1
|
Manthattil Vysyan S, Suraj Prasanna M, Jayanandan A, Gangadharan AK, Chittalakkottu S. Phytocompounds hesperidin, rebaudioside a and rutin as drug leads for the treatment of tuberculosis targeting mycobacterial phosphoribosyl pyrophosphate synthetase. J Biomol Struct Dyn 2024:1-15. [PMID: 39659199 DOI: 10.1080/07391102.2024.2438363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/29/2024] [Indexed: 12/12/2024]
Abstract
The main aim of this study is to address the global health crisis posed by tuberculosis (TB) through the exploration of novel therapeutic strategies targeting Mycobacterial phosphoribosyl pyrophosphate synthetase (MtPrsA), an untried enzyme involved in essential metabolic pathways of Mycobacterium tuberculosis. This enzyme plays a crucial role in cell wall synthesis, nucleotide biosynthesis and amino acid synthesis in M tb. Any hindrance to these may affect the growth and survival of the organism. Phytochemicals were systematically screened for potential inhibitors to MtPrsA. Subsequently, based on molecular docking studies, three compounds, namely, hesperidin, rebaudiosideA and rutin were selected. The binding stabilities of these compounds were analyzed using molecular dynamics simulation. Based on the RMSD score obtained, the binding stability of the compounds was confirmed. To validate the findings, an enzyme inhibition assay was done using recombinant MtPrsA. Ligation Independent Cloning (LIC cloning) method was used to produce recombinant His-tagged MtPrsA, followed by purification using Histrap columns. Enzyme kinetic studies unveiled the distinct modes of inhibition exhibited by each compound towards MtPrsA. RebaudiosideA and rutin emerged as competitive inhibitors, while hesperidin showcased a mixed inhibition profile. In conclusion, the study contributes valuable insights into potential therapeutic strategies for TB, through the exploration of alternative enzyme targets and the identification of phytochemical inhibitors. Notably, todate, no effective plant compounds have been reported as inhibitors to MtPrsA.
Collapse
Affiliation(s)
| | - Meera Suraj Prasanna
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | - Abhithaj Jayanandan
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | | | | |
Collapse
|
2
|
Haghmadad Milani M, Mohammadi A, Panahirad S, Farhadi H, Labib P, Kulak M, Gohari G, Fotopoulos V, Vita F. Cerium Oxide Nanoparticles (CeO 2 NPs) Enhance Salt Tolerance in Spearmint ( Mentha spicata L.) by Boosting the Antioxidant System and Increasing Essential Oil Composition. PLANTS (BASEL, SWITZERLAND) 2024; 13:2934. [PMID: 39458881 PMCID: PMC11510870 DOI: 10.3390/plants13202934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Salinity represents a considerable environmental risk, exerting deleterious effects on horticultural crops. Nanotechnology has recently emerged as a promising avenue for enhancing plant tolerance to abiotic stress. Among nanoparticles, cerium oxide nanoparticles (CeO2 NPs) have been demonstrated to mitigate certain stress effects, including salinity. In the present study, the impact of CeO2 NPs (0, 25, and 100 mg L-1) on various morphological traits, photosynthetic pigments, biochemical parameters, and the essential oil profile of spearmint plants under moderate (50 mM NaCl) and severe (100 mM NaCl) salinity stress conditions was examined. As expected, salinity reduced morphological parameters, including plant height, number of leaves, fresh and dry weight of leaves and shoots, as well as photosynthetic pigments, in comparison to control. Conversely, it led to an increase in the content of proline, total phenols, malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities. In terms of CeO2 NP applications, they improved the salinity tolerance of spearmint plants by increasing chlorophyll and carotenoid content, enhancing antioxidant enzyme activities, and lowering MDA and H2O2 levels. However, CeO2 NPs at 100 mg L-1 had adverse effects on certain physiological parameters, highlighting the need for careful consideration of the applied concentration of CeO2 NPs. Considering the response of essential oil compounds, combination of salinity stress and CeO2 treatments led to an increase in the concentrations of L-menthone, pulegone, and 1,8-cineole, which are the predominant compounds in spearmint essential oil. In summary, foliar application of CeO2 NPs strengthened the resilience of spearmint plants against salinity stress, offering new insights into the potential use of CeO2 NP treatments to enhance crop stress tolerance.
Collapse
Affiliation(s)
- Maryam Haghmadad Milani
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh 551877684, Iran;
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran; (A.M.); (S.P.)
