1
|
Bolaños-Mendez D, Fernández L, Uribe R, Cunalata-Castro A, González G, Rojas I, Chico-Proano A, Debut A, Celi LA, Espinoza-Montero P. Evaluation of a Non-Enzymatic Electrochemical Sensor Based on Co(OH) 2-Functionalized Carbon Nanotubes for Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7707. [PMID: 39686245 DOI: 10.3390/s24237707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH)2. The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH)2. This content formed a nanocomposite that improved the electrochemical characterizations of the electrode, including the electrochemical active surface area and capacitance, thus improving sensitivity to glucose. In the electrochemical characterization by cyclic voltammetry and chronoamperometry, the increase in catalytic activity by Co(OH)2 improved the stability and reproducibility of the glucose sensor without the use of enzymes, and its concentration range was between 50 and 700 μmol L-1. The sensor exhibited good linearity towards glucose with LOD value of 43.200 µmol L-1, which proved that the Co(OH)2-fCNTs composite is judicious for constructing cost effective and feasible sensor for glucose detection.
Collapse
Affiliation(s)
- Diego Bolaños-Mendez
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Rafael Uribe
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Alisson Cunalata-Castro
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Gema González
- Escuela de Ciencias Físicas y Nanotecnología, Universidad Yachay Tech, Urcuqui 100650, Ecuador
| | - Isamara Rojas
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Andrés Chico-Proano
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 170501, Ecuador
| | - Luis Alberto Celi
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | | |
Collapse
|
2
|
Katiyar D, Manish, Pal RS, Bansal P, Kumar A, Prakash S. Electrochemical Sensors for Detection of Phytomolecules: A Mechanistic Approach. Comb Chem High Throughput Screen 2024; 27:1887-1899. [PMID: 38279749 DOI: 10.2174/0113862073282883231218145941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
High demand and ongoing technological advancements have created a market for sensors that is both varied and rapidly evolving. Bioactive compounds are separated systematically to conduct an in-depth investigation, allowing for the profiling or fingerprinting of different Plantae kingdoms. The profiling field is significant in elucidating the complex interplay of plant traits, attributes, and environmental factors. Flexible technology advancements have enabled the creation of highly sensitive sensors for the non-destructive detection of molecules. Additionally, very specialized integrated systems that will allow multiplexed detection by integrating many hybrid approaches have been developed, but these systems are highly laborious and expensive. Electrochemical sensors, on the other hand, are a viable option because of their ability to accomplish exact compound detection via efficient signal transduction. However, this has not been investigated because of some obstacles to learning minimum metabolites' fundamentals and nonredox properties. This article reviews the electrochemical basis of plants, contrasting it with more conventional techniques and offering both positive and negative perspectives on the topic. Because few studies have been devoted to the concept of merging the domains, we've expanded the scope of this work by including pertinent non-phytochemical reports for better report comparison.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| | - Rashmi Saxena Pal
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Abhishek Kumar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Surya Prakash
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
3
|
Benjamin SR, de Lima F, Nascimento VAD, de Andrade GM, Oriá RB. Advancement in Paper-Based Electrochemical Biosensing and Emerging Diagnostic Methods. BIOSENSORS 2023; 13:689. [PMID: 37504088 PMCID: PMC10377443 DOI: 10.3390/bios13070689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The utilization of electrochemical detection techniques in paper-based analytical devices (PADs) has revolutionized point-of-care (POC) testing, enabling the precise and discerning measurement of a diverse array of (bio)chemical analytes. The application of electrochemical sensing and paper as a suitable substrate for point-of-care testing platforms has led to the emergence of electrochemical paper-based analytical devices (ePADs). The inherent advantages of these modified paper-based analytical devices have gained significant recognition in the POC field. In response, electrochemical biosensors assembled from paper-based materials have shown great promise for enhancing sensitivity and improving their range of use. In addition, paper-based platforms have numerous advantageous characteristics, including the self-sufficient conveyance of liquids, reduced resistance, minimal fabrication cost, and environmental friendliness. This study seeks to provide a concise summary of the present state and uses of ePADs with insightful commentary on their practicality in the field. Future developments in ePADs biosensors include developing novel paper-based systems, improving system performance with a novel biocatalyst, and combining the biosensor system with other cutting-edge tools such as machine learning and 3D printing.
Collapse
Affiliation(s)
- Stephen Rathinaraj Benjamin
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Fábio de Lima
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Geanne Matos de Andrade
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, Institute of Biomedicine, School of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| |
Collapse
|
4
|
Beyyavaş E, Aslanoglu M. Construction of an electrochemical sensing platform for the sensitive determination of chlorogenic acid in locally consumed bitter coffee known as Mirra. Food Chem 2023; 426:136600. [PMID: 37329796 DOI: 10.1016/j.foodchem.2023.136600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The demand for foods with high antioxidant capacity has increased and research on food analysis continues to increase. Chlorogenic acid is a potent antioxidant molecule and can exhibit various physiological activities. This study aims to analyze Mirra coffee for the determination of chlorogenic acid using an adsorptive voltammetric method. The method is based on the strong synergistic effect between carbon nanotubes and nanoparticles of gadolinium oxide and tungsten, providing sensitive determination of chlorogenic acid. The proposed method yielded a dynamic linear range of 2.5 × 10-9 ∼ 1.6 × 10-6 M with a detection limit of 1.08 × 10-9 M for chlorogenic acid. The amount of chlorogenic acid in Mirra coffee was found to be 46.1 ± 0.69 mg/L by the proposed electrochemical platform.
