1
|
Ronie ME, Mamat H, Aziz AHA, Sarjadi MS, Mokhtar RAM, Putra NR. Rice bran as a potent ingredient: unveiling its potential for value-added applications. Food Sci Biotechnol 2025; 34:577-598. [PMID: 39958169 PMCID: PMC11822189 DOI: 10.1007/s10068-024-01709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 02/18/2025] Open
Abstract
Rice bran production significantly contributes to global environmental deterioration, yet its potential remains underutilized. This review discusses the nutritional composition, bioactive compounds, health benefits, limitations, and potential application of rice bran in both food and non-food sectors. While minor variations exist between pigmented and non-pigmented rice bran, the former is abundant in phytochemicals, which offer therapeutic benefits. The primary limitations hindering rice bran's food application include rancidity, toxic heavy metals, and antinutrients. Effective stabilization is crucial to extend rice bran's shelf life. Despite these challenges, rice bran holds significant potential for value-added products. Hence, its rich composition and diverse applications underscore its importance as a valuable resource for sustainable production practices.
Collapse
Affiliation(s)
- Macdalyna Esther Ronie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Hasmadi Mamat
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Ahmad Hazim Abdul Aziz
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mohd Sani Sarjadi
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | | | - Nicky Rahmana Putra
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor, 16911 Indonesia
| |
Collapse
|
2
|
Moon HS, Thiruvengadam M, Chi HY, Kim B, Prabhu S, Chung IM, Kim SH. Comparative study for metabolomics, antioxidant activity, and molecular docking simulation of the newly bred Korean red rice accessions. Food Chem 2024; 458:140277. [PMID: 38970957 DOI: 10.1016/j.foodchem.2024.140277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties.
Collapse
Affiliation(s)
- Hee-Sung Moon
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Chen B, Xu Y, Chen Z, Zhen Y, Qiao D, Zhao S, Zhang B. Incorporating ions during thermal processing tailors the microstructure and practical features of rice starch/anthocyanin binary system. Int J Biol Macromol 2024; 275:133628. [PMID: 38964689 DOI: 10.1016/j.ijbiomac.2024.133628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Understanding the interplay among salt ions, anthocyanin and starch within food matrices under thermal conditions is important for the development of starch-based foods with demanded quality attributes. However, how salt ions presence influences the microstructure and properties of starch/anthocyanin binary system remains largely unclear. Herein, indica rice starch (IRS) and rice anthocyanin (RA) were used to construct an IRS-RA binary system, with thermal treatment under different concentrations of Na+ (10-40 mM) and types of salt ions (Na+ and Ca2+). The incorporation of salt ions induced the formation of a porous gel matrix, and destroyed the hydrogen bond between starch and anthocyanin through electrostatic interactions, reducing the storage modulus and radius of gyration of the binary system, and increasing the relative crystallinity (from 1.08 % to 1.51 % (20 mM Na+) and 1.69 % (20 mM Ca+)) of the IRS-RA binary system at 90 °C. Also, the DPPH radical scavenging ability of the binary system at 90 °C was enhanced upon incorporating salt ions (0.93 for Na+ condition and 0.94 for Ca2+ condition at 20 mM ion concentration). It is noteworthy that Ca2+ inclusion had more significant effects than the case for Na+ presence, presumably due to the increased charge density.
Collapse
Affiliation(s)
- Bowen Chen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yang Xu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhining Chen
- Chinese Cereals and Oils Association, Beijing 100037, China
| | - Yiyuan Zhen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Baptista E, Liberal Â, Cardoso RVC, Fernandes Â, Dias MI, Pires TC, Calhelha RC, García PA, Ferreira IC, Barreira JC. Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use. Molecules 2024; 29:2265. [PMID: 38792127 PMCID: PMC11123668 DOI: 10.3390/molecules29102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Red rice has been proposed as a super-food. Accordingly, the nutritional properties (AOAC), as well as its chemical composition, including sugars (HPLC-RI), organic acids (UFLC-PDA), tocopherols (HPLD-FD), and phenolic compounds (LC-DAD-ESI/MSn), together with the main bioactive properties (antioxidant, cytotoxic, antiproliferative, and antibacterial activities), were evaluated to access its nutritional benefits and health improvement potential. The most abundant macronutrients found were carbohydrates (87.2 g/100 g dw), proceeded by proteins (9.1 g/100 g dw), fat (2.6 g/100 g dw), and ash (1.1 g/100 g dw). Sucrose and raffinose were the only detected sugars, with sucrose presenting the maximum concentration (0.74 g/100 g dw). MUFAs and PUFAs were the predominant fatty acids (40.7% and 31%, respectively). Among the two detected tocopherol isoforms, γ-tocopherol (0.67 mg/100 g dw) predominated over α-tocopherol. The phenolic compounds profile, majorly composed of flavan-3-ols, should be associated with the detected bioactivities, which may provide biological benefits to human health beyond the primary nutritional effect. Overall, the bioactive potential of red rice was comprehensively accessed.