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran; (A.M.); (S.P.)
| | - Habib Farhadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
| | - Parisa Labib
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, 84536 Bratislava, Slovakia;
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir 76000, Türkiye;
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| |
Collapse
|
3
|
Liang C, Jiang F, Xu H, Zhang Z, Tian W, Sun H, Jing Y, Wang M, Zhuang Y, Li D, Liu J. Mechanism of Peppermint Extract-Induced Delay of 'Packham's Triumph' Pear ( Pyrus communis L.) Postharvest Ripening. Foods 2024; 13:657. [PMID: 38472770 PMCID: PMC10930982 DOI: 10.3390/foods13050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Postharvest ripening is correlated to the quality and shelf life of European pear fruit. In this study, the effects of peppermint extract on fruit phenotype, related physiological activities, and aroma components during postharvest ripening of the European pear variety 'Packham's Triumph' were examined. Fruit treated with 2.0 g L-1 peppermint extract for 12 h showed delayed softening by 4 d compared with that of the untreated control group. The peak values of ethylene and respiratory rate in fruit were reduced to a certain extent after peppermint extract treatment; however, the peppermint extract did not delay the occurrence of the respiratory climacteric peak. Peppermint extract treatment also did not significantly increase the content of the characteristic peppermint aroma in pear fruit. Further, widely targeted metabolome analysis revealed 298 significantly different metabolites, with flavonoids (40%) and lipid compounds (15%) accounting for the highest proportion on the first day after treatment. The Kyoto Encyclopedia of Genes and Genomes pathway result showed significant enrichment in the metabolic pathways of biosynthesis of flavonoid, isoflavonoid, flavone and flavonol, linoleic acid, and alpha-linolenic acid metabolism following peppermint extract treatment. The combined analysis of transcriptome and metabolome data showed significant enrichment in linoleic acid metabolism and alpha-linolenic acid metabolism on the first, third, and fifth days after peppermint extract treatment. This study indicates that peppermint extract mainly affects the pear fruit softening process in the early stage after treatment.
Collapse
Affiliation(s)
- Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China;
| | - Hongpeng Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (H.X.); (D.L.)
| | - Zan Zhang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Wei Tian
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Haifeng Sun
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Yali Jing
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Mengzhen Wang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Yingyu Zhuang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China; (C.L.); (Z.Z.); (W.T.); (H.S.); (Y.J.); (M.W.); (Y.Z.)
| | - Dingli Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (H.X.); (D.L.)
| | - Jianlong Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (H.X.); (D.L.)
| |
Collapse
|
4
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
5
|
Yousefian S, Esmaeili F, Lohrasebi T. A Comprehensive Review of the Key Characteristics of the Genus Mentha, Natural Compounds and Biotechnological Approaches for the Production of Secondary Metabolites. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3605. [PMID: 38269203 PMCID: PMC10804064 DOI: 10.30498/ijb.2023.380485.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/16/2023] [Indexed: 01/26/2024]
Abstract
Context The genus Mentha is one of the most aromatic and well-known members of the Lamiaceae family. A wide range of bioactive compounds has been reported in mints. Regarding the high economic importance of Mentha plants due to the presence of valuable metabolites, the demand for their products is growing exponentially. Therefore, to supply such demand, new strategies should be adopted to improve the yield and medicinal quality of the products. Evidence Acquisition The current review is written based on scientific literature obtained from online databases, including Google Scholar, PubMed, Scopus, and Web of Science regarding the characteristic features of some species of the genus Mentha, their distribution and cultivation, main uses and benefits, phytochemical composition, biotechnological approaches for the production of secondary metabolites, and strategies for enhanced production of mints secondary metabolites. Results In this article, we offer an overview of the key characteristics, natural compounds, biological properties, and medicinal uses of the genus Mentha. Current research describes biotechnological techniques such as in vitro culture methods for the production of high-value secondary metabolites. This review also highlights the strategies such as elicitation, genetic, and metabolic engineering to improve the secondary compounds production level in mint plants. Overall, it can be concluded that identifying the biosynthetic pathways, leading to the accumulation of pharmaceutically important bioactive compounds, has paved the way for developing highly productive mint plants with improved phytochemical profiles.
Collapse
Affiliation(s)
| | | | - Tahmineh Lohrasebi
- Department of Plant Bioproducts, National Institude of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
6
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Ali A, Cottrell JJ, Dunshea FR. Characterization, Antioxidant Potential, and Pharmacokinetics Properties of Phenolic Compounds from Native Australian Herbs and Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:993. [PMID: 36903854 PMCID: PMC10005590 DOI: 10.3390/plants12050993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, plant bioactive phenolic compounds gained much attention due to their various health benefits. Therefore, this study aimed to analyze native Australian river mint (Mentha australis), bush mint (Mentha satureioides), sea parsley (Apium prostratum), and bush tomatoes (Solanum centrale) for their bioactive metabolites, antioxidant potential, and pharmacokinetics properties. LC-ESI-QTOF-MS/MS was applied to elucidate these plants' composition, identification, and quantification of phenolic metabolites. This study tentatively identified 123 phenolic compounds (thirty-five phenolic acids, sixty-seven flavonoids, seven lignans, three stilbenes, and eleven other compounds). Bush mint was identified with the highest total phenolic content (TPC-57.70 ± 4.57 mg GAE/g), while sea parsley contained the lowest total phenolic content (13.44 ± 0.39 mg GAE/g). Moreover, bush mint was also identified with the highest antioxidant potential compared to other herbs. Thirty-seven phenolic metabolites were semi-quantified, including rosmarinic acid, chlorogenic acid, sagerinic acid, quinic acid, and caffeic acid, which were abundant in these selected plants. The most abundant compounds' pharmacokinetics properties were also predicted. This study will develop further research to identify these plants' nutraceutical and phytopharmaceutical potential.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Hay T, Prakash S, Daygon VD, Fitzgerald M. Review of edible Australian flora for colour and flavour additives: Appraisal of suitability and ethicality for bushfoods as natural additives to facilitate new industry growth. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022; 14:nu14122387. [PMID: 35745117 PMCID: PMC9227685 DOI: 10.3390/nu14122387] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Hesperidin is a bioflavonoid occurring in high concentrations in citrus fruits. Its use has been associated with a great number of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, especially for the production of juice. It results in the accumulation of huge amounts of by-products such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extraction from these by-products has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extraction and determination methods for quantification of hesperidin in fruits and by-products are presented and discussed as well as its stability and biological activities.
