1
|
Paszczyk B, Czarnowska-Kujawska M, Klepacka J, Tońska E. Health-Promoting Ingredients in Goat's Milk and Fermented Goat's Milk Drinks. Animals (Basel) 2023; 13:907. [PMID: 36899767 PMCID: PMC10000185 DOI: 10.3390/ani13050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The present study aimed to determine the content of health-promoting compounds, and fatty acids, with particular emphasis on the content of cis9trans11 C18:2 (CLA) acid, selected minerals, folates in organic and commercial goat's milk and fermented goat's milk drinks. The analyzed milk and yoghurts had various contents of particular groups of fatty acids, CLA, minerals, and folates. Raw organic goat's milk had a significantly (p < 0.05) higher content of CLA (3.26 mg/g fat) compared to commercial milk (2.88 mg/g fat and 2.54 mg/g fat). Among the analyzed fermented goat's milk drinks, the highest CLA content (4.39 mg/g fat) was determined in commercial natural yoghurts, while the lowest one was in organic natural yoghurts (3.28 mg/g fat). The highest levels of calcium (1322.9-2324.4 µg/g), phosphorus (8148.1-11,309.9 µg/g), and copper (0.072-0.104 µg/g) were found in all commercial products and those of manganese (0.067-0.209 µg/g) in organic products. The contents of the other assayed elements (magnesium, sodium, potassium, iron, and zinc) did not depend on the production method, but only on the product type, i.e., the degree of goat's milk processing. The highest folate content in the analyzed milks was found in the organic sample (3.16 µg/100 g). Organic Greek yoghurts had a several times higher content of folates, reaching 9.18 µg/100 g, compared to the other analyzed fermented products.
Collapse
Affiliation(s)
| | | | - Joanna Klepacka
- Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland
| | | |
Collapse
|
3
|
Goharjoo ME, Edalatian Dovom MR, Shahidi F, Tabatabaei Yazdi F, Varidi MJ. Evaluation of the ginger and yogurt serum different levels on the lactic flora biodiversity in fermented carrot. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mohammad Ebrahim Goharjoo
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | | | - Fakhri Shahidi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Farideh Tabatabaei Yazdi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Mohammad Javad Varidi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| |
Collapse
|
4
|
Cervera-Mata A, Navarro-Alarcón M, Delgado G, Pastoriza S, Montilla-Gómez J, Llopis J, Sánchez-González C, Rufián-Henares JÁ. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chem 2019; 282:1-8. [PMID: 30711092 DOI: 10.1016/j.foodchem.2018.12.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 12/22/2018] [Indexed: 01/10/2023]
Abstract
The element concentration in lettuces grouped in 5 categories (baby variety, cultivated in agricultural soils with low or high percentages of spent coffee grounds-SCG, without SCG and with NPK) were measured. Lettuces cultivated in agricultural soils amended with SCG had significantly higher levels of several essential (V, Fe, Co, V, and probably Mn and Zn) and toxic elements (Al and probably As), without reaching their toxicological limits. Additionally, blocking of N uptake and therefore plant biomass, and probably Cd absorption from agricultural soil was observed. Organic farming with SCG ameliorates element concentrations in lettuces vs. NPK fertilization. The linear correlations among element uptake and the amendment of SCG could be related with their chelation by some SCG components, such as melanoidins and with the decrease in the soil pH. In conclusion, the addition of SCG produces lettuces with higher element content.
Collapse
Affiliation(s)
- Ana Cervera-Mata
- Departmento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| | - Miguel Navarro-Alarcón
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| | - Gabriel Delgado
- Departmento de Edafología y Química Agrícola, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Javier Montilla-Gómez
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Juan Llopis
- Departmento de Fisiología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Cristina Sánchez-González
- Departmento de Fisiología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Spain
| |
Collapse
|
5
|
Ranadheera CS, Evans CA, Baines SK, Balthazar CF, Cruz AG, Esmerino EA, Freitas MQ, Pimentel TC, Wittwer AE, Naumovski N, Graça JS, Sant'Ana AS, Ajlouni S, Vasiljevic T. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr Rev Food Sci Food Saf 2019; 18:867-882. [PMID: 33337004 DOI: 10.1111/1541-4337.12447] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Dairy foods, particularly those of bovine origin, are the predominant vehicles for delivery of probiotic bacteria. Caprine (goat) milk also possesses potential for successful delivery of probiotics, and despite its less appealing flavor in some products, the use of goat milk as a probiotic carrier has rapidly increased over the last decade. This review reports on the diversity, applicability, and potential of using probiotics to enhance the sensory properties of goat milk and goat milk-based products. A brief conceptual introduction to probiotic microorganisms is followed by an account of the unique physicochemical, nutritive, and beneficial aspects of goat milk, emphasizing its advantages as a probiotic carrier. The sensory properties of probiotic-enriched goat milk products are also discussed. The maintenance of probiotic viability and desirable physicochemical characteristics in goat milk products over shelf life is possible. However, the unpleasant sensory features of some goat milk products remain a major disadvantage that hinder its wider utilization. Nevertheless, certain measures such as fortification with selected probiotic strains, inclusion of fruit pulps and popular flavor compounds, and production of commonly consumed tailor-made goat milk-based products have potential to overcome this limitation. In particular, certain probiotic bacteria release volatile compounds as a result of their metabolism, which are known to play a major role in the aroma profile and sensory aspects of the final products.
Collapse
Affiliation(s)
- C S Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Evans
- School of Environmental and Life Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - S K Baines
- School of Health Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - Celso F Balthazar
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Adriano G Cruz
- Dept. of Food, Federal Inst. of Rio de Janeiro, 20270-021, Rio de Janeiro, RJ, Brazil
| | - Erick A Esmerino
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Mônica Q Freitas
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | | | - A E Wittwer
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - N Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, Univ. of Canberra, Canberra, ACT, 2601, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, 2601, Australia
| | - Juliana S Graça
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - S Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - T Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria Univ., Werribee, Victoria, 3030, Australia
| |
Collapse
|
6
|
Wan YJ, Shi HF, Xu R, Yin JY, Nie SP, Xiong T, Xie MY. Origin of Hypoglycemic Benefits of Probiotic-Fermented Carrot Pulp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:895-904. [PMID: 30608159 DOI: 10.1021/acs.jafc.8b06976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It has been found that probiotic-fermented carrot pulp has a beneficial effect in reducing blood glucose, more so than unfermented pulp. This paper explores the reason for this by looking at fermentation-induced changes in nutritional components and hypoglycemic effects of its polysaccharides. Micronutrient content showed minor changes, except for titratable acidity. Fat and protein decreased, while total carbohydrates increased. These polysaccharides are pectinic, and the number of total polysaccharides rose after fermentation. Scanning electron microscopy showed that the morphology changed from filamentous solid to spiral. The molecular weight of water-soluble polysaccharide (WSP) diminished after fermentation, while those of acid- and alkali-soluble polysaccharides increased. WSP had stronger hydroxyl radical scavenging activity in vitro, and WSP from probiotic-fermented carrot pulps showed better hypoglycemic effects than WSP from non-fermented carrot pulps in animal experiments. Thus, the fermentation-induced improvement in diabetes control from fermented carrot pulp probably arises from its WSP.
Collapse
Affiliation(s)
- Yu-Jun Wan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Hui-Fang Shi
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Rou Xu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|