Collapse
Affiliation(s)
- Ebru Beyyavaş
- Department of Chemistry, Harran University, Sanliurfa 63510, Turkey
| | - Mehmet Aslanoglu
- Department of Chemistry, Harran University, Sanliurfa 63510, Turkey.
| |
Collapse
|
5
|
Stanzione I, Pennacchio A, Piscitelli A, Giardina P, Costa-Rama E, Fernández-Abedul MT. Functionalization of micropipette tips with hydrophobin-laccase chimera and application to the electrochemical determination of caffeic acid in tea samples. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants (Basel) 2023; 12:antiox12020318. [PMID: 36829877 PMCID: PMC9952757 DOI: 10.3390/antiox12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
This study evaluated the antioxidant properties and chemical composition of the seeds, pulp and peels of Ungurahua (Oenocarpus bataua) and Pasu (Gustavia macarenensis)-fruits, native to the Ecuadorian Amazon. The antioxidant capacity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cyclic voltammetry (antioxidant index 50 (AI50)) assays; differential pulse voltammetry was used to evaluate antioxidant power using the electrochemical index. The total phenolic content, as well as the yellow flavonoid and anthocyanin content, were quantified via spectrophotometry. In addition, the trans-resveratrol and ascorbic acid content were evaluated through high performance liquid chromatography (HPLC). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify secondary metabolites with possible therapeutic properties. Results showed that the Pasu peel and seed extracts had the highest antioxidant capacity, followed by the Ungurahua peel; these results were consistent for both spectroscopic and electrochemical assays. HPLC and UPLC-MS analysis suggest that Oenocarpus bataua and Gustavia macarenensis are important sources of beneficial bioactive compounds.
Collapse
|
7
|
de Mello e Silva GN, Batista Rodrigues ES, Lopes de Macêdo IY, Vicente Gil HP, Campos HM, Ghedini PC, Cardozo da Silva L, Batista EA, Lopes de Araújo G, Vaz BG, Pinto de Castro Ferreira TA, Oliveira do Couto R, de Souza Gil E. Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): An Amazon superfruit with in vitro neuroprotective properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Pigani L, Rioli C, Zanfrognini B, García-Guzmán JJ, Palacios-Santander JM, Cubillana-Aguilera LM. Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel-Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2022; 22:8448. [PMID: 36366146 PMCID: PMC9655352 DOI: 10.3390/s22218448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Reusable Sonogel-Carbon electrodes containing carbon black (SNGC-CB) have been used for the electrochemical analysis of caffeic acid (CA) in real matrices. Measurements were firstly performed in standard solutions, in which SNGC-CB electrodes allowed the electrochemical determination of CA with high sensitivity and low limit of detection, equal to 0.76 μM. The presence of CB nanostructures in the formulation led to improved performances with respect to pristine SNGC electrodes. Then, measurements were performed in four instant coffees of different brands. A comparison between the results obtained by electrochemical, chromatographic and spectroscopic methods showed that SBGC-CB electrodes represent a simple and economic tool for the rapid assessment of caffeic acid-related molecules in instant coffees.
Collapse
Affiliation(s)
- Laura Pigani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi, 103, 41125 Modena, Italy
| | - Cristina Rioli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi, 103, 41125 Modena, Italy
| | - Barbara Zanfrognini
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi, 103, 41125 Modena, Italy
| | - Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Spain
| | - José Maria Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar, University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain
| | - Laura María Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar, University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
9
|
Alexandre-Franco MF, Fernández-González C, Reguero-Padilla G, Cuerda-Correa EM. Olive-tree polyphenols and urban mining. A greener alternative for the recovery of valuable metals from scrap printed circuit boards. ENVIRONMENTAL RESEARCH 2022; 214:114112. [PMID: 36007571 DOI: 10.1016/j.envres.2022.114112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Recycling printed circuit boards (PCBs) is becoming a source of precious metals and an alternative to conventional mining. This phenomenon is now known as "urban mining." In this work, a polyphenols-rich plant extract has been obtained from olive-tree leaves, and its ability to contribute to reducing four metals, namely, Ag, Cu, Cr, and Sn, that are present in scrap PCBs has been studied. Three reductants (NaBH4, Fe°, and the olive-tree leaves extract) have been used to recover these valuable metals. An attempt has been made to minimize the concentration of the first two, replacing them with a natural, cheaper, and less toxic reductant. To achieve this goal, a computer-assisted factorial, composed, centered, orthogonal, and rotatable statistical design of experiments (FCCORD) has been used to build the experimental matrix to be carried out in the laboratory and, next, for the statistical treatment of the results. The results show that it is possible to achieve only a partial recovery of the four metals (silver, copper, chromium, and tin) from PCBs leachates by using sodium borohydride, iron, and the extract separately. In other words, none of these three reductants alone can completely remove any of the four metals in the leachate. Nevertheless, using the statistical design of experiments, the total recovery of the four metals has been achieved by combining the three reductants in the appropriate concentrations. Hence, polyphenols-rich plant extracts in general and olive-tree leaves extract in particular can be regarded as promising coadjuvants in the rising field of urban mining.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/n, 06006-Badajoz, Spain
| | - Carmen Fernández-González
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/n, 06006-Badajoz, Spain
| | - Gemma Reguero-Padilla
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/n, 06006-Badajoz, Spain
| | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas S/n, 06006-Badajoz, Spain.