Collapse
|
10
|
Ben Bakrim W, Aghraz A, Hriouch F, Larhsini M, Markouk M, Bekkouche K, Costa R, Arrigo S, Cicero N, Dugo G. Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2029777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- W. Ben Bakrim
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - A. Aghraz
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - F. Hriouch
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - M. Larhsini
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - M. Markouk
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - K. Bekkouche
- Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Laboratory of Agri-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Marrakesh, Morocco
| | - R. Costa
- Dipartimento di SCIENZE Biomediche, Odontoiatriche, e Delle Immagini Morfologiche E Funzionali (BIOMORF), University of Messina, Messina, Italy
| | - S. Arrigo
- Dipartimento di SCIENZE Biomediche, Odontoiatriche, e Delle Immagini Morfologiche E Funzionali (BIOMORF), University of Messina, Messina, Italy
- Science4Life s.r.l., A Spin-off of the University of Messina, Messina, Italy
| | - N. Cicero
- Dipartimento di SCIENZE Biomediche, Odontoiatriche, e Delle Immagini Morfologiche E Funzionali (BIOMORF), University of Messina, Messina, Italy
- Science4Life s.r.l., A Spin-off of the University of Messina, Messina, Italy
| | - G. Dugo
- Dipartimento di SCIENZE Biomediche, Odontoiatriche, e Delle Immagini Morfologiche E Funzionali (BIOMORF), University of Messina, Messina, Italy
- Science4Life s.r.l., A Spin-off of the University of Messina, Messina, Italy
| |
Collapse
|
11
|
Enzymatic Synthesis, Structural Analysis, and Evaluation of Antibacterial Activity and α-Glucosidase Inhibition of Hesperidin Glycosides. Catalysts 2021. [DOI: 10.3390/catal11050532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study was designed to investigate the structure of synthesized hesperidin glycosides (HGs) and evaluate their antibacterial and α-glucosidase inhibitory activities. The preliminary structure of HGs was confirmed by glucoamylase treatment and analyzed on thin layer chromatography (TLC). The LC-MS/MS profiles of HGs showed the important fragments at m/z ratios of 345.21 (added glucose to glucose of rutinose in HG1) and 687.28 (added maltose to glucose of rutinose in HG2), confirming that the structures of HG1 and HG2 were α-glucosyl hesperidin and α-maltosyl hesperidin, respectively. In addition, 1H and 13C-NMR of hesperidin derivatives were performed to identify their α-1,4-glycosidic bonds. The MIC and MBC studies showed that transglycosylated HG1 and HG2 had better antibacterial and bactericidal activities than hesperidin and diosmin, and were more active against Staphylococcus aureus than Escherichia coli. Hesperidin, HG1, HG2, and diosmin inhibited α-glucosidase with IC50 values of 2.75 ± 1.57, 2.48 ± 1.61, 2.36 ± 1.48, and 2.99 ± 1.23 mg/mL, respectively. The inhibition kinetics of HG2 shown by a Lineweaver–Burk plot confirmed HG2 was an α-glucosidase competitive inhibitor with an inhibitor constant, Ki, of 2.20 ± 0.10 mM. Thus, HGs have the potential to be developed into antibacterial drugs and treatments for treating α-glucosidase-associated type 2 diabetes.
Collapse
|
12
|
Fernández-Fernández AM, Dumay E, Lazennec F, Migues I, Heinzen H, Lema P, López-Pedemonte T, Medrano-Fernandez A. Antioxidant, Antidiabetic, and Antiobesity Properties, TC7-Cell Cytotoxicity and Uptake of Achyrocline satureioides (Marcela) Conventional and High Pressure-Assisted Extracts. Foods 2021; 10:foods10040893. [PMID: 33921665 PMCID: PMC8073586 DOI: 10.3390/foods10040893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The growing incidence of non-communicable diseases makes the search for natural sources of bioactive compounds a priority for such disease prevention/control. Achyrocline satureioides (‘marcela’), a plant rich in polyphenols and native to Brazil, Uruguay, Paraguay, and Argentina, could be used for this purpose. Data on its antidiabetic/antiobesity properties and cellular uptake of bioactive compounds are lacking. The potentiality of non-thermal technologies such as high-hydrostatic pressure (HP) to enhance polyphenol extraction retains attention. Thus, in the present study aqueous and ethanolic marcela extracts with/without assisted-HP processing were chemically characterized and assessed for their in vitro antioxidant capacity, antidiabetic and antiobesity activities, as well as cellular cytotoxicity and uptake on intestinal cell monolayers (TC7-cells, a clone of Caco-2 cells). Aqueous and ethanolic conventional extracts presented different polyphenolic profiles characterized mainly by phenolic acids or flavonoids, respectively, as stated by reverse phase-high-performance liquid chromatography (RP-HPLC) analyses. In general, ethanolic extracts presented the strongest bioactive properties and HP had none or a negative effect on in vitro bioactivities comparing to conventional extracts. TC7-cell viability and cellular uptake demonstrated in conventional and HP-assisted extracts, highlighted the biological effects of marcela bioactive compounds on TC7-cell monolayers. TC7-cell studies showed no HP-induced cytotoxicity. In sum, marcela extracts have great potential as functional ingredients for the prevention/treatment of chronic diseases such as diabetes.