Collapse
Affiliation(s)
- Eugénia Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS-IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rossana V. C. Cardoso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS-IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C.S.P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pablo A. García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS-IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Isabel C.F.R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - João C.M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.B.); (Â.L.); (R.V.C.C.); (Â.F.); (M.I.D.); (T.C.S.P.P.); (R.C.C.); (I.C.F.R.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Avinash G, Sharma N, Prasad KR, Kaur R, Singh G, Pagidipala N, Thulasinathan T. Unveiling the distribution of free and bound phenolic acids, flavonoids, anthocyanins, and proanthocyanidins in pigmented and non-pigmented rice genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1324825. [PMID: 38660452 PMCID: PMC11039891 DOI: 10.3389/fpls.2024.1324825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
The total phenolic content, phenolic acid profile, anthocyanins, proanthocyanidins, flavonoids, and antioxidant capacity of the whole-grain and bran portion of sixteen distinct rice genotypes that correspond to three distinct pericarp bran colors-black, red, and non-pigmented (NP)-were examined. Ten free and bound phenolic acids, as well as two flavonoids, were analyzed using HPLC-PDA. The flavonoids included kaempferol and catechin hydrate, and the free phenolic acids included gallic acid, 2,5-dihydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, chlorogenic acid, trans-cinnamic acid, trans-ferulic acid, p-coumaric acid, and sinapic acid. Trans-ferulic acid (207.39 mg/kg), p-hydroxybenzoic acid (94.36 mg/kg), and p-coumaric acid (59.75 mg/kg) were the principal bound phenolic acids in pigmented rice genotypes, whereas in NP genotypes they were trans-ferulic acid (95.61 mg/kg) and p-hydroxybenzoic acid (58.32 mg/kg). The main free phenolic acid was syringic acid (120.43 mg/kg) in all genotypes. 2,5-dihydroxybenzoic acid was also detected in NP genotypes, mainly in the bound form (4.88 mg/kg). NP genotypes Basmati 386 and Punjab Basmati 7 also displayed high content of bran flavonoids (1001 and 1028 mg CE/100 g). The bound form of phenolics had significant DPPH and ABTS + activity. This study found wide diversity in the phenolic acid profile, total phenolic constituents, and antioxidant activity in the bran and whole grain of pigmented and NP rice. The individual phenolic acids in free and bound forms in different fractions of the grain were found to exert their antioxidant activity differently. The results obtained will provide new opportunities to improve the nutritional quality of rice with enhanced levels of phytochemicals in the ongoing breeding programs. Black rice bran contains a high level of phytochemicals and thus has a potent pharmaceutical role. This information would enhance the use of whole-grain and bran of pigmented rice in food product development by food technologists. Further studies may be focused on clinical trials with respect to cancer and diabetes.
Collapse
Affiliation(s)
- Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Neerja Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Kalluri Rajendra Prasad
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Nagaraju Pagidipala
- Indian Institute of Rice Research, Indian Council of Agricultural Research (ICAR), Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
6
|
Kumar G, Perera D, Sudheer KP, Zhang P, Dhital S. Leaching of Phytochemicals from Beans during Hydration, Kinetics, and Modeling. Foods 2024; 13:354. [PMID: 38275721 PMCID: PMC10815358 DOI: 10.3390/foods13020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In the current era, there is a growing emphasis on the circular economy and the valorization of waste products. Bean processing industries generate substantial nutrient-rich waste laden with valuable phytochemicals. Understanding the leaching patterns and kinetics of major phytochemicals is key to designing better processes leading to increased sustainability. This review investigates phytochemical leaching mechanisms and kinetic modeling methods. Firstly we lay the foundation with a broad theoretical framework, and later deal with kinetic modeling approaches and promising areas for future research. Currently, the composition of industrial-scale bean wastewater remains undocumented in the open literature. Nonetheless, drawing from existing studies and general bean composition knowledge, we proposed a multi-phase leaching process. We hypothesize three distinct phases: initial leaching of phytochemicals from the outer seed coat, followed by a second phase involving polysaccharides, and concluding with a third phase wherein phenolic acids within the cotyledons leach into the hydration water. This review aims to shed light on the complex process of phytochemical leaching from common beans during hydration. By combining theoretical insights and practical modeling strategies, this work seeks to enhance our understanding of this phenomenon and ultimately contribute to the optimization of food processing methods with reduced environmental impact.
Collapse
Affiliation(s)
- Gaurav Kumar
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; (G.K.); (D.P.)
| | - Dilini Perera
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; (G.K.); (D.P.)
| | | | - Pangzhen Zhang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; (G.K.); (D.P.)
| |
Collapse
|
7
|
Zhou H, Zhang J, Bai L, Liu J, Li H, Hua J, Luo S. Chemical Structure Diversity and Extensive Biological Functions of Specialized Metabolites in Rice. Int J Mol Sci 2023; 24:17053. [PMID: 38069376 PMCID: PMC10707428 DOI: 10.3390/ijms242317053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is thought to have been domesticated many times independently in China and India, and many modern cultivars are available. All rice tissues are rich in specialized metabolites (SPMs). To date, a total of 181 terpenoids, 199 phenolics, 41 alkaloids, and 26 other types of compounds have been detected in rice. Some volatile sesquiterpenoids released by rice are known to attract the natural enemies of rice herbivores, and play an indirect role in defense. Momilactone, phytocassane, and oryzalic acid are the most common diterpenoids found in rice, and are found at all growth stages. Indolamides, including serotonin, tryptamine, and N-benzoylserotonin, are the main rice alkaloids. The SPMs mainly exhibit defense functions with direct roles in resisting herbivory and pathogenic infections. In addition, phenolics are also important in indirect defense, and enhance wax deposition in leaves and promote the lignification of stems. Meanwhile, rice SPMs also have allelopathic effects and are crucial in the regulation of the relationships between different plants or between plants and microorganisms. In this study, we reviewed the various structures and functions of rice SPMs. This paper will provide useful information and methodological resources to inform the improvement of rice resistance and the promotion of the rice industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| |
Collapse
|
8
|
Rahman ML, Mandal S, Das P, Ashraf GJ, Dua TK, Paul P, Nandi G, Sahu R. Evaluation of maceration, microwave, ultrasound-assisted extraction methods on free, esterified and bound phenolic profile and antioxidant activity of black rice. Z NATURFORSCH C 2023; 78:389-398. [PMID: 37682027 DOI: 10.1515/znc-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Black rice (Oryza sativa L.) is a rich source of phenolics and anthocyanins. It was aimed to investigate the effect of different extraction methods such as conventional solvent extraction, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) on antioxidant activity and phenolic profiling of black rice free, esterified, and bound phenolics fractions. Spectrophotometric methods were used to evaluate antioxidant activity and HPTLC was used for phenolics profiling. The highest content of % yield, total anthocyanin (TAC), total phenolic (TPC), and total flavonoid (TFC) contents were detected in MAE. It was also observed that antioxidant activity based on DPPH, ABTS, superoxide radical-scavenging and ferric reducing antioxidant power (FRAP) assays showed highest activity in MAE. Eight phenolic compounds were identified and quantified by a validated HPTLC method. MAE showed most abundant phenolic compounds. A significant positive correlation was established between % yield, total phenolic content, and total flavonoid content (p < 0.05) where a significant negative correlation was established between % yield, TPC, and TFC with IC50 of antioxidant activity (p < 0.05). Diverse phenolic contents and antioxidant activity were studied with different forms of phenolics with the different extraction methods. It designates that the extraction techniques had effects on the bioactive compounds as well biological properties.
