1
|
Yuan X, Chen X, Chai C, Feng M, Hu Y, Yi Z, Gu Y, Ruan L, Yi L. Identifying key contributors to the sweet aftertaste of raw Pu-erh tea through analytical and sensory methods. Food Chem 2025; 481:144067. [PMID: 40179506 DOI: 10.1016/j.foodchem.2025.144067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
In this study, the key components contributing to raw Pu-erh tea (RAPT) sweet aftertaste were identified. Six RAPTs were investigated through sensory evaluation, mass spectrometry, and taste addition experiments, and 96 taste components of tea infusion were annotated and analyzed. Saliva analysis after drinking tea revealed that 27 components present in tea remained in the mouth. On the basis of the results of the multivariate statistical analyses, we hypothesized that alkaloids and flavonoids might influence the sweet aftertaste strength of RAPT. Finally, the results of the taste addition experiments revealed that theophylline and rutin are key components that significantly influence the sweet aftertaste intensity of the RAPT. This strategy can be used as a methodology for analyzing the taste of tea, and the results can provide an evaluation index for evaluating the quality of RAPT.
Collapse
Affiliation(s)
- Xiaoping Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xian Chen
- Kunming Institute for Food and Drug Control, Kunming, 650032, China
| | - Chunrong Chai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Min Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongdan Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhibiao Yi
- Kunming Huzhimeng Pharmaceutical Co., LTD., Kunming 652201, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Linguang Ruan
- Yunnan State Farms Group CO., LTD., Kunming 650233, China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan State Farms Group CO., LTD., Kunming 650233, China.
| |
Collapse
|
2
|
Zhang S, Yu Q, Niu L, Yuan H, Shan X, Hua J, Chen L, Zhang Q, Feng Y, Yu X, Zhou Q, Jiang Y, Li J. Integration of intelligent sensory evaluation, metabolomics, quantification, and enzyme activity analysis to elucidate the influence of first-drying methods on the flavor formation of congou black tea and its underlying mechanism. Food Chem 2025; 480:143858. [PMID: 40112729 DOI: 10.1016/j.foodchem.2025.143858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
First-drying is a crucial step in black tea processing. Herein, the influence of different first-drying methods on black tea flavor formation was investigated, including box-hot air first-drying (BFD), roller first-drying, and microwave first-drying. Electronic tongue and color difference revealed distinct taste profiles (especially in bitter, astringency, sweet, umami) and liquor colors among three groups. Quantification and metabolomics analysis revealed that tea pigments (theaflavins, thearubigins), catechins, and other 34 metabolites including dimeric/trimeric catechins, amino acids and derivatives, flavonols and flavonol/flavone glycosides, phenolic acids, etc., were key differential components. The evolution of key metabolites, polyphenol oxidase (PPO) and peroxidase (POD) activities were tracked during drying. BFD exhibited significantly slower enzyme inactivation rate. Multiple conversions were possibly involved in drying, including catechins conversion (polymerization, degalloylation, epimerization), hydrolysis of flavonol-O-glycosides and phenolic acid esters, flavone-C-glycosides synthesis, etc., driven by the remaining PPO and POD activities and heat. Moreover, validation batch further verified the result.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinyan Yu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Le Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yuning Feng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolan Yu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jia Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
3
|
Yang C, Wang Z, Xu M, Wei K, Dai Q, Wan X, Leong O, Lin R, Cui C, Hou R. The chemical basis of aroma/taste and color formation in green tea infusion during cold brewing revealed by metabolomics analysis. Food Chem 2025; 479:143788. [PMID: 40073559 DOI: 10.1016/j.foodchem.2025.143788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
In this study, metabolomics and chemometrics were utilized to comprehensively investigate chemical mechanisms of aroma, taste, and color formation in cold-brewed green tea (4 °C). The results showed that the typical flavor of cold-brewed green tea (tea-to-water ratio: 1:50 g/mL) developed gradually after 1 h. Compared with the hot-brewed (80 °C) condition, volatile alcohols accumulated more under cold-brewing conditions. The extraction rate of bitter compounds such as caffeine decreased by more than 40 %, while the umami compound L-theanine increased about 9.2 % compared to hot-brewed green tea. The low temperatures also reduced flavonoid extraction ratio and retained high level of chlorophyll, resulting in a greener infusion. These differences led to cold-brewed green tea exhibiting a floral aroma, umami, sweet taste, and green color. This study revealed the impact of extraction temperature on the extraction efficiency of compounds from green tea. These findings can provide analysis methods for controlling quality of cold-brewed green tea.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Zhaojun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Minghui Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Kaikai Wei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China