| |
Collapse
|
10
|
Physicochemical Analysis of Cold Brew and Hot Brew Peaberry Coffee. Processes (Basel) 2022. [DOI: 10.3390/pr10101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee beans. However, failing to fertilize both ovules of one of the seeds or failure in endosperm development can cause only one of the seeds to develop, resulting in smaller, denser beans with a more domed shape. Peaberry coffees are said to be sweeter, lighter, and more flavorful since the peaberry beans receive all nutrients from the coffee cherry. Due to its exclusive nature, the chemical characteristic of peaberry coffee is not well understood. This study explores the acidities and antioxidant activity of peaberry coffee sourced from multiple regions. Total antioxidant capacity, total caffeoylquinic acid (CQA), total caffeine concentration, and pH levels were evaluated for peaberry coffee extracts prepared by cold and hot brewing methods. Little correlation between antioxidant activity and the concentrations of caffeine and CQA in peaberry beans was shown. Six methods were performed for the characterization of total antioxidant capacity including cyclic voltammetry, ABTS assay, and FRAP assay. Peaberry bean extract demonstrated higher average total caffeine concentrations compared to traditional coffee bean extracts.
Collapse
|
11
|
Electrochemical Profiling of Plants. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The profiling, or fingerprinting, of distinct varieties of the Plantae kingdom is based on the bioactive ingredients, which are systematically segregated to perform their detailed analysis. The secondary products portray a pivotal role in defining the ecophysiology of distinct plant species. There is a crucial role of the profiling domain in understanding the various features, characteristics, and conditions related to plants. Advancements in variable technologies have contributed to the development of highly specific sensors for the non-invasive detection of molecules. Furthermore, many hyphenated techniques have led to the development of highly specific integrated systems that allow multiplexed detection, such as high-performance liquid chromatography, gas chromatography, etc., which are quite cumbersome and un-economical. In contrast, electrochemical sensors are a promising alternative which are capable of performing the precise recognition of compounds due to efficient signal transduction. However, due to a few bottlenecks in understanding the principles and non-redox features of minimal metabolites, the area has not been explored. This review article provides an insight to the electrochemical basis of plants in comparison with other traditional approaches and with necessary positive and negative outlooks. Studies consisting of the idea of merging the fields are limited; hence, relevant non-phytochemical reports are included for a better comparison of reports to broaden the scope of this work.
Collapse
|
12
|
Kinyua Muthuri L, Nagy L, Nagy G. Evaluating the antioxidant activity of different species using a novel reagentless chronopotentiometric method. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.
Collapse
|
14
|
Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers-Cobalt Phthalocyanine-Laccase for the Detection of p-Coumaric Acid in Phytoproducts. Int J Mol Sci 2021; 22:ijms22179302. [PMID: 34502203 PMCID: PMC8431354 DOI: 10.3390/ijms22179302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor’s response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1–202.5 μM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4–6.4 μM and stood out by low LOD and LOQ values, i.e., 4.83 × 10−7 M and 1.61 × 10−6 M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method.