Collapse
Affiliation(s)
- Md Latifur Rahman
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Subhajit Mandal
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Gouhar Jahan Ashraf
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
9
|
Obadi M, Xu B. Effect of processing methods and storage on the bioactive compounds of black rice ( Oryza sativa L.): a review. Food Funct 2023; 14:9100-9122. [PMID: 37766517 DOI: 10.1039/d3fo02977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Compared to brown and white rice, black rice contains more nutrients and numerous unique bioactive substances, such as essential amino acids, dietary fiber, γ-oryzanols, γ-aminobutyric acid, phenolic compounds, and anthocyanins, which makes it highly valuable for development and use. Whole-grain black rice typically requires a certain amount of processing prior to consumption, with the primary goal of enhancing the taste and texture of whole grains and their products. However, various new processing technologies have been effectively applied to the processing of black rice and the enhancement of its qualitative characteristics, but they also have both positive and negative effects on its nutritional quality. Therefore, evaluation of changes in concentrations of the bioactive substances as natural antioxidants due to processing and storage conditions is critical for establishing dietary guidelines for rice. This review highlights the primary bioactive components of black rice and provides a discussion of the impact of processing methods and storage on the bioactive components of black rice. Furthermore, we summarized the issues that currently exist in the processing and storage of black rice.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
10
|
Sudan J, Urwat U, Farooq A, Pakhtoon MM, Zaffar A, Naik ZA, Batool A, Bashir S, Mansoor M, Sofi PA, Sofi NUR, Shikari AB, Khan MK, Hossain MA, Henry RJ, Zargar SM. Explicating genetic architecture governing nutritional quality in pigmented rice. PeerJ 2023; 11:e15901. [PMID: 37719119 PMCID: PMC10501373 DOI: 10.7717/peerj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.
Collapse
Affiliation(s)
- Jebi Sudan
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Uneeb Urwat
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asmat Farooq
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aaqif Zaffar
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Zafir Ahmad Naik
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Aneesa Batool
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Saika Bashir
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Madeeha Mansoor
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Najeebul Ul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | - Asif B. Shikari
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Mohd. Kamran Khan
- Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, Queensland University, Brisbane, Australia
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
11
|
Lee C, Lee YS, Hong HC, Hong WJ, Koh HJ, Jung KH. Reinterpretation of anthocyanins biosynthesis in developing black rice seeds through gene expression analysis. PLoS One 2023; 18:e0286539. [PMID: 37267255 DOI: 10.1371/journal.pone.0286539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
The biosynthesis of anthocyanins is still questionable in regulating the quantities of anthocyanins biosynthesized in rice seeds and the expression levels of transcription factors and the structural genes involved in the biosynthetic pathway of anthocyanins. We herein investigated the relationship between the accumulated anthocyanin contents and the expression levels of genes related to the biosynthesis of anthocyanins in rice seeds. Liquid chromatography/mass spectrometry-mass spectrometry analysis of cyanidin 3-glucoside (C3G) in rice seeds showed no accumulation of C3G in white and red rice cultivars, and the differential accumulation of C3G among black rice cultivars. RNA-seq analysis in rice seeds, including white, red, and black rice cultivars, at twenty days after heading (DAH) further exhibited that the genes involved in the biosynthesis of anthocyanins were differentially upregulated in developing seeds of black rice. We further verified these RNA-seq results through gene expression analysis by a quantitative real-time polymerase chain reaction in developing seeds of white, red, and black rice cultivars at 20 DAH. Of these genes related to the biosynthesis of anthocyanins, bHLHs, MYBs, and WD40, which are regulators, and the structural genes, including chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), flavonoid 3´-hydroxylase (F3´H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), were differentially upregulated in black rice seeds. The correlation analysis revealed that the quantities of C3G biosynthesized in black rice seeds were positively correlated to the expression levels of bHLHs, MYBs and WD40, CHS, F3H, F3´H, DFR, and ANS. In addition, we present bHLH2 (LOC_Os04g47040) and MYBs (LOC_Os01g49160, LOC_Os01g74410, and LOC_Os03g29614) as new putative transcription factor genes for the biosynthesis of anthocyanins in black rice seeds. It is expected that this study will help to improve the understanding of the molecular levels involved in the biosynthesis of anthocyanins in black rice seeds.
Collapse
Affiliation(s)
- Choonseok Lee
- Department of Genetics and Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Yang-Seok Lee
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ha-Cheol Hong
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Kim YJ, Kim SH, Kim B, Koh HJ, Kim WR, Kim JY, Chung IM. Comparative analysis of metabolite profiling and free radical scavenging activity in phenotypic variants of OsCOP1 colored rice mutant seed. Food Chem 2023; 425:136465. [PMID: 37276671 DOI: 10.1016/j.foodchem.2023.136465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Interest in colored rice has been increasing due to its health benefits. This study examined the metabolite profiling of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mutated rice seed (yel-mutant). The wild-type (WT) and the yel-mutant having yellow (y)- and purple (p)-pericarp variants from Chucheong (cc) and Samkwang (sk) cultivars were investigated for differences in bioactive metabolite profiles and free radical scavenging activity. The total fatty acid content decreased by >50% in the yel-mutant against the WT, while no significant difference was observed between yellow- and purple-pericarp variants (p < 0.05). The yel-mutant of both cultivars showed significantly higher flavone contents than their WT (non-detected). Most of the metabolites examined were highly produced in the yel-cc-p and the yel-sk-y than in the other phenotypic variants studied. This study provides further useful information for colored rice breeding by revealing the detailed biofunctional metabolic profile under COP1 mutation in colored rice.