| | - OiPo Leong
- Danone (China) Food and Beverage Co., Ltd., Guangzhou 510610, China
| | - Runze Lin
- Danone (China) Food and Beverage Co., Ltd., Guangzhou 510610, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
4
|
Chen J, Li Z, Zhang S, Cheng Z, Wu L, Dai X, Yang J, Yao X, Lu L. The key quality components in Fenggang green tea with different zinc content and their correlations with zinc. Food Res Int 2025; 208:116195. [PMID: 40263840 DOI: 10.1016/j.foodres.2025.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Zinc-enriched green tea has attracted more and more attention because of its unique characteristics and health benefits. Therefore, it is very important to study the zinc content in tea and the relationship between zinc content level and tea quality characteristics. In this study, three representative green tea samples from Fenggang County were selected as research subjects, namely Liumingxing green tea (LMXGT, high‑zinc green tea) with elevated zinc content, Cuidianxiang green tea (CDXGT, medium‑zinc green tea) containing moderate zinc levels, Linxiankang green tea (LXKGT, low-zinc green tea) characterized by reduced zinc concentration. To explore the relationship between zinc content and the quality characteristics of tea, we determined the zinc content in three types of green tea by microwave digestion method. The contents of aroma compounds were measured by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and the contents of catechins, caffeine and amino acids were determined by high performance liquid chromatography (HPLC). On this basis, Pearson correlation analysis was conducted. The experimental results showed that there was a strong correlation between zinc and tea quality components. 22 compounds were identified as key differential metabolites between green tea with high zinc content and green tea with low zinc content, including 12 aroma differential metabolites (such as (Z)-linalool oxide (furanoid), Linalool, cis-Jasmone and Methyl salicylate, etc.) and 10 non-volatile substances (such as Ile, Phe, Cys, Val, GC, etc.) that have a greater impact on taste and are positively correlated with zinc. These findings provide great potential for the quality evaluation of zinc-rich green tea.
Collapse
Affiliation(s)
- Jing Chen
- College of Tea Sciences / The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Zhaoqi Li
- College of Tea Sciences / The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Shiyu Zhang
- College of Life Sciences / Guizhou Pepper Research Institute, Guizhou University, Guiyang 550025, China
| | - Zhuolin Cheng
- College of Tea Sciences / The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Liang Wu
- Fenggang County Tea Industry Development Center, Fenggang County, 564200 Zunyi City, Guizhou Province, China
| | - Xiangqing Dai
- Fenggang County Tea Industry Development Center, Fenggang County, 564200 Zunyi City, Guizhou Province, China
| | - Jiagan Yang
- Zunyi Planting Development Service Center, Zunyi City 563000, Guizhou Province, China
| | - Xinzhuan Yao
- College of Tea Sciences / The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Sciences / The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; College of Life Sciences / Guizhou Pepper Research Institute, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Wang BH, Huang PH, Lo CY, Chang WC. Metabolomic analysis elucidates the dynamic changes in aroma compounds and the milk aroma mechanism across various portions of tea leaves during different stages of Oolong tea processing. Food Res Int 2025; 209:116203. [PMID: 40253174 DOI: 10.1016/j.foodres.2025.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the dynamics of aroma compounds in different locations of tea leaves at various stages of the Oolong tea-making process via metabolomics analysis and ribonucleic acid (RNA) gene transcriptome analysis of metabolism-related enzymes. In addition, this study focused on examining the composition and metabolic synthesis pathways of milk flavor compounds during the processing of Jin Xuan Oolong tea. This study showed that a total of 57 aroma compounds were identified, whereas the abundance of the heat map showed a decreasing abundance of these compounds from the first leaves to the stems. The milky aroma compounds were divided into two groups based on changes during the leaf-stirring process (shaking). Specifically, hexanal, 1-octen-3-ol, and trans-2-decanal decreased throughout this process. In contrast, heptanal, limonene, and jasmone increased, producing Oolong tea with a milky fragrance. Moreover, the results of this study on gene expressions of metabolic enzymes and fatty acid contents indicated the milky flavor compounds were derived from fatty acid metabolism. Therefore, this study provides theoretical support and information on the knowledge of Oolong tea processing, which potentially allows the tea industry to improve the quality of the tea to bring this fantastic flavor to consumers.