Collapse
|
15
|
Bento-Silva A, Duarte N, Mecha E, Belo M, Serra AT, Vaz Patto MC, Bronze MR. Broa, an Ethnic Maize Bread, as a Source of Phenolic Compounds. Antioxidants (Basel) 2021; 10:672. [PMID: 33925894 PMCID: PMC8145897 DOI: 10.3390/antiox10050672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022] Open
Abstract
Maize is an important source of phenolic compounds, specially hydroxycinnamic acids, which are widely known for their antioxidant activity and associated health benefits. However, these effects depend on their bioaccessibility, which is influenced by the different techniques used for food processing. Several traditional products can be obtained from maize and, in Portugal, it is used for the production of an ethnic bread called broa. In order to evaluate the effect of processing on maize phenolic composition, one commercial hybrid and five open-pollinated maize flours and broas were studied. The total phenolic content and antioxidant activity were evaluated by the Folin-Ciocalteu and ORAC assays, respectively. The major phenolics, namely ferulic and p-coumaric acids (in their soluble-free, soluble-conjugated and insoluble forms), insoluble ferulic acid dimers and soluble hydroxycinnamic acid amides were quantitated. Results show that the total phenolic content, antioxidant activity and hydroxycinnamic acids resisted traditional processing conditions used in the production of broas. The content in soluble-free phenolics increased after processing, meaning that their bioaccessibility improved. Portuguese traditional broas, produced with open-pollinated maize varieties, can be considered an interesting dietary source of antioxidant compounds due to the higher content in hydroxycinnamic acids and derivatives.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- FFULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (E.M.); (M.B.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal;
| |
Collapse
|
16
|
Abstract
Antioxidants are compounds that prevent or delay the oxidation process, acting at a much smaller concentration, in comparison to that of the preserved substrate. Primary antioxidants act as scavenging or chain breaking antioxidants, delaying initiation or interrupting propagation step. Secondary antioxidants quench singlet oxygen, decompose peroxides in non-radical species, chelate prooxidative metal ions, inhibit oxidative enzymes. Based on antioxidants’ reactivity, four lines of defense have been described: Preventative antioxidants, radical scavengers, repair antioxidants, and antioxidants relying on adaptation mechanisms. Carbon-based electrodes are largely employed in electroanalysis given their special features, that encompass large surface area, high electroconductivity, chemical stability, nanostructuring possibilities, facility of manufacturing at low cost, and easiness of surface modification. Largely employed methods encompass voltammetry, amperometry, biamperometry and potentiometry. Determination of key endogenous and exogenous individual antioxidants, as well as of antioxidant activity and its main contributors relied on unmodified or modified carbon electrodes, whose analytical parameters are detailed. Recent advances based on modifications with carbon-nanotubes or the use of hybrid nanocomposite materials are described. Large effective surface area, increased mass transport, electrocatalytical effects, improved sensitivity, and low detection limits in the nanomolar range were reported, with applications validated in complex media such as foodstuffs and biological samples.
Collapse
|
17
|
Haque MA, Morozova K, Ferrentino G, Scampicchio M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202060600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Md Azizul Haque
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
- Department of Food Technology and Nutritional Science (FTNS) Mawlana Bhashani Science and Technology University (MBSTU) Tangail 1902 Bangladesh
| | - Ksenia Morozova
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| |
Collapse
|
18
|
Xie A, Wang H, Zhu J, Chang J, Gu L, Liu C, Yang Y, Ren Y, Luo S. A caffeic acid sensor based on CuZnO /MWCNTs composite modified electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hu X, Zhang L, Xia H, Peng M, Zhou Y, Xu Z, Peng X. Dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the determination of phenolic compounds in environmental water samples. J Sep Sci 2021; 44:1510-1520. [PMID: 33492709 DOI: 10.1002/jssc.202001055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Dispersive liquid-liquid microextraction has garnered increasing attention in sample preparation due to its rapid and efficient extraction process. In this study, a new terpineol-based hydrophobic deep eutectic solvent was firstly synthesized by mixing α-terpineol with 1-octanoic acid, and then applied to analysis of phenols from water samples by dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and diode array detection. Infrared spectroscopy indicated that hydrogen bonding was responsible for the formation of deep eutectic solvent between α-terpineol and 1-octanoic acid. After optimization of several parameters, such as the type and volume of deep eutectic solvent and the disperser, pH and ionic strength of sample solution, the developed method exhibited excellent extraction performance to the phenols with the enrichment factors from 27 to 32. Good linearity was acquired ranging from 5 to 5000 μg/L, and detection of limits of the proposed method for the phenols ranged from 0.15 to 0.38 μg/L. The recoveries measured by spiked samples at three concentration levels ranged from 81.6 to 99.3%, and precision was found with intra- and inter-day relative standard deviations less than 8.7 and 9.2%, respectively. Finally, the proposed method was successfully applied to the determination of the phenols in environmental water samples.
Collapse
Affiliation(s)
- Xizhou Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China.,School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Luyun Zhang
- College of Basic Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Hong Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Maoming Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| |
Collapse
|
20
|
Salting-Out Assisted Liquid-Liquid Extraction Coupled to Dispersive Liquid-Liquid Microextraction for the Determination of Bisphenol A and Six Analogs (B, E, F, S, BADGE, BFDGE) in Canned Coffee Drinks by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01879-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Sun C, Nile SH, Zhang Y, Qin L, El-Seedi HR, Daglia M, Kai G. Novel Insight into Utilization of Flavonoid Glycosides and Biological Properties of Saffron ( Crocus sativus L.) Flower Byproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10685-10696. [PMID: 32924469 DOI: 10.1021/acs.jafc.0c04076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Saffron (Crocus sativus L.) byproducts are considered as a cheap source of bioactive polyphenolics endowed with potential antioxidant effects. The saffron biowaste is utilized for extraction of flavonoid glycosides and their potential biological properties. The total amount of polyphenolics and polysaccharides was found to be higher in the tepal than in the stamen. The bioactive compounds quercetin-3-O-sophoroside (Q-3-sop) and kaempferol-3-O-sophoroside (K-3-sop) were analyzed using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA) and identified by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). The antioxidant effects were studied using 2,2 diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), ferric ion reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC); Q-3-sop showed stronger antioxidant effects compared to K-3-sop, crocin-I, and crocin-II. Furthermore, Q-3-sop also inhibited cell apoptosis caused by H2O2 by reducing the levels of cellular reactive oxygen species (ROS). In terms of cytogenetic effects, Q-3-sop revealed no cytogenic effects on onion root meristem cells but chromosomal aberration was observed at the highest dose (200 ppm). Thus, saffron byproducts and its flavonoids could be utilized as natural antioxidant agents with no cytogenetic effects.
