1
|
Safwat S, Ishak RAH, Hathout RM, Mortada ND. Bioinspired caffeic acid-laden milk protein-based nanoparticles targeting folate receptors for breast cancer treatment. Ther Deliv 2025; 16:43-61. [PMID: 39589423 PMCID: PMC11703524 DOI: 10.1080/20415990.2024.2433938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
AIMS Breast cancer is the second leading cause of death worldwide. Conventional chemotherapeutic therapies lack the specific targeting effect toward the cancerous cells resulting in extensive side effects. Our current study endeavors to prepare novel bioinspired folic acid-functionalized caffeic acid (CA)-loaded casein nanoparticles (CS NPs) for curbing breast cancer. METHODS CA-CS NPs were prepared by simple coacervation method followed by lyophilization. Functionalized CS NPs were achieved using folic acid as the targeting moiety. Entire comparative characterization between unconjugated and conjugated NPs were implemented in terms of size, polydispersity index, surface charge, 1H-NMR, surface morphology, in-vitro drug release, sterilization, cytotoxicity, and animal studies. RESULTS Conjugated NPs attained PS = 157.23 ± 2.64 nm, PDI = 0.309 ± 0.199, ZP = -25.53 ± 2.31 mV and IC50 = 40 ± 2.9 µg/ml. Significant reduction in the biochemical marker levels of Carcino-embryonic antigen, carbohydrate antigen 15-3, and malondialdehyde while increased superoxide dismutase levels were achieved in the tumor -induced rats treated by the conjugated NPs. Histopathological examinations showed great improvement in the mammary and necrotic regions. CONCLUSION The present work paves the road of 'back to nature' approach in designing biocompatible bioinspired conjugated nanocarriers for the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A. H. Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nahed D. Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Huang Y, Lin T, Dadmohammadi Y, He Y, Khongkomolsakul W, Noack CE, Abbaspourrad A. Lactoferrin thermal stabilization and iron(II) fortification through ternary complex fabrication with succinylated sodium caseinate. Food Chem X 2024; 22:101498. [PMID: 38911915 PMCID: PMC11190486 DOI: 10.1016/j.fochx.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
A thermally stable co-delivery system for lactoferrin (LF) and iron(II) was developed to address iron deficiency anemia. Complexes were formed between LF, succinylated sodium caseinate (S.NaCas) and FeSO4 with high yield (∼85%). LF-S.NaCas-Fe complexes achieved loading capacities for iron(II) between 2.5 and 12 mg g-1and LF loading capacities between 250 and 690 mg g-1, depending upon initial Fe2+ concentrations and LF ratios. The LF-S.NaCas complex mixtures appeared as smooth cubic particles in SEM, and gradually aggregated to amorphous particles as th iron(II) concentration increased due to iron-facilitated cross-linking. The complexation significantly improved LF thermal stability and addressed the poor solubility of iron(II) under neutral pH. After thermal treatment (95 °C, 5 min), the rehydrated complexes retained 68%-90% LF, with <10% iron(II) release. Circular dichroism spectra showed the secondary structure of the complexed LF was well retained during thermal treatment. This thermally stable system showed great potential in LF thermal protection and iron(II) fortification.
Collapse
Affiliation(s)
- Yunan Huang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Yanhong He
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Claire Elizabeth Noack
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Cámara-Martos F. Influence of Dietary Fibre and Protein Fractions on the Trace Element Bioaccessibility of Turnip Tops ( Brassica rapa) Growing under Mediterranean Conditions. Foods 2024; 13:462. [PMID: 38338598 PMCID: PMC10855086 DOI: 10.3390/foods13030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The objective of this work was to study the influence of three dietary fibre fractions (pectin, gum arabic and cellulose) and three protein fractions (casein, lactalbumin and soy) on the trace element bioaccessibility (Fe, Mn, Ni, Se and Zn) of turnip tops (B. rapa subsp. Rapa) growing under Mediterranean conditions. Then, it aimed to promote the use of this vegetable not only for direct fresh consumption but also as a main ingredient in the development of food mixtures. The results showed that soluble fibre fractions, such as pectin and gum arabic, can enhance the bioaccessibility of trace elements, such as Fe, Mn, Se and Zn. This effect was not proved for cellulose (an insoluble fibre fraction), in which, at best, no bioaccessibility effect was observed. Regarding the protein fractions, with the exception of Se, caseins and lactalbumin had a neutral effect on improving the trace element bioaccessibility. This did not hold true for soy protein, in which a considerable improvement in the bioaccessibility of Fe, Mn, Se and Zn was determined.