Collapse
Affiliation(s)
- Bi-Heng Wang
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Chih-Yu Lo
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan.
| | - Wen-Chang Chang
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan.
| |
Collapse
|
6
|
Yan K, Wang J, Zhou M, Peng Q, Mahmoud AB, Bai X, Baldermann S, Jiang X, Feng S, Wu Y, Fu J, Lin Z, Lv H, Shi J. Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: A comparative study of 'Longjing 43' and 'Qunti' cultivars. Food Chem 2025; 471:142790. [PMID: 39798359 DOI: 10.1016/j.foodchem.2025.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Longjing tea is well-known for its exceptional umami/mellow flavor, but the complexity of interactions among chemical compositions has impeded in-depth understanding. This study comprehensively compared the taste contributors in 'Longjing 43' (LJ43) and 'Qunti' (QT). Peptidomics revealed 865 identified water-soluble peptides in QT, and 497 in LJ43, with 44 umami peptides predicted. Potential umami peptide-T1R1/T1R3 complexes were further modeled using AlphaFold 3. LJ43 had higher levels of theanine (>18 mg/g), and glutamine (∼4 mg/g) compared to QT. Similar amounts of flavan-3-ols (>150 mg/g), particularly EGCG (>60 mg/g) and ECG (>30 mg/g) were determined in LJ43 and QT. Moreover, Longjing teas' characterized flavor contributions by macromolecules (peptides), and small molecules (amino acids, catechins, saccharides, and Maillard reaction products) were integrated. These insights will greatly expand tea flavor chemistry and provide promising approaches promotion premium Longjing teas.
Collapse
Affiliation(s)
- Kangni Yan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, Anhui, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Abdelkader Bassiony Mahmoud
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Xue Bai
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou 310024, China
| | - Susanne Baldermann
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany
| | - Xinbing Jiang
- Management Committee of Hangzhou West Lake Scenic Area, Hangzhou 310008, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou 310024, China
| | - Yan Wu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, Anhui, China
| | - Jianyu Fu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
7
|
Yang L, Zhu X, Yu Z, Hu B, Liu P, Zhang F, Chen M, Wang J, Huang Y, Yuan H, Li Y, Hua J. Agronomic characteristics, objective quantitative, metabolome and transcriptome analysis reveal the influence of fertilization treatments on fresh leaf characteristics and finished tea quality. Food Chem 2025; 482:144183. [PMID: 40203691 DOI: 10.1016/j.foodchem.2025.144183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Fertilization is important for tea garden management and tea flavor improvement; however, the effects of different ratios of organic and chemical fertilizer on fresh tea leaf quality and finished tea flavor remain unclear. Therefore, four fertilization treatments were used to elucidate the underlying mechanisms. Fertilization treatments increased tea yield, and organic fertilizer increased bud density. Organic fertilizer reduced bitter rutin and γ-aminobutyric acid content and phenol-to-ammonia ratio, and increased theanine, glutamic acid, quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, and (-)-epicatechin-3-O-gallate content, resulting in umami taste and bright green color of green tea. Nine key differential volatiles were screened, and organic fertilizer markedly increased the levels of floral and fruity volatiles, including indole, decanal, linalool, geraniol, and cis-jasmone, resulting in lasting orchid aroma. Transcriptome analysis showed that organic fertilizer upregulated genes related to phenylalanine conversion and fatty acid metabolism, resulting in excellent tea quality. The results provide robust support for precise quality improvement in tea production.
Collapse
Affiliation(s)
- Liyue Yang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ziming Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bicheng Hu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Ping Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Fenglan Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Youyi Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yeyun Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
8
|
Zan J, Chen W, Yuan H, Jiang Y, Zhu H. Evaluation of key taste components in Huangjin green tea based on electronic tongue technology. Food Res Int 2025; 201:115569. [PMID: 39849718 DOI: 10.1016/j.foodres.2024.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/22/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
A random forest algorithm combined with correlation analysis, was employed to identify key taste compounds in Huangjin green tea by using an electronic tongue. A total of 45 commercial Huangjin green teas were analysed for their amino acids, catechins, gallic acid, and caffeine using an amino acid analyser and HPLC. In this study, taste compounds of 30 were quantified, and 16 of these compounds exhibited taste activity values greater than 1 in the tea samples, including 6 amino acids, 8 catechins, as well as gallic acid and caffeine. Among these compounds, 5 compounds showed relatively high importance and strong correlations (P < 0.05) with the response of electronic tongue; specific for theanine, glutamic acid, lysine, gallocatechin, and catechin. A taste reconstruction experiment further confirmed that these 5 compounds significantly contributed to the overall taste profile, particularly enhancing the umami flavour.