Collapse
Affiliation(s)
- Chengtao Sun
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yiting Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Luping Qin
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
22
|
Chiorcea-Paquim AM, Enache TA, De Souza Gil E, Oliveira-Brett AM. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr Rev Food Sci Food Saf 2020; 19:1680-1726. [PMID: 33337087 DOI: 10.1111/1541-4337.12566] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022]
Abstract
Natural phenolic compounds are abundant in the vegetable kingdom, occurring mainly as secondary metabolites in a wide variety of chemical structures. Around 10,000 different plant phenolic derivatives have been isolated and identified. This review provides an exhaustive overview concerning the electron transfer reactions in natural polyphenols, from the point of view of their in vitro antioxidant and/or pro-oxidant mode of action, as well as their identification in highly complex matrixes, for example, fruits, vegetables, wine, food supplements, relevant for food quality control, nutrition, and health research. The accurate assessment of polyphenols' redox behavior is essential, and the application of the electrochemical methods in routine quality control of natural products and foods, where the polyphenols antioxidant activity needs to be quantified in vitro, is of the utmost importance. The phenol moiety oxidation pathways and the effect of substituents and experimental conditions on their electrochemical behavior will be reviewed. The fundamental principles concerning the redox behavior of natural polyphenols, specifically flavonoids and other benzopyran derivatives, phenolic acids and ester derivatives, quinones, lignins, tannins, lignans, essential oils, stilbenes, curcuminoids, and chalcones, will be described. The final sections will focus on the electroanalysis of phenolic antioxidants in natural products and the electroanalytical evaluation of in vitro total antioxidant capacity.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Eric De Souza Gil
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal.,Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, Goiânia, Goiás, Brasil
| | | |
Collapse
|
23
|
Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caffeic acid may be accurately detected in food supplements by using cyclic voltammetry and carbon screen-printed sensors modified with various nanomaterials. Sensor characterization by cyclic voltammetry in reference solutions has shown that carbon nanotubes or carbon nanofibers significantly improve the sensor response in terms of sensitivity and reversibility. Screen-printed sensors were then used in order to study the electrochemical behavior of caffeic acid in aqueous solution at pH 3.6. A redox process was observed in all cases, which corresponds to a reversible redox process involving the transfer of two electrons and two protons. The role of nanomaterials in the increment of sensor performance characteristics was evidenced. Calibration curves were developed for each sensor, and the detection (LOD) and quantification (LOQ) limits were calculated. Low LOD and LOQ values were obtained, in the 10−7 to 10−9 M range, which demonstrates that the method is feasible for quantification of caffeic acid in real samples. Caffeic acid was quantitatively determined in three food supplements using the most sensitive sensor, namely the carbon nanofiber sensor. The Folin–Ciocalteu spectrophotometric assay was used to validate the results obtained with the sensor. The results obtained by using the voltammetric method were consistent with those obtained by using the spectrophotometric method, with no statistically significant differences between the results obtained at 95% confidence level.
Collapse
|
24
|
Teker T, Aslanoglu M. A novel voltammetric sensing platform based on carbon nanotubes-niobium nanoparticles for the determination of chlorogenic acid. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
25
|
Interaction between Amorphous Zirconia Nanoparticles and Graphite: Electrochemical Applications for Gallic Acid Sensing Using Carbon Paste Electrodes in Wine. NANOMATERIALS 2020; 10:nano10030537. [PMID: 32192127 PMCID: PMC7153396 DOI: 10.3390/nano10030537] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
Amorphous zirconium oxide nanoparticles (ZrO2) have been used for the first time, to modify carbon paste electrode (CPE) and used as a sensor for the electrochemical determination of gallic acid (GA). The voltammetric results of the ZrO2 nanoparticles-modified CPE showed efficient electrochemical oxidation of gallic acid, with a significantly enhanced peak current from 261 µA ± 3 to about 451 µA ± 1. The modified surface of the electrode and the synthesised zirconia nanoparticles were characterised by scanning electrode microscopy (SEM), Energy-dispersive x-ray spectroscopy (EDXA), X-ray powdered diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Meanwhile, the electrochemical behaviour of GA on the surface of the modified electrode was studied using differential pulse voltammetry (DPV), showing a sensitivity of the electrode for GA determination, within a concentration range of 1 × 10−6 mol L−1 to 1 × 10−3 mol L−1 with a correlation coefficient of R2 of 0.9945 and a limit of detection of 1.24 × 10−7 mol L−1 (S/N = 3). The proposed ZrO2 nanoparticles modified CPE was successfully used for the determination of GA in red and white wine, with concentrations of 0.103 mmol L−1 and 0.049 mmol L−1 respectively.