Collapse
Affiliation(s)
- Yun-Ju Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Backki Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Mipeshwaree Devi A, Khedashwori Devi K, Premi Devi P, Lakshmipriyari Devi M, Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1171154. [PMID: 37251773 PMCID: PMC10214965 DOI: 10.3389/fpls.2023.1171154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Plants produce a wide range of secondary metabolites that play vital roles for their primary functions such as growth, defence, adaptations or reproduction. Some of the plant secondary metabolites are beneficial to mankind as nutraceuticals and pharmaceuticals. Metabolic pathways and their regulatory mechanism are crucial for targeting metabolite engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated system has been widely applied in genome editing with high accuracy, efficiency, and multiplex targeting ability. Besides its vast application in genetic improvement, the technique also facilitates a comprehensive profiling approach to functional genomics related to gene discovery involved in various plant secondary metabolic pathways. Despite these wide applications, several challenges limit CRISPR/Cas system applicability in genome editing in plants. This review highlights updated applications of CRISPR/Cas system-mediated metabolic engineering of plants and its challenges.
Collapse
Affiliation(s)
| | | | | | | | - Sudripta Das
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| |
Collapse
|
14
|
Belhaj Amor G, Ben Farhat M, Beji-Serairi R, Selmi S, Saidani-Tounsi M, Abdelly C. Impact of cooking treatments on nutritional quality, phytochemical composition and antioxidant properties of Lepidium sativum L. seeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Gozzi M, Blandino M, Dall’Asta C, Martinek P, Bruni R, Righetti L. Anthocyanin Content and Fusarium Mycotoxins in Pigmented Wheat ( Triticum aestivum L. spp. aestivum): An Open Field Evaluation. PLANTS (BASEL, SWITZERLAND) 2023; 12:693. [PMID: 36840042 PMCID: PMC9965368 DOI: 10.3390/plants12040693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. Deoxynivalenol (DON) and its modified forms DON3Glc, 3Ac-DON, 15Ac-DON, and T-2, HT-2, ZEN, and Enniatin B were quantified by means of UHPLC-MS/MS, along with 14 different cyanidin, petunidin, delphinidin, pelargonidin, peonidin, and malvidin glycosides. A significant strong influence effect of the harvesting year (p = 0.0002) was noticed for DON content, which was more than doubled between harvesting years growing seasons (mean of 3746 µg kg-1 vs. 1463 µg kg-1). In addition, a striking influence of varieties with different grain colour on DON content (p < 0.0001) emerged in combination with the harvesting year (year×colour, p = 0.0091), with blue grains being more contaminated (mean of 5352 µg kg-1) and red grain being less contaminated (mean of 715 µg kg-1). The trend was maintained between the two harvesting years despite the highly variable absolute mycotoxin content. Varieties accumulating anthocyanins in the pericarp (purple coloration) had significantly lower DON content compared to those in which aleurone was involved (blue coloration).
Collapse
Affiliation(s)
- Marco Gozzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Petr Martinek
- Agrotest Fyto, Ltd., Havlíčkova 2787/121, 767 01 Kroměříž, Czech Republic
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| |
Collapse
|
16
|
Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice. Foods 2022; 11:foods11223699. [PMID: 36429291 PMCID: PMC9689972 DOI: 10.3390/foods11223699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Brown rice is a staple whole grain worldwide. Hence, the effects of cooking on the nutritional properties of brown rice are important considerations in the field of public health. Soaking is a key stage during rice cooking; however, different rice cookers use different soaking conditions and the effects of this on the physiochemical properties and nutritional composition of cooked brown rice remain unknown. In this study, the setting of varied soaking conditions was realized by a power-adjustable rice cooker, and the effects of soaking temperature (40, 50, 60 and 70 °C) and time (30 and 60 min) on cooked brown rice were thoroughly analyzed. Textural results revealed that cooked brown rice was softer and stickier after soaking. Grain hardness decreased by increasing the soaking temperature and time. Furthermore, stickiness after soaking for 60 min was higher than that after 30 min, and this decreased with the soaking temperature. There was no significant unpleasant flavor after soaking, and the volatile compound profile between soaked and unsoaked brown rice was similar. Neither soaking temperature nor time had any significant effect on the phytochemical contents (phenolic compounds, α-tocopherol and γ-oryzanol) or antioxidant capacity of cooked brown rice, whereas γ-aminobutyric acid content was effectively preserved within a certain soaking temperature range. Textural properties can be effectively controlled by soaking temperature and time, and nutritional properties remain stable when soaking at 40-70 °C for 30-60 min.
Collapse
|
17
|
Tian S, Wei Y, Chen Z. Effect of mixture design approach on nutritional characteristics and sensory evaluation of steamed bread added rice flour. Front Nutr 2022; 9:989090. [PMID: 36438756 PMCID: PMC9691985 DOI: 10.3389/fnut.2022.989090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
This study was designed to evaluate the effects of different rice nutrient compounds on steamed bread's nutritional characteristics and sensory evaluation. The mixture design approach was used to research the interactions between different rice flours and wheat flours on the sensory evaluation of steamed bread. The arginine content of different rice flour (long-grained rice, polished round-grained rice, and black rice) was higher at 44.19, 21.74, and 34.78% than that of the common wheat, respectively. When the added amount of mixed rice flours exceeds 15%, the steamed bread gradually reduces its elasticity, and sensory score, and has a smaller specific volume. Rice is a widely consumed grain product, which provides energy and nutrients for more than half of humanity, especially in Asia. Different rice varieties have received increased attention from researchers for their high bioactive substances and other health benefits. The results of the current study provide a theoretical basis for the nutritional steamed bread and noodle industries to use different rice flour as an ingredient for enhancing or to improving the nutritional value of flour products.