Collapse
Affiliation(s)
- Fernando Cámara-Martos
- Departamento de Bromatología y Tecnología de Alimentos, Universidad de Córdoba, 14014 Cordoba, Spain
| |
Collapse
|
4
|
Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of iron milk proteinate as a novel food pursuant to Regulation (EU) 2015/2283 and bioavailability of iron from this source in the context of Directive 2002/46/EC. EFSA J 2022; 20:e07549. [PMID: 36177390 PMCID: PMC9478805 DOI: 10.2903/j.efsa.2022.7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on iron milk proteinate as a novel food (NF) pursuant to Regulation (EU) 2015/2283 and to address the bioavailability of iron from this source in the context of Directive 2002/46/EC. The NF is a complex of iron, casein and phosphate, which is produced from iron salts (i.e. ferric chloride or ferric sulfate), sodium caseinate and potassium orthophosphate. The NF is proposed by the applicant to be used as a source of iron, of which the NF contains 2-4%. The applicant intends to market the NF as an ingredient in a number of food categories; in food supplements, in total diet replacement for weight control and in foods for special medical purposes. The Panel considers that, taking into account the composition of the NF and the proposed conditions of use, consumption of the NF is not nutritionally disadvantageous. The studies provided for ADME and bioavailability indicate that iron from the NF is bioavailable. Overall, the evidence indicates that upon ingestion the NF undergoes digestion into small peptides to yield iron-bound caseinophosphopeptides that are normal constituents of the human diet, and that the iron from the NF does not bypass the homeostatic control of iron as a nutrient. The Panel concludes that the NF, iron milk proteinate, is safe under the proposed conditions of use. The Panel also concludes that the NF is a source from which iron is bioavailable.
Collapse
|
5
|
Csire G, Dupire F, Canabady-Rochelle L, Selmeczi K, Stefan L. Bio-Inspired Casein-Derived Antioxidant Peptides Exhibiting a Dual Direct/Indirect Mode of Action. Inorg Chem 2022; 61:1941-1948. [PMID: 35034436 DOI: 10.1021/acs.inorgchem.1c03085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antioxidant compounds are chemicals of primary importance, especially for their applications in nutrition and healthcare, thanks to their abilities to prevent oxidation processes and to limit and/or rebalance the oxidative stress, well-known for its impact on a wide variety of diseases. While several biomolecules are well-known for their antioxidant properties (e.g., ascorbic acid, carotenoids, phenolic derivatives), bio-sourced antioxidants have drawn considerable attention in the last decades, especially bioactive peptides, mainly obtained by the hydrolysis process. Antioxidant peptide sequences are mainly identified a posteriori, thanks to fastidious and time-consuming approaches and techniques, limiting the discovery of new efficient peptides. In this context and taking inspiration from nature, we report herein on a new series of three bio-inspired antioxidant peptides derived from the milk protein casein. These phosphopeptides, designed to chelate the redox-active iron(III) and forming highly soluble complexes up to pH 9, act both as indirect (i.e., inhibition of the metal redox activity) and direct (i.e., radical scavenging) antioxidants.
Collapse
Affiliation(s)
- Gizella Csire
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
6
|
Mattar G, Haddarah A, Haddad J, Pujola M, Sepulcre F. New approaches, bioavailability and the use of chelates as a promising method for food fortification. Food Chem 2021; 373:131394. [PMID: 34710689 DOI: 10.1016/j.foodchem.2021.131394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/24/2023]
Abstract
Food fortification has been used for many years to combat micronutrient deficiencies; the main challenge with food fortification is the combination of a bioavailable, affordable fortificant with the best (food) vehicle as a carrier to reach at-risk populations. This paper considers mineral deficiencies, especially iron, food fortification, target populations, and the use of chelates in food fortification, as well as different types of mineral-chelate complexes, advantages and limitations of previous trials, methods used for analysis of these complexes, bioavailability of minerals, factors influencing it, and methods particularly those in vitro for predicting outcomes. Three innovative methods (encapsulation, nanoparticulation, and chelation) were explored, which aim to overcome problems associated with conventional fortification, especially those affecting organoleptic properties and bioavailability; but often lead to the emergence of new limitations (for example instability, impracticality and high costs) requiring further research.