Collapse
|
26
|
|
27
|
Alves CB, Rodrigues ESB, Thomaz DV, Aguiar Filho AMD, Gil EDS, Couto ROD. Correlation of polyphenol content and antioxidant capacity of selected teas and tisanes from Brazilian market. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.03620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Abstract In this work, it was evaluated the phenolic content, redox behavior and antioxidant capacity of several selected teas and tisanes from Brazilian market. The samples were classified as simple (single herb) or composed (blend of two or more herbs). In addition, complementary multivariate statistical approaches were used to identify the correlation and interdependence between the amount of major phytocomponents, such as phenols and flavonoids, as well as the antioxidant activity of the products. Results showed that the total polyphenol and total flavonoid concentrations are correlated to thermodynamic feasibility of reactive oxygen species reduction. The statistical modeling differentiated the results datasets in principal components, whose flavonoid content presented itself as the main parameter to segregate data between simple and composed products. On the other hand, the whole polyphenol content, in both teas and tisanes, was more relevant regarding their antioxidant capacity than the flavonoids content. Considering that the manufactures do not display the real amount of each herb in the labels of the composed products, it was not possible to confirm whether the blends of several species lead to a substantial enhancement on their antioxidant capacity. Furthermore, the redox profile and overall polyphenol content suggest that the consumption of green and black teas as well as traditional yerba mate may be worthwhile in preventing ailments associated with oxidative stress in Brazilian population. Notwithstanding, further clinical studies are required to validate this hypothesis.
Collapse
|
28
|
AYVAZ MÇOL. Phenolic compounds profile, neuroprotective effect and antioxidant potential of a commercial Turkish coffee. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e190097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective The purpose of this study is to determine the phenolic and flavonoid contents, and antioxidant activities and neuroprotective effects of powdered coffee sample of a commercial coffee brand originated from Sivas, Turkey. Methods Total phenolic, flavonoid and antioxidant contents, enzymatic and non-enzymatic antioxidative activities based on 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, metal chelating potential, reducing power, superoxide dismutase and catalase activity tests and lipid peroxidation inhibition potentials of the ethanolic and aqueous extracts of the coffee sample were assayed using the commonly preferred spectrophotometric methods. Furthermore the extracts’ cholinesterase and tyrosinase inhibition potentials were evaluated. Phenolic profiles of the coffee sample were investigated using high performance liquid chromatography. Results Catechin was the most frequently detected phenolic acid. In addition, it was demonstrated that the water extract has a significant impact when compared with standard antioxidants. While the SC50 (sufficient concentration to obtain 50% of a maximum scavenging capacity) value for the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl free radical was calculated as being 0.08mg/mL for water extract, the amount of chelating agents with half Fe2+ ions in the medium was found to be 0.271mg/mL. Additionally, it was shown that 0.1mg/mL concentration of both extracts prevents lipid peroxidation by 8%. Compared with standard drugs, inhibition potentials of cholinesterase and tyrosinase enzymes were considered as moderately acceptable in these samples. Conclusion Besides the extracts’ enzymatic antioxidant activity, their inhibition potential on cholinesterase and tyrosinase enzymes – which are important clinical enzymes – reveal that this natural source can be used as a valuable resource in different fields, especially in medicine.
Collapse
|
29
|
Teker T, Hasan AMH, Aslanoglu M. A Boron Doped Diamond Electrode Modified with Nano‐carbon Black for the Sensitive Electrochemical Determination of Chlorogenic Acid. ELECTROANAL 2019. [DOI: 10.1002/elan.201900305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tugçe Teker
- Department of ChemistryHarran University Şanlıurfa 63510 Turkey
| | | | | |
Collapse
|
30
|
Başaran B, Aydın F, Kaban G. The determination of acrylamide content in brewed coffee samples marketed in Turkey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:280-287. [PMID: 31697219 DOI: 10.1080/19440049.2019.1685133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Coffee is a beverage that is widely enjoyed and consumed by all segments of society. As well as having a rich content, it contains acrylamide, defined as 'a probable carcinogen for humans' by the International Agency for Research on Cancer. The aim of this study was both to determine the acrylamide levels of ready-to-drink coffees from various coffee brands marketed in Turkey and to offer a resource for risk assessment and acrylamide exposure studies in this area. For this purpose, a total of 41 coffee samples (22 instant coffee, 7 traditional Turkish coffee and 12 ready-to-drink (brewed) coffee) obtained from local markets and coffee shops were analysed in terms of acrylamide content. LC-MS/MS was used to detect the acrylamide content in the samples. The levels of acrylamide ranged from 16.5 to 79.5 ng mL-1 in instant coffees, from 5.9 to 38.8 ng mL-1 in ready-to-drink (brewed) coffees and from 5.3-54.8 ng mL-1 in Turkish coffee and other traditional coffees. The study showed that instant coffee includes the highest level of acrylamide among the other types. In addition, it was found that terebinth coffee, a form of traditional Turkish coffee, had a high content of acrylamide.