Collapse
Affiliation(s)
- Adriana Maite Fernández-Fernández
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (T.L.-P.)
| | - Eliane Dumay
- Ingénierie des Agropolymères et Technologies Emergentes, Équipe de Biochimie et Technologie Alimentaires, Université de Montpellier, 2 Place Eugène Bataillon, 34095 Montpellier, France; (E.D.); (F.L.)
| | - Françoise Lazennec
- Ingénierie des Agropolymères et Technologies Emergentes, Équipe de Biochimie et Technologie Alimentaires, Université de Montpellier, 2 Place Eugène Bataillon, 34095 Montpellier, France; (E.D.); (F.L.)
| | - Ignacio Migues
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (I.M.); (H.H.)
| | - Horacio Heinzen
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (I.M.); (H.H.)
| | - Patricia Lema
- Grupo Tecnologías Aplicadas a la Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de la República, Av Julio Herrera y Reissig 565, Montevideo 11300, Uruguay;
| | - Tomás López-Pedemonte
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (T.L.-P.)
| | - Alejandra Medrano-Fernandez
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (T.L.-P.)
- Correspondence: ; Tel.: +598-2924-26-75
| |
Collapse
|
13
|
Mani JS, Johnson JB, Hosking H, Ashwath N, Walsh KB, Neilsen PM, Broszczak DA, Naiker M. Antioxidative and therapeutic potential of selected Australian plants: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113580. [PMID: 33189842 DOI: 10.1016/j.jep.2020.113580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous common pharmaceuticals, including anti-cancer, antiviral and antidiabetic drugs, are derived from traditional plant-derived medicines. With approximately 25,000 species of flora occurring in Australia that are adapted to the harsh environment, there is a plethora of novel compounds awaiting research in the context of their medicinal properties. Anecdotal accounts of plant-based medicines used by the Australian Aboriginal and Torres Strait Islander peoples clearly illustrates high therapeutic activity. AIM This review aims to demonstrate the medicinal potentials of selected native Australian plants based on scientific data. Furthermore, it is anticipated that work presented here will contribute towards enhancing our knowledge of native plants from Australia, particularly in the prevention and potential treatment of disease types such as cancer, microbial and viral infections, and diabetes. This is not meant to be a comprehensive study, rather it is meant as an overview to stimulate future research in this field. METHODS The EBSCOhost platform which included PubMed, SciFinder, Web of Knowledge, Scopus, and ScienceDirect databases were searched for papers using the keywords: medicinal plants, antioxidative, antimicrobial, antibacterial, anticancer, anti-tumor, antiviral or antidiabetic, as well as Australian, native, traditional and plants. The selection criteria for including studies were restricted to articles on plants used in traditional remedies which showed antioxidative potential and therapeutic properties such as anticancer, antimicrobial, antiviral and antidiabetic activity. RESULTS Some plants identified in this review which showed high Total Phenolic Content (TPC) and antioxidative capacity, and hence prominent bioactivity, included Tasmannia lanceolata (Poir.) A.C. Sm., Terminalia ferdinandiana Exell, Eucalyptus species, Syzygium species, Backhousia citriodora F.Muell., Petalostigma species, Acacia species, Melaleuca alternifolia (Maiden & Betche) Cheel, Eremophila species, Prostanthera rotundifolia R.Br., Scaevola spinescens R. Br. and Pittosporum angustifolium Lodd. The majority of studies found polar compounds such as caffeic acid, coumaric acid, chlorogenic acid, quercetin, anthocyanins, hesperidin, kaempferol, catechin, ellagic acid and saponins to be the active components responsible for the therapeutic effects. Additionally, mid to non-polar volatile organic compounds such as meroterpenes (serrulatanes and nerol cinnamates), monoterpenes (1,8-cineole and myodesert-1-ene), sesquiterpenes, diterpenes and triterpenes, that are known only in Australian plants, have also shown therapeutic properties related to traditional medicine. CONCLUSION Australian plants express a diverse range of previously undescribed metabolites that have not been given full in vitro assessment for human health potential. This review has included a limited number of plant species of ethnomedicinal significance; hundreds of plants remain in need of exploration and detailed study. Future more elaborate studies are therefore required to screen out and purify lead bioactive compounds against numerous other disease types. This will not only improve our knowledge on the phytochemistry of Australian native flora, but also provide a platform to understand their health-promoting and bioactive effects for pharmaceutical interventions, nutraceuticals, cosmetics, and as functional foods. Finally, plant-derived natural compounds (phytochemicals), as well as plant-based traditional remedies, are significant sources for latent and novel drugs against diseases. Extensive investigation of native medicinal plants may well hold the key to novel drug discoveries.