Collapse
Affiliation(s)
- Ghadeer Mattar
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860, Castelldefels, Barcelona, Spain; octoral School of Sciences and Technology, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Amira Haddarah
- octoral School of Sciences and Technology, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Joseph Haddad
- octoral School of Sciences and Technology, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Montserrat Pujola
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860, Castelldefels, Barcelona, Spain
| | - Franscesc Sepulcre
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Campus del Baix Llobregat, Carrer Esteve Terradas 8, 08860, Castelldefels, Barcelona, Spain.
| |
Collapse
|
7
|
Wu H, Guo T, Li S, Zhao Y, Zeng M. Orthophosphate affects iron(III) bioavailability via a mechanism involving stabilization and delivery of ferric hydroxide-phosphate nanoparticles. Food Chem 2021; 347:129081. [PMID: 33484956 DOI: 10.1016/j.foodchem.2021.129081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
Orthophosphate is endogenously present in gastrointestinal fluids and increasingly ingested as additives in processed foods. However, its effect and mechanism of action on iron bioavailability remains controversial and largely unknown. Here, at initial dissolved P/Fe ratios ((P/Fe)init) ≥ 0.6, orthophosphate completely prevents hydrolytic Fe(III) precipitation at neutral pH by mediating the formation of negatively-charged (≈-29 mV ζ-potential) ferric hydroxide-phosphate nanoparticles (Fe(OH)P-NPs) consisting of ≈3.8-nm-diameter monomers. Fe(OH)P-NPs have decreased size and Fe/P ratio with increasing (P/Fe)init. Acidic pH and balanced salts in intestinal fluid counteract orthophosphate-mediated Fe(III) solubilization by weakening colloidal stability of Fe(OH)P-NPs. Protein digests from egg white, whey, casein, and fish muscle aid Fe(III) solubilization in intestinal fluid by stabilizing Fe(OH)P-NPs with casein digest displaying the highest Fe(III)-solubilizing capacity, and in calcein-fluorescence-quenching assay, deliver nanoparticulate Fe(III) to polarized Caco-2 cells via divalent-metal-transporter-1-dependent or endocytic pathways. Overall, our study provides a new paradigm for understanding orthophosphate's role in iron bioavailability.
Collapse
Affiliation(s)
- Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Tengjiao Guo
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
8
|
Ekaette I, Saldaña MDA. The Effect of Rutin on Starch Hydrogels/Aerogels Made from Electrolyzed Barley Flour. STARCH-STARKE 2020. [DOI: 10.1002/star.202000099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Idaresit Ekaette
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta T6G 2P5 Canada
| | - Marleny D. A. Saldaña
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta T6G 2P5 Canada
| |
Collapse
|
9
|
Acevedo-Fani A, Dave A, Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front Chem 2020; 8:564021. [PMID: 33102443 PMCID: PMC7546791 DOI: 10.3389/fchem.2020.564021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North, New Zealand
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Impact of Ascorbic Acid on the In Vitro Iron Bioavailability of a Casein-Based Iron Fortificant. Nutrients 2020; 12:nu12092776. [PMID: 32932834 PMCID: PMC7551990 DOI: 10.3390/nu12092776] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
A new iron–casein complex (ICC) has been developed for iron (Fe) fortification of dairy matrices. The objective was to assess the impact of ascorbic acid (AA) on its in vitro bioavailability in comparison with ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP). A simulated digestion coupled with the Caco-2 cell culture model was used in parallel with solubility and dissociation tests. Under diluted acidic conditions, the ICC was as soluble as FeSO4, but only part of the iron was found to dissociate from the caseins, indicating that the ICC was an iron chelate. The Caco-2 cell results in milk showed that the addition of AA (2:1 molar ratio) enhanced iron uptake from the ICCs and FeSO4 to a similar level (p = 0.582; p = 0.852) and to a significantly higher level than that from FePP (p < 0.01). This translated into a relative in vitro bioavailability to FeSO4 of 36% for FePP and 114 and 104% for the two ICCs. Similar results were obtained from water. Increasing the AA to iron molar ratio (4:1 molar ratio) had no additional effect on the ICCs and FePP. However, ICC absorption remained similar to that from FeSO4 (p = 0.666; p = 0.113), and was still significantly higher than that from FePP (p < 0.003). Therefore, even though iron from ICC does not fully dissociate under gastric digestion, iron uptake suggested that ICCs are absorbed to a similar amount as FeSO4 in the presence of AA and thus provide an excellent source of iron.