Collapse
Affiliation(s)
- Burhan Başaran
- Travel, Tourism and Recreation Department, Ardeşen Vocational School, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ferid Aydın
- Department of Food Engineering, Ataturk University Faculty of Agriculture, Erzurum, Turkey
| | - Güzin Kaban
- Department of Food Engineering, Ataturk University Faculty of Agriculture, Erzurum, Turkey
| |
Collapse
|
31
|
Kang DE, Lee HU, Davaatseren M, Chung MS. Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees. Food Sci Biotechnol 2019; 29:141-148. [PMID: 31976136 DOI: 10.1007/s10068-019-00644-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate the formation of furan and acrylamide and to compare antioxidant capacities and volatile compounds in cold or hot brewed coffees. Cold brews were prepared at 5 °C and 20 °C for 12 h. using steeping and dripping, and hot brews were prepared at 80 °C and 95 °C for 5 min. using the pour-over method. Furan contents of cold steeping at 5 °C and hot brewed at 80 °C showed the higher levels significantly (p < 0.05), which were 17.0 ± 0.5 and 10.6 ± 0.1 ng/mL, respectively. However, acrylamide contents in cold steeping at 5 °C and hot brew at 80 °C showed lower levels, which were 4.1 ± 0.4 and 3.5 ± 0.1 ng/mL respectively. Cold brews at 20 °C showed the highest levels of antioxidant activities while hot brews showed similar levels with cold brews at 5 °C. This study confirms that levels of different beneficial and hazardous chemical compounds could be manipulated by adjusting the coffee extraction conditions.
Collapse
Affiliation(s)
- Da-Eun Kang
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-Si, Gyeonggi-do 17546 Korea
| | - Haeng-Un Lee
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-Si, Gyeonggi-do 17546 Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-Si, Gyeonggi-do 17546 Korea
| | - Myung-Sub Chung
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-Si, Gyeonggi-do 17546 Korea
| |
Collapse
|
32
|
Chung C, Koo CK, Sher A, Fu JTR, Rousset P, McClements DJ. Modulation of caseinate-stabilized model oil-in-water emulsions with soy lecithin. Food Res Int 2019; 122:361-370. [DOI: 10.1016/j.foodres.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 11/25/2022]
|
33
|
Galuch MB, Magon TFS, Silveira R, Nicácio AE, Pizzo JS, Bonafe EG, Maldaner L, Santos OO, Visentainer JV. Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem 2019; 282:120-126. [DOI: 10.1016/j.foodchem.2018.12.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023]
|
34
|
Doğan M, Aslan D, Gürmeriç V, Özgür A, Göksel Saraç M. Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Karabozhikova V, Tsakova V. Electroanalytical determination of caffeic acid – Factors controlling the oxidation reaction in the case of PEDOT-modified electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Hoyos-Arbeláez J, Blandón-Naranjo L, Vázquez M, Contreras-Calderón J. Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chem 2018; 266:435-440. [DOI: 10.1016/j.foodchem.2018.06.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 02/09/2023]
|
37
|
de Siqueira Leite KC, Garcia LF, Sanz G, Colmati F, de Souza AR, da Costa Batista D, Menegatti R, de Souza Gil E, Luque R. Electrochemical characterization of a novel nimesulide anti-inflammatory drug analog: LQFM-091. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Ingawale AS, Sadiq MB, Nguyen LT, Ngan TB. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
de Macêdo IYL, Garcia LF, Menegatti R, Guimarães FF, Lião LM, de Carvalho FS, Torres Pio dos Santos W, Verly RM, Arotiba OA, de Souza Gil E. Electrochemical characterizations of darbufelone, a di-tert-butylphenol derivative, by voltammetric techniques and density functional theory calculations. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Impact of oil droplet concentration on the optical, rheological, and stability characteristics of O/W emulsions stabilized with plant-based surfactant: Potential application as non-dairy creamers. Food Res Int 2018; 105:913-919. [DOI: 10.1016/j.foodres.2017.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
|
42
|
Lugonja N, Stanković D, Miličić B, Spasić S, Marinković V, Vrvić M. Electrochemical monitoring of the breast milk quality. Food Chem 2018; 240:567-572. [DOI: 10.1016/j.foodchem.2017.07.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 02/03/2023]
|
43
|
Lopes da Silva AR, Jhones dos Santos A, Martínez-Huitle CA. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. RSC Adv 2018; 8:3483-3492. [PMID: 35542960 PMCID: PMC9077693 DOI: 10.1039/c7ra12257h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
Using electrochemical techniques (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) with a boron-doped diamond (BDD) electrode it was possible to study the behavior of hydroquinone (HQ), catechol (CT) and resorcinol (RS), in aqueous solutions as well as to associate the electrochemical profiles with computational simulations. It led to understanding the factors that influence the direct electrooxidation of HQ, CT and RS on the BDD surface. Theoretical calculations demonstrated that the compounds with lower HOMO energy and high ionization potential (IP) are more stable, showing a higher Epa, denoting that HOMO energies and IP are related to the difficulty of oxidizing (losing an electron) a specific compound. Analyzing the electro-oxidation reactions of HQ, CT and RS by using computational calculations, it was possible to verify the reversibility behavior, direct oxidation pathway and the possible intermediates formed during electron-transfer. The results clearly demonstrated that the reversibility was attained for HQ and CT, while this behavior is not feasible, thermodynamically speaking, for RS and this was confirmed by DFT calculations. For direct oxidation mechanisms, HQ and CT are quickly oxidized, but RS produces stable intermediates. These experimental and theoretical results also explain the behavior when the compounds were analyzed by electroanalytical techniques, suggesting that the interactions by direct electron-transfer determine the stability of response (sensitivity) as well as the limit of detection. The results are described and discussed in light of the existing literature. Using electrochemical techniques it was possible to study the behavior of hydroquinone, catechol and resorcinol, at boron doped diamond surface in aqueous solutions as well as to associate the electrochemical profiles with computational simulations.![]()