Collapse
Affiliation(s)
- Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | |
Collapse
|
18
|
Xia C, Yang K, Zhu Y, Liu T, Chen J, Deng J, Zhu B, Shi Z, Xiang Z. Distribution of free and bound phenolic compounds, β-glucan, and araboxylan in fractions of milled hulless barley. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Lu WC, Cheng YT, Chan YJ, Li PH. Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Front Nutr 2022; 9:1027800. [PMID: 36337666 PMCID: PMC9633999 DOI: 10.3389/fnut.2022.1027800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate the physicochemical composition, textural parameters, and chemical constituent of flaky rolls incorporated with different proportions of black rice flour. According to farinographic characteristics, the addition of black rice flour could reduce the stability and increase the dough development time and water absorption (%). While for the extensographic properties, addition of black rice flour resulted in significantly different maximum resistance to extension (BU) and extensibility (cm) vs. the control. With the addition of black rice flour in flaky rolls, the crude protein, total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF) were significantly improved. Glucose released was much lower with 10 and 20% black rice than the control and 5% black rice because of the higher black rice inclusion. With increasing black rice incorporation, total anthocyanin content, and antioxidant capacity was also improved. The content of asparagine, acrylamide, hydroxymethylfurfural (HMF), furfural, methylglyoxal, and glyoxal in flaky rolls was also increased. The proper content of black rice flour (5%) could significantly enhance the stability of the dough properties; control the final volume, texture, and appearance; and retain good protein and fiber composition, antioxidant capacity, and overall acceptance of the flaky roll.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi City, Taiwan
| | - Yu-Tsung Cheng
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| |
Collapse
|
20
|
Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes (Basel) 2022. [DOI: 10.3390/pr10102031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Assays of total antioxidant capacity (TAC) are popular in the analysis of food products. This review presents the most popular assays of TAC and their limitations, databases of TAC of food products, their application in clinical studies, and the effect of processing on the TAC of food. The importance of sample preparation for TAC assays and striking effects of digestion in the gastrointestinal tract on the TAC of food are discussed. Critical opinions on the validity of food TAC assays are considered. It is concluded that TAC methods can be useful as screening assays for food quality control and as low-cost, high-throughput tools used to discover potential antioxidant sources and follow changes in the content of antioxidants during food processing. However, effects revealed by TAC assays should be followed and explained using more specific methods.
Collapse
|
21
|
Guo H, Chariyakornkul A, Phannasorn W, Mahatheeranont S, Wongpoomchai R. Phytochemical Profile and Chemopreventive Properties of Cooked Glutinous Purple Rice Extracts Using Cell-Based Assays and Rat Model. Foods 2022; 11:foods11152333. [PMID: 35954099 PMCID: PMC9368549 DOI: 10.3390/foods11152333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Purple rice has gained attention for its health promoting potential due to a high content of bioactive phytochemicals. The heat generated during cooking alters the quality and quantity of nutrients and phytochemicals in food. This study aimed to investigate the phytochemical profile and chemopreventive properties of cooked glutinous purple rice using cell-based assays and a rat model. Purple rice was cooked in a rice cooker and was then further extracted with solvents to obtain dichloromethane and methanol extracts. The methanol extracts of glutinous purple rice contained great amounts of phenolics, flavonoids, and anthocyanins. Protocatechuic acid (2.26–5.40 mg/g extract) and cyanidin 3-glucoside (34.3–65.7 mg/g extract) were the major phenolic acid and anthocyanin contents, respectively. After cooking, the content of anthocyanins, γ-oryzanols, and phytosterols decreased, while the amount of some phenolic acid and tocol contents increased. Methanol extracts of glutinous purple rice inhibited reactive oxygen species production about 60% in PMA-treated peripheral blood mononuclear cells, reduced nitric oxide formation in LPS-induced RAW 264.7 cells (26–39% inhibition), and exhibited antimutagenicity against several mutagens using the Ames test, but dichloromethane extracts presented only mild anti-inflammatory activities. Although methanol extracts induced mild mutagenicity (mutagenic index 2.0–2.5), they did not induce micronucleated hepatocyte formation and certain hepatic CYP450 isozyme activities in rats. However, the mutagenicity of the methanol extract significantly declined after cooking. In summary, the methanol extract of the cooked glutinous purple rice might be a promising cancer chemopreventive fraction, which was neither genotoxic nor posing adverse effects on phytochemical–drug interaction in rats.
Collapse
Affiliation(s)
- Huina Guo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Functional Food Research Unit, Science and Technology Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
22
|
Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wang G, Lu M, Zhang S, Ji J, Li B, Li J, Zhang L, Yang D, Wang W, Guan C. Anthocyanin release and absorption properties of boiling pigmented rice using an in vitro digestion model. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Rocchetti G, Bocchi S, Senizza B, Giuberti G, Trevisan M, Lucini L. Metabolomic insights into the phytochemical profile of cooked pigmented rice varieties following in vitro gastrointestinal digestion. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Evolutionary Wheat Populations in High-Quality Breadmaking as a Tool to Preserve Agri-Food Biodiversity. Foods 2022; 11:foods11040495. [PMID: 35205972 PMCID: PMC8871435 DOI: 10.3390/foods11040495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plant biodiversity preservation is one of the most important priorities of today’s agriculture. Wheat (Triticum spp. L.) is widely cultivated worldwide, mostly under a conventional and monovarietal farming method, leading to progressive biodiversity erosion. On the contrary, the evolutionary population (EP) cultivation technique is characterized by mixing and sowing together as many wheat genotypes as possible to allow the crop to genetically adapt over the years in relation to specific pedoclimatic conditions. The objective of this study was to assess the nutritional, chemical and sensory qualities of three different breads obtained using different organic EP flours, produced following a traditional sourdough process and compared to a commercial wheat cultivar bread. Technological parameters, B-complex vitamins, microelements, dietary fibre and phenolic acids were determined in raw materials and final products. Flours obtained by EPs showed similar characteristics to the commercial wheat cultivar flour. However, significant differences on grain technological quality were found. The breads were comparable with respect to chemical and nutritional qualities. Overall, the sensory panellists rated the tasted breads positively assigning the highest score to those produced with EPs flours (6.75–7.02) as compared to commercial wheat cultivar-produced bread (cv. Bologna, 6.36).