Collapse
Affiliation(s)
- Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia.
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Holly Hosking
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Nanjappa Ashwath
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Paul M Neilsen
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Daniel A Broszczak
- Institute of Health & Biomedical Innovation (Q-Block), Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| |
Collapse
|
14
|
Kapp K, Püssa T, Orav A, Roasto M, Raal A, Vuorela P, Vuorela H, Tammela P. Chemical Composition and Antibacterial Effect of Mentha spp. Grown in Estonia. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mentha spp. are used in the food and pharmaceutical industry; the plants are characterized by natural interspecies hybridization. In this study, knowledge of the chemical composition of Mentha spp. was broadened by focusing on plants grown in a geographically small region of Estonia. The antibacterial activity of Mentha spp. essential oils and water extracts was evaluated. Polyphenolic water extracts of M. × villosa Huds., M. × suaveolens Ehrh., and M. × gracilis Sole were tested for the first time on Escherichia coli and Staphylococcus aureus. Leaves of cultivated and wild-grown plants ( n = 33) were collected. The microdistilled essential oil composition reflected the diversity within the genus Mentha. Determined by gas chromatography-mass spectrometry (MS), major compounds were cis-piperitone oxide, carvone, linalool, menthol, and menthofuran. Based on high-performance liquid chromatography-ultraviolet-MS/MS analyses of the water extracts, no species-specific polyphenolic compounds could be proposed. Abundant polyphenols were rosmarinic acid, salvianolic acid B, and eriocitrin. Essential oils exhibited antibacterial activity on E. coli and S. aureus by the broth dilution method. Water extracts showed activity only against S. aureus. This study supports the use of Mentha spp. as health-promoting ingredients in food. However, further studies are still needed to widen the knowledge of the chemical composition of these plants.
Collapse
Affiliation(s)
- Karmen Kapp
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Tõnu Püssa
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Anne Orav
- Institute of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Mati Roasto
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ain Raal
- Faculty of Medicine, Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Pia Vuorela
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heikki Vuorela
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Mamadalieva NZ, Hussain H, Xiao J. Recent advances in genus Mentha: Phytochemistry, antimicrobial effects, and food applications. FOOD FRONTIERS 2020; 1:435-458. [DOI: 10.1002/fft2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe genusMentha(mint) belongs to the Lamiaceae family, which includes 25 to 30 species. The species of this genus have been known for their medicinal and aromatherapeutic properties since ancient times and possess a significant economical and commercial reputation. Several species ofMenthaare widely used in culinary and traditional medicines in many parts of the world. Essential oils fromMenthaspecies have been commonly used as flavoring substance in beverages, providing a “fresh‐like” aroma and taste. Chemical analyses ofMenthaspecies have yielded a number of important phytocompounds belonging to different classes, such as organic acids, flavonoids, sterols, alkaloids, lignans, hydrocarbons, fatty acids, tocopherols, proteins, free sugars, etc. Moreover, the main compounds in mints are essential oils, phenolics, and flavonoids. This review reports the available information on the present status (literature up to early 2020) of theMenthaspecies and summarizes the chemical constituents, traditional and culinary uses, cultivation, and biological properties. In addition, comprehensive analysis of the antibacterial studies conducted onMenthaspecies is represented. In effect,Menthaspecies have been presented here as a viable alternative source of many biological and chemically active compounds which are already known to be of great economic, pharmaceutical, and nutritional importance.
Collapse
Affiliation(s)
- Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan Tashkent Uzbekistan
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Halle (Saale) Germany
| | - Hidayat Hussain
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Halle (Saale) Germany
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| |
Collapse
|
16
|
Potential anti-neuroinflammatory compounds from Australian plants - A review. Neurochem Int 2020; 142:104897. [PMID: 33186611 DOI: 10.1016/j.neuint.2020.104897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators, such as cytokines and chemokines, and generation of reactive oxygen and nitrogen species. Even though it is considered an event secondary to neuronal death or dysfunction, neuro-inflammation comprises a majority of the non-neuronal contributors to the cause and progression of neurodegenerative diseases like Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), Chronic Traumatic Encephalopathy (CTE) and others. As a result of the lack of effectiveness of current treatments for neurodegenerative diseases, neuroinflammation has become a legitimate therapeutic target for drug discovery, leading to the study of various in vivo and in vitro models of neuroinflammation. Several molecules sourced from plants have displayed anti-inflammatory properties in the study of neurodegenerative diseases. A group of these anti-inflammatory compounds has been classified as cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the pro-inflammatory AP1 and nuclear factor-κB signaling pathways and inhibit the expression of many pro-inflammatory cytokines, such as interleukin IL-1, IL-6, TNF-α, or nitric oxide. Australian plants, thriving amid the driest inhabited continent of the world, are an untapped source of chemical diversity in the form of secondary metabolites. These compounds are produced in response to biotic and abiotic stresses that the plants are exposed to in the highly biodiverse environment. This review is an attempt to highlight anti-inflammatory compounds isolated from Australian plants.