Collapse
Affiliation(s)
- Amison Rick Lopes da Silva
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA)
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Alexsandro Jhones dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA)
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Carlos Alberto Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA)
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
44
|
Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability. J FOOD QUALITY 2018. [DOI: 10.1155/2018/5967130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study assessed the functionality and consumer acceptance of yeast fermented coffee beans. Green coffee beans were fermented for 24 h with three different yeast strains to increase functionality. The yeast fermentation was effective in fortifying the functionality of coffee by significantly increasing antioxidant activity according to the results of ORAC and SOD-like assay (P<0.05). The TPC and TFC contents in the fermented coffee beans were significantly higher than those in the controls (P<0.05). The consumer acceptance for the fermented coffee beans was slightly lower than that of the controls. Fermentation seemed to influence the aroma and flavor of coffee. However, agglomerative hierarchical clustering analysis revealed that approximately 39% of consumers significantly liked one of the fermented coffees (F3) more than the controls (P<0.05). These consumers indicated that the yeast fermentation of green coffee beans did not generate a negative aroma or flavor and can be attractive with high antioxidant activity.
Collapse
|
45
|
CRUZ RGD, VIEIRA TMFDS, LIRA SPD. Potential antioxidant of brazilian coffee from the region of Cerrado. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.08017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chem 2017; 237:1118-1123. [DOI: 10.1016/j.foodchem.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/11/2017] [Accepted: 06/02/2017] [Indexed: 11/23/2022]
|
47
|
Oliveira Neto JR, Lopes de Macêdo IY, Lopes de Oliveira NR, de Queiroz Ferreira R, de Souza Gil E. Antioxidant Capacity and Total Phenol Content in Hop and Malt Commercial Samples. ELECTROANAL 2017. [DOI: 10.1002/elan.201700492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | - Eric de Souza Gil
- Faculty of Pharmacy; Federal University of Goiás; Goiânia GO - 74605-220 Brazil
| |
Collapse
|
48
|
Menezes Peixoto CRD, Fraga S, Rosa Justim JD, Silva Gomes M, Gonçalves Carvalho D, Jarenkow JA, Fernandes de Moura N. Voltammetric determination of total antioxidant capacity of Bunchosia glandulifera tree extracts. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Facile synthesis of MnO 2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid. Anal Chim Acta 2017; 985:155-165. [PMID: 28864186 DOI: 10.1016/j.aca.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/28/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Tailored designs/fabrications of hierarchical porous advanced electrode materials are of great importance for developing high-performance electrochemical sensors. Herein, we demonstrate a simple and low-cost in situ chemical approach for the facile synthesis of MnO2-embedded hierarchical porous carbon microspheres (MnO2/CM). By the characterizations of scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy dispersive spectroscopy, we evidenced that the synthesized product were flower-like carbon microspheres (CM) assembled by the bent flakes with thickness of about several nanometers and MnO2 nanorods were highly dispersed and successfully decorated on the CM layers, resulting in a rough surface and three-dimensional microstructure. The greatest benefit from the combined porous CM with MnO2 nanorods is that the MnO2/CM modified electrode has the synergetic catalysis effect on the electro-oxidation of caffeic acid, leading to the remarkable increase in the electron transfer rate and significant decrease in the over-potential for the caffeic acid oxidation in contrast to the bare electrode and CM modified electrode. This implies that the prepared MnO2/CM can be employed as an enhanced electrocatalyst for the sensitive detection of caffeic acid. Under the optimum conditions, the anodic peak current of caffeic acid is linear with its concentration in the range of 0.01-15.00 μmol L-1, and a detection limit of 2.7 nmol L-1 is achieved based on S/N = 3. The developed sensor shows good selectivity, sensitivity, reproducibility, and also excellent recovery in the detections of real samples, revealing the promising practicality of the sensor for the caffeic acid detection.
Collapse
|
50
|
Oliveira Neto JR, de Oliveira TS, Ghedini PC, Vaz BG, Gil EDS. Antioxidant and vasodilatory activity of commercial beers. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|