Collapse
|
26
|
Blandino M, Bresciani A, Loscalzo M, Vanara F, Marti A. Extruded snacks from pigmented rice: Phenolic profile and physical properties. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Bai X, Zhang M, Zhang Y, Zhang J, Wang C, Zhang Y. Effect of steam, microwave, and hot‐air drying on antioxidant capacity and in vitro digestion properties of polyphenols in oat bran. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Bai
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Meili Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yuanyuan Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Jing Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Chen Wang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yakun Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| |
Collapse
|
28
|
Deng J, Xiang Z, Lin C, Zhu Y, Yang K, Liu T, Xia C, Chen J, Zhang W, Zhang Y, Zhu B. Identification and quantification of free, esterified, and insoluble-bound phenolics in grains of hulless barley varieties and their antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34709089 DOI: 10.1080/10408398.2021.1995697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.,Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kristel June D Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
30
|
Phenolic compounds in Swedish dried pulses: Characterization, retention and distribution during hydrothermal treatment processes. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Bagchi TB, Chattopadhyay K, Sivashankari M, Roy S, Kumar A, Biswas T, Pal S. Effect of different processing technologies on phenolic acids, flavonoids and other antioxidants content in pigmented rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
33
|
Hossain A, Jayadeep A. Infrared heating induced improvement of certain phytobioactives, their bioaccessible contents and bioaccessibility in maize. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Aalim H, Luo Z. Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice ( Oryza sativa L.) Caryopsis. Biomolecules 2021; 11:biom11030394. [PMID: 33800105 PMCID: PMC8001509 DOI: 10.3390/biom11030394] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.
Collapse
|
36
|
Miao L, Xu Y, Jia C, Zhang B, Niu M, Zhao S. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility. Carbohydr Polym 2021; 261:117841. [PMID: 33766339 DOI: 10.1016/j.carbpol.2021.117841] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/21/2023]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of rice starch were evaluated in this study. Then, the effects of anthocyanins on physicochemical properties of rice starch and on starch digestive enzymes (α-amylase and α-glucosidase) were investigated to understand the mechanism of the effects of anthocyanins on starch digestibility. Characterization of physicochemical properties of rice starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Besides, anthocyanins inhibited the activities of starch digestive enzymes by binding to their active sites, competing with the substrates and changing the secondary structure of the enzymes. The above stated changes of rice starch and starch digestive enzymes due to the presence of anthocyanins both contributed to retarding the digestibility of rice starch. This study could offer some theoretical guidance to the development of new type rice-based food with low glycemic index.
Collapse
Affiliation(s)
- Lange Miao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Binjia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| |
Collapse
|
37
|
Santos MCB, Barouh N, Durand E, Baréa B, Robert M, Micard V, Lullien-Pellerin V, Villeneuve P, Cameron LC, Ryan EP, Ferreira MSL, Bourlieu-Lacanal C. Metabolomics of Pigmented Rice Coproducts Applying Conventional or Deep Eutectic Extraction Solvents Reveal a Potential Antioxidant Source for Human Nutrition. Metabolites 2021; 11:metabo11020110. [PMID: 33671946 PMCID: PMC7919034 DOI: 10.3390/metabo11020110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Rice bran (RB) corresponds to the outer layers of whole grain rice and contains several phenolic compounds (PCs) that make it an interesting functional food ingredient. PC richness is enhanced in pigmented RB varieties and requires effective ways of extraction of these compounds. Therefore, we investigated conventional and deep eutectic solvents (DES) extraction methods to recover a wide array of PCs from red and black RB. The RB were extracted with ethanol/water (60:40, v/v) and two DES (choline chloride/1.2-propanediol/water, 1:1:1 and choline chloride/lactic acid, 1:10, mole ratios), based on Generally Recognized as Safe (GRAS) components. Besides the quantification of the most typical phenolic acids of cereals, nontargeted metabolomic approaches were applied to PCs profiling in the extracts. Globally, metabolomics revealed 89 PCs belonging to flavonoids (52%), phenolic acids (33%), other polyphenols (8%), lignans (6%) and stilbenes (1%) classes. All extracts, whatever the solvents, were highly concentrated in the main phenolic acids found in cereals (37–66 mg/100 g in black RB extracts vs. 6–20 mg/100 g in red RB extracts). However, the PC profile was highly dependent on the extraction solvent and specific PCs were extracted using the acidic DES. The PC-enriched DES extracts demonstrated interesting DPPH scavenging activity, which makes them candidates for novel antioxidant formulations.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Nathalie Barouh
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Erwann Durand
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Bruno Baréa
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Mélina Robert
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Valérie Micard
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | | | - Pierre Villeneuve
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Luiz Claudio Cameron
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mariana Simões Larraz Ferreira
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| | - Claire Bourlieu-Lacanal
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| |
Collapse
|
38
|
Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes. Food Res Int 2020; 141:109898. [PMID: 33641947 DOI: 10.1016/j.foodres.2020.109898] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Black rice is recognized for managing diabetes in Chinese folk medicine. Therefore, the present study investigates the effect of thermal treatments and the succeeding cooking on black rice physicochemical properties, phenolic composition, total antioxidant activity (TAA), enzymes and glycation inhibition in addition to starch digestibility. Thermal decomposition of anthocyanin and cyanidin-3-glucoside was evident across all processing methods and reflected in increasing levels of protocatechuic acid, while proanthocyanidins (TPAC) were susceptible to cooking. Roasting of grains sustained total phenolics (TPC), flavonoids (TFC), TPAC, and antilipase activity. Additionally, the combined effect of frying and cooking diminished TFC, TPAC, and α-glucosidase inhibition. The thermally treated grains showed pronounced activity against α-amylase, α-glucosidase, and glycation, whereas their cooked counterparts reduced the estimated glycemic index (eGI), and enhanced resistant starch (RS). Processed grains chrominance, TAA, and apparent amylose content (AAC) showed a significant correlation with phenolics. These findings are demonstrating that black rice processing is favorable for the dietary management of metabolic disorders such as diabetes and hyperlipidemia.