Collapse
|
17
|
Li S, Liu C, Zhang Y, Shi D, Tsao R. Application of accelerated solvent extraction coupled with online two‐dimensional countercurrent chromatography for continuous extraction and separation of bioactive compounds from
Citrus limon
peel. J Sep Sci 2020; 43:3793-3805. [DOI: 10.1002/jssc.202000588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sainan Li
- Central Laboratory Changchun Normal University Changchun P. R. China
| | - Chunming Liu
- Central Laboratory Changchun Normal University Changchun P. R. China
| | - Yuchi Zhang
- Central Laboratory Changchun Normal University Changchun P. R. China
| | - Dongfang Shi
- Central Laboratory Changchun Normal University Changchun P. R. China
| | - Rong Tsao
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| |
Collapse
|
18
|
Emre İ, Kurşat M, Yilmaz Ö, Erecevit P. Chemical compositions, radical scavenging capacities and antimicrobial activities in seeds of Satureja hortensis L. and Mentha spicata L. subsp. spicata from Turkey. BRAZ J BIOL 2020; 81:144-153. [PMID: 32401852 DOI: 10.1590/1519-6984.224654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
The present study determined some biological compounds, radical scavenging activity and antimicrobial capacity in seeds of Satureja hortensis L. and Mentha spicata L. subsp. spicata. Alpha-linolenic acid (C18:3 n3) has been found to be the major polyunsaturated fatty acid of Satureja hortensis L. (66.24 ± 1.24%) and Mentha spicata L. subsp. spicata (48.17 ± 1.01%). Linoleic acid (C18:2 n6) is identified as the second major polyunsaturated fatty acid in the present study and oleic acid (C18:1 n9) is determined as the major monounsaturated fatty acid. Current study showed that Satureja hortensis L. and Mentha spicata L. subsp. spicata have low levels of saturated fatty acids. It has been demonstrated that ergosterol (263.1 ± 2.14 µg/g), stigmasterol (39.07 ± 0.91 µg/g) and beta-sitosterol (14.64 ± 0.49 µg/g) have been found in Mentha spicata L. subsp. spicata, while ergosterol (69.41 ± 1.75 µg/g) and beta-sitosterol (19.81 ± 1.14 µg/g) have been determined in Satureja hortensis L. Also, this study determined that Satureja hortensis L. and Mentha spicata L. subsp. spicata have low lipide-soluble vitamin content. Furthermore, it has been found that Satureja hortensis L. contains naringenin (612.57 ± 2.57 µg/g), morin (86.97 ± 1.12 µg/g), quercetin (22.87 ± 0.75 µg/g), and kaempferol (20.11 ± 0.94 µg/g) while naringenin (135.91 ± 1.91 µg/g), naringin (61.23 ± 2.15 µg/g) and quercetin (47.51 ± 1.17 µg/g) have been detected as major flavonoids in the seeds of Mentha spicata L. subsp. spicata. The results of the present study suggest that methanol extracts of Satureja hortensis L. and Mentha spicata L. subsp. spicata have significant free radical scavenging activity. The present results revealed that Satureja hortensis L. and Mentha spicata L. subsp. spicata showed major activity against gram-positive and gram-negative microorganisms, fungi and yeast.
Collapse
Affiliation(s)
- İ Emre
- Department of Primary Education, Faculty of Education, Firat University, 23119, Elazig, Turkey
| | - M Kurşat
- Department of Biology, Faculty of Sciences and Arts, Bitlis Eren University, 13100, Bitlis, Turkey
| | - Ö Yilmaz
- Department of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - P Erecevit
- Department of Biology, Faculty of Science, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
19
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
20
|
Dolwitsch CB, Pires FB, Frescura LM, Prá VD, Rieffel RC, Sagrillo MR, de Carvalho CA, Mazutti M, Pizzutti IR, da Rosa MB. Hesperozygis ringens (Benth.) Epling: a study involving extraction, chemical profiling, antioxidant and biological activity. Nat Prod Res 2020; 35:4709-4714. [PMID: 31920093 DOI: 10.1080/14786419.2019.1710703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hesperozygis ringens is a plant of the Lamiaceae family which is restricted to the Southern region of Brazil. It is popularly used as an insecticide, but knowledge on it is very scarce. This study aimed to determine the chemical markers of H. ringens extracts obtained via ultrasound-assisted (UAE-EtOH) and supercritical fluid (SFE-CO2) extractions. UAE-EtOH and SFE-CO2 extracts were characterised by UPLC-MS and GC-MS, respectively. Both products had their antioxidant activity, cytotoxicity and genotoxicity evaluated. Twelve compounds were found in the UAE-EtOH extract, including phenolic acids and flavonoids; the SFE-CO2 extract contained terpenes and phytosterols. The UAE-EtOH extract showed a greater antioxidant activity. Neither extract presented cytotoxicity or genotoxicity against human mononuclear blood cells.
