relative Mg2+ uptake is higher when the mineral is in-gested in multiple low doses throughout the day compared to a single, large intake of Mg2+. The type of Mg2+ salt appears less relevant than is often thought. Some studies demonstrated a slightly higher bioavailability of organic Mg2+ salts compared to inorganic compounds under standardized conditions, whereas other studies did not. Conclusion: Due to the lack of standardized tests to assess Mg2+ status and intestinal absorption, it remains unclear which Mg2+ binding form produces the highest bioavailability. The Mg2+ intake dose combined with the endogenous Mg2+ status is more important. Because Mg2+ cannot be stored but only retained for current needs, a higher absorption is usually followed by a higher excretion of the mineral.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
23
|
Moreno-Montoro M, Olalla-Herrera M, Rufián-Henares JÁ, Martínez RG, Miralles B, Bergillos T, Navarro-Alarcón M, Jauregi P. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct 2017; 8:2783-2791. [PMID: 28702643 DOI: 10.1039/c7fo00666g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence on goat milk and the health benefits of its derived products beyond its nutritional value show its potential as a functional food. In this study, goat milk fractions were tested for their total antioxidant capacity using different methods (ORAC, ABTS, DPPH and FRAP), as well as their angiotensin-I-converting-enzyme inhibitory and antimicrobial (against Escherichia coli and Micrococcus luteus) activities. Different whey fractions (whey, cation exchange membrane permeate P and retentate R) of two fermented skimmed goat milks (ultrafiltered goat milk fermented with the classical starter bacteria or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain) were assessed. Additionally, P fractions were divided into two sub-fractions after being passed through a 3 kDa cut-off membrane: (a) the permeate with peptides of MW <3 kDa (P < 3); and (b) the retentate with peptides and proteins of MW >3 kDa (P > 3). No differences in biological activities were observed between the two fermented milks. However, the biological peptides present in the P < 3 fraction showed the highest total antioxidant capacity (for the ORAC assay) and angiotensin-I-converting-enzyme inhibitory activity. Those present in the R fraction showed the highest total antioxidant capacity against ABTS˙+ and DPPH˙ radicals. Some antimicrobial activity against E. coli was observed for the fermented milk containing the probiotic, which could be due to some peptides being released by the probiotic strain. In conclusion, small and non-basic bioactive peptides could be responsible for most of the angiotensin-I-converting-enzyme inhibitory and antioxidant activities. These findings reinforce the potential benefits of the consumption of fermented goat milk in the prevention of cardiovascular diseases associated with oxidative stress and hypertension.
Collapse
Affiliation(s)
- Miriam Moreno-Montoro
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Manuel Olalla-Herrera
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - José Ángel Rufián-Henares
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Rafael Giménez Martínez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Beatriz Miralles
- Instituto de Investigaciones en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Triana Bergillos
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| |
Collapse
|
24
|
Kasmi M, Hamdi M, Trabelsi I. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:39-47. [PMID: 28067644 DOI: 10.2166/wst.2016.477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L-1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.
Collapse
Affiliation(s)
- Mariam Kasmi
- Laboratory of Wastewater Treatment, Water Researches and Technologies Center(CERTE), University of Carthage, Tourist route, Soliman, BP 273-8020, Tunisia E-mail:
| | - Moktar Hamdi
- Laboratoire d'Ecologie et de Technologie Microbienne LETMI, Institut National des Sciences Appliquées et de Technologie (INSAT), Centre Urbain Nord, Tunis Cedex BP 676-1080, Tunisia
| | - Ismail Trabelsi
- Laboratory of Wastewater Treatment, Water Researches and Technologies Center(CERTE), University of Carthage, Tourist route, Soliman, BP 273-8020, Tunisia E-mail:
| |
Collapse
|