Collapse
|
39
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Vaz Patto MC, Bronze MDR. Hydroxycinnamic Acids and Their Derivatives in Broa, a Traditional Ethnic Maize Bread. Foods 2020; 9:foods9101471. [PMID: 33076483 PMCID: PMC7602622 DOI: 10.3390/foods9101471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Maize is one of the most interesting dietary sources of hydroxycinnamic acids, widely known for their beneficial health effects, namely antioxidant properties. This work aims to identify hydroxycinnamic acids and their derivatives in broa, a Portuguese traditional ethnic maize bread, and corresponding maize flours. Soluble and insoluble phenolic fractions of diverse maize flours and corresponding broas were prepared and analysed by HPLC-DAD-MS/MS (high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometry). Besides free hydroxycinnamic acids, mainly ferulic and p-coumaric acids, several structural isomers and stereoisomers of insoluble ferulic acid dehydrodimers (n = 18) and trimers (n = 11), were also identified. Hydroxycinnamic acid amides consisting of coumaroyl and feruloyl conjugates (n = 22) were present in both soluble and insoluble fractions of maize flours and breads, in different isomeric forms. A new compound was putatively identified as bis-N,N′-diferuloyl putrescine. Additionally, more complex and insoluble hydroxycinnamic acid amides, derived from ferulic acid dehydrodimers (n = 47) and trimers (n = 18), were also putatively identified for the first time, suggesting that hydroxycinnamic acid amides are also linked to maize cell walls. Since hydroxycinnamic derivatives were not only identified in maize flours, but also in broas, they can contribute to the antioxidant properties and beneficial health effects of maize-based foods.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Faculdade de Farmácia, Research Institute for Medicines, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria do Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Faculdade de Farmácia, Research Institute for Medicines, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Correspondence: ; Tel.: +351-217-946-400
| |
Collapse
|
40
|
Ge X, Jing L, Zhao K, Su C, Zhang B, Zhang Q, Han L, Yu X, Li W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem 2020; 335:127655. [PMID: 32731125 DOI: 10.1016/j.foodchem.2020.127655] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
In the present study, the profile of phenolic compounds in colored (white, yellow, black and blue) naked barley was detected and their content and antioxidant abilities were investigated. The results showed that there were 156 phenolic substances identified, including monophenol, phenolic acids, flavonoids and other polyphenols. The black sample had the most types of phenolic. The content of phenolic varies depending on color of naked barley and the highest values of total phenolic acid and total flavonoids were observed in black and white samples. Furthermore, the strongest ferric reducing antioxidant power and the free radical scavenging ability of DPPH, ABTS, and superoxide anion showed in white, white, yellow and black naked barley. While white and yellow samples had the strongest scavenging ability of hydroxyl radical. There was significant correlation between phenolic components and anti-oxidation. This study suggests that colored naked barley grains are rich in phenolic compounds with antioxidant capacity.
Collapse
Affiliation(s)
- Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Luzhen Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kun Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunyan Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lihong Han
- CollaborativeInnovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
41
|
Impact of Cooking on Bioactive Compounds and Antioxidant Activity of Pigmented Rice Cultivars. Foods 2020; 9:foods9080967. [PMID: 32707763 PMCID: PMC7466332 DOI: 10.3390/foods9080967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Pigmented rice cultivars, namely Venere and Artemide, are a source of bioactive molecules, in particular phenolics, including anthocyanins, exerting a positive effect on cardiovascular systems thanks also to their antioxidant capacity. This study aimed to determine the total phenol index (TPI), total flavonoids (TF), total anthocyanins (TA) and in vitro antioxidant capacity in 12 batches of Venere cultivar and two batches of Artemide cultivar. The rice was cooked using different methods (boiling, microwave, pressure cooker, water bath, rice cooker) with the purpose to individuate the procedure limiting the loss of bioactive compounds. TPI, TF and TA were spectrophotometrically determined in both raw and cooked rice samples. Rice samples of Artemide cultivars were richer in TPI (17.7-18.8 vs. 8.2-11.9 g gallic acid/kg in Venere rice), TF (13.1 vs. 5.0-7.1 g catechin/kg rice for Venere rice) and TA (3.2-3.4 vs. 1.8-2.9 g Cy-3glc/kg for Venere rice) in comparison to those of Venere cultivar; as well, they showed higher antioxidant capacity (46.6-47.8 vs. 14.4-31.9 mM Trolox/kg for Venere rice). Among the investigated cooking methods, the rice cooker and the water bath led to lower and comparable losses of phenolics. Interestingly, the cooking water remaining after cooking with the rice cooker was rich in phenolics. The consumption of a portion of rice (100 g) cooked with the rice cooker with its own cooking water can supply 240 mg catechin and 711 mg cyanidin 3-O-glucoside for Venere rice and 545 mg catechin and 614 mg cyanidin 3-O-glucoside for Artemide rice, with a potential positive effect on health.