Collapse
Affiliation(s)
- Carolina B Dolwitsch
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda B Pires
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lucas M Frescura
- Post-Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Valéria Dal Prá
- Department of Chemistry Engineering, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Roberta C Rieffel
- Laboratory of Genetic and Cellular Culture, Franciscan University, Santa Maria, RS, Brazil
| | - Michele R Sagrillo
- Laboratory of Genetic and Cellular Culture, Franciscan University, Santa Maria, RS, Brazil
| | - Camilo A de Carvalho
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Marcio Mazutti
- Department of Chemistry Engineering, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ionara R Pizzutti
- Post-Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo B da Rosa
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Post-Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
21
|
Recent advances and applications in LC-HRMS for food and plant natural products: a critical review. Anal Bioanal Chem 2020; 412:1973-1991. [DOI: 10.1007/s00216-019-02328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
|
22
|
Zamanipoor MH, Yakufu B, Tse E, Rezaeimotlagh A, Hook JM, Bucknall MP, Thomas DS, Trujillo FJ. Brewing coffee? - Ultra-sonication has clear beneficial effects on the extraction of key volatile aroma components and triglycerides. ULTRASONICS SONOCHEMISTRY 2020; 60:104796. [PMID: 31550643 DOI: 10.1016/j.ultsonch.2019.104796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound has been investigated as a new technique for brewing coffee. A two-level factorial experimental design was conducted to identify the effects of ultra-sonication on the extraction of coffee components during ultrasonically-assisted coffee brewing. Different brews were produced by aqueous extraction from roasted ground coffee beans with sonication, and without it as a control, by varying coffee concentration (5% and 10% w/w), temperature (25 and 50 °C) and sonication time (1 and 5 min). These brews were tested for antioxidant capacity (using the ABTS assay), caffeine and triglycerides (using quantitative NMR spectroscopy) and specific aroma/flavour volatiles (using headspace SPME-GC-MS). Additional observations of colour, foaming, body and flavour were also reported. Ultrasound was found to significantly increase the extraction of caffeine, triglycerides and several of the key volatile compounds from coffee, although it did appear to decrease the concentration of antioxidants over the controls, especially with longer time and higher temperature. Furthermore, all the sonicated samples exhibited a lighter caramel colour and lower foam formation which were attributed to their higher triglyceride content. The increased concentration of triglycerides and volatiles were by far the most outstanding responses.
Collapse
Affiliation(s)
- Mohammad H Zamanipoor
- School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Bailina Yakufu
- School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Ernest Tse
- School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Adel Rezaeimotlagh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, NSW, Australia; School of Chemistry, University of New South Wales, Sydney 2052, NSW, Australia
| | - Martin P Bucknall
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, NSW, Australia
| | - Donald S Thomas
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, NSW, Australia
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
23
|
Guiné RPF, De Lemos ET. Development of New Dairy Products with Functional Ingredients. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2018. [DOI: 10.1080/15428052.2018.1552901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raquel P. F. Guiné
- CI&DETS Research Centre and Department of Food Industry, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Edite Teixeira De Lemos
- CI&DETS Research Centre and Department of Food Industry, Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
24
|
Li X, Tian T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound With Organ-on-a-Chip. Front Pharmacol 2018; 9:1067. [PMID: 30356895 PMCID: PMC6190883 DOI: 10.3389/fphar.2018.01067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
Spearmint (Mentha spicata L.) is normally used as a vegetable flavoring herb. It also has several pharmacological activities against fever, cough, infection, and inflammation. The current study presents an untargeted comparative metabolomics approach utilizing HPLC-QTOF-MS high-throughput analytical technology to provide insights into the effect of the drying process on the examined spearmint species. To the best of our knowledge, this is the first report of compositional differences among fresh and dried spearmint leaves determined via a metabolomic approach to reveal that dried leaves are a better source of bioactive metabolites. The nephrotoxicity of kaempferol, a bioactive metabolite from spearmint, was further assessed with a kidney-on-a-chip. On the designed chip, a GelMA-based 3D culture platform mimics the microenvironment and basic functions of the kidney. In addition, the chip's transparency allows for direct observation under an optical microscope. Treatment of human embryonic kidney cells with 30 μM of kaempferol for 12 h induced no obvious cell injury or apoptosis in the cells, on the basis of morphology, thus providing a proof-of-concept demonstration of kaempferol's non-toxicity.