Collapse
|
11
|
Henare SJ, Nur Singh N, Ellis AM, Moughan PJ, Thompson AK, Walczyk T. Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: a randomized trial with a crossover design in adult women. Am J Clin Nutr 2019; 110:1362-1369. [PMID: 31573611 PMCID: PMC6885464 DOI: 10.1093/ajcn/nqz237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/27/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A highly soluble iron-casein complex has been developed for food fortification purposes with the aim to provide high iron bioavailability. OBJECTIVE We aimed to determine the iron bioavailability of the iron-casein complex relative to that of ferrous sulfate (control) when given with whole milk in healthy young women. METHODS A randomized comparator-controlled trial with a crossover design was conducted using the erythrocyte incorporation dual stable isotope (57Fe, 58Fe) technique. Iron absorption from the iron-casein complex was compared with that from ferrous sulfate in 21 healthy women aged 20-38 y with normal iron status. RESULTS Fractional iron absorption (geometric mean; -SD, +SD) from the iron-casein complex (3.4%; 1.4%, 5.4%) and from ferrous sulfate (3.9%; 1.7%, 6.1%) were not statistically different (P > 0.05). The relative bioavailability value of the iron-casein complex to ferrous sulfate was determined to be 0.87 (-1 SD, +1 SD: -0.90, +2.64). CONCLUSIONS The iron-casein complex has iron bioavailability comparable to that of ferrous sulfate in healthy young women. This trial was registered at www.anzctr.org.au as ACTRN12615000690550.
Collapse
Affiliation(s)
- Sharon J Henare
- School of Health Sciences, Massey University, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand,Address correspondence to SJH (e-mail: )
| | - Nadia Nur Singh
- NutriTrace@NUS, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Ashling M Ellis
- Riddet Institute, Massey University, Palmerston North, New Zealand,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Abby K Thompson
- Riddet Institute, Massey University, Palmerston North, New Zealand,Food HQ, The Factory, Palmerston North, New Zealand
| | - Thomas Walczyk
- NutriTrace@NUS, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
12
|
Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization and in vitro evaluation. Int J Biol Macromol 2018; 121:6-12. [PMID: 30290258 DOI: 10.1016/j.ijbiomac.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
Abstract
Casein, a milk protein that self-assembles to form micelles in aqueous solution, can bind to a wide range of drugs (hydrophilic and hydrophobic). Herein, a low cost and facile method was reported to prepare casein nanoparticles loaded with an anticancer drug, doxorubicin (DOX). The particles were fabricated by adding an excess of Ca2+ ions which brings the soluble casein present in the solution into the micellar framework to form dense nanoparticles. The binding between the drug and the macromolecule was confirmed using fluorescence studies. Circular Dichroism (CD) shows that upon addition of excess Ca2+ the protein chains rearrange. The nanoparticles were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and dynamic light scattering (DLS). The release at pH 1 was higher than the physiological pH making this formulation potent for delivering the drug to the stomach via the oral route. The DOX attached with casein showed improved efficacy, i.e., better cytotoxicity against human pancreatic carcinoma cell line, PANC 1 cells as compared to the free drug of the same concentration, owing to higher cell uptake of the macromolecule.
Collapse
|
13
|
Zhang S, Jin X, Gu X, Chen C, Li H, Zhang Z, Sun J. The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein. J Appl Polym Sci 2018. [DOI: 10.1002/app.46599] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sheng Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Xiaodong Jin
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Xiaoyu Gu
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Chen Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Zongwen Zhang
- Xinyang Normal University; Xinyang City Henan Province 464000 China
| | - Jun Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
14
|
Mittal VA, Ellis A, Ye A, Edwards PJB, Singh H. The adsorption of orthophosphate onto casein-iron precipitates. Food Chem 2017; 239:17-22. [PMID: 28873555 DOI: 10.1016/j.foodchem.2017.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants.
Collapse
Affiliation(s)
- Vikas A Mittal
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand.
| | - Ashling Ellis
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand; Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand.
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand; Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand.
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand; Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand.
| |
Collapse
|