Collapse
|
42
|
Lang GH, Kringel DH, Acunha TDS, Ferreira CD, Dias ÁRG, Zavareze EDR, de Oliveira M. Cake of brown, black and red rice: Influence of transglutaminase on technological properties, in vitro starch digestibility and phenolic compounds. Food Chem 2020; 318:126480. [DOI: 10.1016/j.foodchem.2020.126480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/16/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
|
43
|
Verma DK, Srivastav PP. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Thuengtung S, Ogawa Y. Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Sci Nutr 2020; 8:965-972. [PMID: 32148805 PMCID: PMC7020258 DOI: 10.1002/fsn3.1377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023] Open
Abstract
The impact of two different cooking processes (microwave and steaming) on cooked rice quality (i.e., texture), and changes in the bioactive compounds (total phenolic content [TPC] and total anthocyanin content [TAC]) and antioxidant activities (DPPH and FRAP assays) of black and red (nonwaxy) and purple (waxy) pigmented rice were investigated. No significant difference in the firmness between microwave-cooked rice and steam-cooked rice was found, except for cooked purple rice. However, microwave cooking promoted an increase in the cooked rice adhesiveness, which approximately higher 2- ~ 3-fold than that of steam cooking with varying among rice cultivars. Microwave cooking also exhibited significantly higher TPC (1.2- ~ 2.0-fold), TAC (2.0- ~ 3.2-fold), DPPH (1.3- ~ 2.5-fold), and FRAP (1.5- ~ 2.4-fold) than steam cooking for black and purple rice cultivars. There was a strong positive correlation among these bioactive compounds and the antioxidant activities (p < .01). Our study indicated that the TPC, TAC, DPPH, and FRAP of all rice examined were remarkably decreased after cooking, and the extent of the decrease depended on the rice cultivar and cooking method.
Collapse
Affiliation(s)
| | - Yukiharu Ogawa
- Graduate School of HorticultureChiba UniversityMatsudoJapan
| |
Collapse
|
45
|
Yuliana ND, Akhbar MA. Chemical and physical evaluation, antioxidant and digestibility profiles of white and pigmented rice from different areas of Indonesia. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.23818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract Black rice and red rice are often claimed to have more health benefits than white rice. They have been reported to have greater antioxidant activity and lower digestibility than white rice, functional properties which are important to prevent the metabolic disorders related to diseases such as diabetes. However, rice grown in different areas or subjected to different processing has shown different physical, chemical and functional properties. Thus the objectives of this study were to determine the physical properties (hardness, colour and gelatinization profile), chemical properties (proximate composition, total phenolic and flavonoid contents, antioxidant capacity), and the in vitro digestibility of Solok black rice (SBR), Solok red rice (SRR), Tangerang black rice (TBR), Cianjur red rice (CRR) and Cianjur white rice (CWR) cultivated in different areas in Indonesia. The results revealed that rice cultivated in different areas showed different physical characteristics and chemical compositions. The In vitro analysis of the digestibility of the starch with α-amylase showed that pigmented rice was less digestible (56.10% to 83.43%) than white rice (87.35%). A normal cooking method commonly used in society was found to significantly reduce the total phenolic content, flavonoids and antioxidant capacity of the rice.
Collapse
|
46
|
Joo SH, Hahn C, Lim HK, Yoon KD, Yoon SH, Lee CU. An Exploration of the Oryza sativa L. Cyanidin-3-glucoside on the Cognitive Function in Older Adults with Subjective Memory Impairment. Psychiatry Investig 2019; 16:759-765. [PMID: 31558689 PMCID: PMC6801312 DOI: 10.30773/pi.2019.06.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Cyanidin-3-glucoside (C3G), is a component of anthocyanin, have been considered to positively influence cognition and be beneficial for the prevention and treatment of dementia. We aimed to assess the safety and efficacy of cyanidin-3-glucoside-rich Oryza sativa L. (black rice) extract on cognitive function. METHODS A 12-weeks double-blind randomized, placebo controlled trial assessed safety and cognitive outcomes in participants with subjective memory impairment (n=48) following consumption of 6 black rice extract capsules or a placebo. Cognitive function was assessed using the ADAS-cog and the CERAD-K. Subjective memory impairment also assessed. Safety was assessed by hematologic blood test, urine analysis, and participant reports of adverse events. RESULTS There was significant improvement on subjective memory in intervention group. There was no statistically significant difference in objective cognitive outcomes following 12 weeks of consuming black rice extract. ADAS-cog scores, however, trended toward improvement in the intervention group compared to the placebo group. There was no adverse event. CONCLUSION Although significant improvement in objective cognitive function was not proved, we found that C3G-rich Oryza sativa L. extract improves subjective memory in this study. Therefore the results may be informative of the possible effectiveness of the C3G-rich Oryza sativa L. on cognitive function.
Collapse
Affiliation(s)
- Soo Hyun Joo
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Changtae Hahn
- Department of Psychiatry, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Agro-Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
47
|
Chen X, Zhang X, Wang B, Chen P, Xu Y, Du X. Investigation of water migration and its impacts on eating qualities of black rice during cooking process. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Melini V, Melini F. Asian grain-based food products and the European scheme for food protected designations of origin: A critical analysis. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Ito VC, Lacerda LG. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem 2019; 301:125304. [PMID: 31394335 DOI: 10.1016/j.foodchem.2019.125304] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Black rice is a variety of pigmented rice. It contains numerous nutritional and bioactive components, including essential amino acids, functional lipids, dietary fibre, vitamins, minerals, anthocyanins, phenolic compounds, γ-oryzanols, tocopherols, tocotrienols, phytosterols and phytic acid. There have been several studies of black rice due to its alleged beneficial health effects when consumed regularly. This review focuses on the historical aspects, chemical composition, and nutritional and functional properties of black rice. Furthermore, a discussion of the development of new foods and beverages with applications and processing technologies designed to improve their quality attributes. The nutritional value of black rice means that it has the potential to be used in the production of healthy foods and beverages, such as functional products and gluten-free cereals, thereby providing extra health benefits to consumers.
Collapse
Affiliation(s)
- Vivian Cristina Ito
- Graduate Program in Food Science and Technology - State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748 Uvaranas Campus, CEP 84.030-900, Ponta Grossa, PR, Brazil.
| | - Luiz Gustavo Lacerda
- Graduate Program in Food Science and Technology - State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748 Uvaranas Campus, CEP 84.030-900, Ponta Grossa, PR, Brazil
| |
Collapse
|
50
|
Effects of different cooking conditions on the anthocyanin content of a black rice (Oryza sativa L. ‘Violet Nori’). Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03337-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|