Collapse
Affiliation(s)
| | - Tian Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N, Sharifi-Rad J. Plants of Genus Mentha: From Farm to Food Factory. PLANTS (BASEL, SWITZERLAND) 2018; 7:E70. [PMID: 30181483 PMCID: PMC6161068 DOI: 10.3390/plants7030070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
Abstract
Genus Mentha, a member of Lamiaceae family, encompasses a series of species used on an industrial scale and with a well-described and developed culture process. Extracts of this genus are traditionally used as foods and are highly valued due to the presence of significant amounts of antioxidant phenolic compounds. Many essential oil chemotypes show distinct aromatic flavor conferred by different terpene proportions. Mint extracts and their derived essential oils exert notable effects against a broad spectrum of bacteria, fungi or yeasts, tested both in vitro or in various food matrices. Their chemical compositions are well-known, which suggest and even prompt their safe use. In this review, genus Mentha plant cultivation, phytochemical analysis and even antimicrobial activity are carefully described. Also, in consideration of its natural origin, antioxidant and antimicrobial properties, a special emphasis was given to mint-derived products as an interesting alternative to artificial preservatives towards establishing a wide range of applications for shelf-life extension of food ingredients and even foodstuffs. Mentha cultivation techniques markedly influence its phytochemical composition. Both extracts and essential oils display a broad spectrum of activity, closely related to its phytochemical composition. Therefore, industrial implementation of genus Mentha depends on its efficacy, safety and neutral taste.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Jelena Matejić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr Zorana Đinđića 81, 18000 Niš, Serbia.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Razieh Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615585, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, 4070386 VIII-Bio Bio Region, Chile.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
26
|
Rivas Romero MP, Estévez Brito R, Rodríguez Mellado JM, González-Rodríguez J, Ruiz Montoya M, Rodríguez-Amaro R. Exploring the relation between composition of extracts of healthy foods and their antioxidant capacities determined by electrochemical and spectrophotometrical methods. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Hejniak J, Baranowska I, Stencel S, Bajkacz S. Separation and Determination of Selected Polyphenols from Medicinal Plants. J Chromatogr Sci 2018; 57:17-26. [DOI: 10.1093/chromsci/bmy075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/24/2018] [Indexed: 11/14/2022]
Affiliation(s)
- Judyta Hejniak
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7M. Strzody Str., Gliwice, Poland
| | - Irena Baranowska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7M. Strzody Str., Gliwice, Poland
| | - Sandra Stencel
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7M. Strzody Str., Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7M. Strzody Str., Gliwice, Poland
| |
Collapse
|
28
|
Bahadori MB, Zengin G, Bahadori S, Dinparast L, Movahhedin N. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1440238] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mir Babak Bahadori
- Phytopharmacology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Shahram Bahadori
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Leila Dinparast
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Movahhedin
- Department of Pharmacognosy, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
29
|
Tzima K, Brunton NP, Rai DK. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E25. [PMID: 29587434 PMCID: PMC6027318 DOI: 10.3390/plants7020025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
Collapse
Affiliation(s)
- Katerina Tzima
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Nigel P Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
30
|
Meinhart AD, Damin FM, Caldeirão L, da Silveira TFF, Filho JT, Godoy HT. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res Int 2017; 99:522-530. [PMID: 28784513 DOI: 10.1016/j.foodres.2017.06.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
This study analysed 100 plants employed in Brazil as ingredients to infusions for their caffeic acid, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid (5-CQA), 3,4-dicaffeoylquinic acid (3,4-DQA), 3,5-dicaffeoylquinic acid (3,5-DQA), and 4,5-dicaffeoylquinic acid (4,5-DQA) contents. The samples were collected from public markets and analysed using ultra-high performance liquid chromatography (UPLC). The highest concentrations of chlorogenic acids were found in yerba mate (Ilex paraguariensis), 9,2g·100g-1, white tea (Camellia sinensis), winter's bark (Drimys winteri), green tea (Camellia sinensis), elderflower (Sambucus nigra), and Boehmeria caudata (known as assa-peixe in Brazil), 1,1g·100g-1. The present work showcased the investigation of chlorogenic acids in a wide range of plants not yet studied in this regard and also resulted in a comparative table which explores the content of six isomers in the samples.
Collapse
Affiliation(s)
- Adriana Dillenburg Meinhart
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil.
| | - Fernanda Mateus Damin
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil
| | - Lucas Caldeirão
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil
| | | | - José Teixeira Filho
- Faculty of Agricultural Engineering, University of Campinas (UNICAMP), P.O. Box 6011, 13083-875 Campinas, SP, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
31
|
Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting Alzheimer’s disease treatment. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Tang KSC, Konczak I, Zhao J. Phenolic compounds of the Australian native herb Prostanthera rotundifolia and their biological activities. Food Chem 2017; 233:530-539. [PMID: 28530609 DOI: 10.1016/j.foodchem.2017.04.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 04/23/2017] [Indexed: 11/15/2022]
Abstract
The chemical identity and bioactivities of phenolic components of the Australian native herb Prostanthera rotundifolia were studied. Phenolic compounds were extracted with 80% (v/v) aqueous methanol and purified by liquid chromatography. The antioxidant capacity of the extract and its inhibiting activity against α-glucosidase, pancreatic lipase and hyaluronidase were determined. Phenolic compounds were identified by a combination of HPLC-PDA, LC-high resolution MS (LC-HRMS), LC-tandem MS (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. Compared to spearmint, mint bush showed comparable antioxidant capacity, stronger inhibitory activity on pancreatic lipase and comparable and lower activity on α-glucosidase and hyaluronidase, respectively. Major compounds identified were verbascoside (48.8%), 4-methoxycinnamic acid (36.4%), p-coumaric acid glucose ester (9.2%) and 1-O-β-d-glucopyranosyl sinapate (5.6%), while caffeic acid, p-coumaric acid, hesperidin and naringenin were present in trace quantities. 4-Methoxycinnamic acid, p-coumaric acid glucose ester and 1-O-β-d-glucopyranosyl sinapate were identified for the first time in the genus of Prostanthera.
Collapse
Affiliation(s)
- Kitty S C Tang
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia
| | - Izabela Konczak
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
33
|
|