Collapse
Affiliation(s)
- Jiezhong Zan
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Wenxue Chen
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Haibo Yuan
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yongwen Jiang
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongkai Zhu
- Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
9
|
Liu F, Zhu H, Li C, Wang Y, Zhang J, Tang X, Zhang T, Liu Y. A combined drying process involving hot air and roasting for improving summer congou black tea quality. Food Res Int 2025; 201:115584. [PMID: 39849739 DOI: 10.1016/j.foodres.2024.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
The present study aim to investigate the effects of three drying processes on the flavor-related compounds and sensory quality of summer black tea. A total of 234 flavonoids and 1200 volatile compounds were identified in tea samples by using UPLC-MS/MS and HS-SPME-GC-MS, respectively. It was found that the combining hot-air and roasting drying process increased the level of epigallocatechin, epicatechin, gallic acid, theaflavins, and umami and sweet amino acids in tea samples. Conversely, the contents of epigallocatechin gallate, caffeine, kaempferol and acylated kaempferol glycosides, and quercetin and acylated quercetin glycosides were found to decrease. Analysis of the volatile compounds revealed that combined drying process enhanced the contents of volatile substances with sweet, nutty, and floral properties while reducing those with green attributes. Sensory evaluation results showed that the combined drying process improved the mellow taste and pure aroma, decreased the bitterness and astringency, and weakened the unpleasant flavor of summer black tea. Overall result indicated that the combined drying process could improve the flavor quality of summer black tea. This study may provide data support and feasible strategies for improving summer congou black tea quality.
Collapse
Affiliation(s)
- Fei Liu
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China.
| | - Hongkai Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China
| | - Chunhua Li
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China
| | - Yun Wang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China
| | - Juan Zhang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China
| | - Xiaobo Tang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China
| | - Ting Zhang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Science, Chengdu 610066, PR China
| | - Yueyun Liu
- Yibin Research Institute of Tea Industry, Yibin 644005, PR China
| |
Collapse
|
10
|
Chen L, Zhang S, Feng Y, Jiang Y, Yuan H, Shan X, Zhang Q, Niu L, Wang S, Zhou Q, Li J. Seasonal variation in non-volatile flavor substances of fresh tea leaves (Camellia sinensis) by integrated lipidomics and metabolomics using UHPLC-Q-Exactive mass spectrometry. Food Chem 2025; 462:140986. [PMID: 39208737 DOI: 10.1016/j.foodchem.2024.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.
Collapse
Affiliation(s)
- Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shan Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yuning Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shengnan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jia Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
11
|
Tang Z, Shi L, Liang S, Yin J, Dong W, Zou C, Xu Y. Recent Advances of Tannase: Production, Characterization, Purification, and Application in the Tea Industry. Foods 2024; 14:79. [PMID: 39796369 PMCID: PMC11720592 DOI: 10.3390/foods14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Tannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited. Therefore, the sources of Tannase and the effects of fermentation temperature, pH, stirring speed, time, carbon, and nitrogen sources on the preparation of Tannase are described in this study. The advantages and disadvantages of various methods for measuring Tannase activity and their enzymatic characterization are summarized, and the concentration and purification methods of Tannase are emphasized. Finally, the application of Tannase to reduce the formation of tea precipitate, enhance antioxidant capacity, increase the extraction rate of active ingredients, and improve the flavor of the tea infusion is described. This study systematically reviews the production, characterization, purification, and application of Tannase to provide a reference for further research and application of Tannase.
Collapse
Affiliation(s)
- Zhanhui Tang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (Z.T.); (L.S.)
| | - Liyu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (Z.T.); (L.S.)
| | - Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China;
| | - Chun Zou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; (S.L.); (J.Y.)
| | - Yongquan Xu
- National Engineering Research Center for Tea Processing, Hangzhou 310008, China
| |
Collapse
|
12
|
Hao M, Lai X, Li Q, Cao J, Sun L, Chen R, Zhang Z, Li Q, Lai Z, Sun S. Widely targeted metabolomic analysis reveals metabolite changes induced by incorporating black tea fermentation techniques in oolong tea processing for quality improvement. Food Chem 2024; 459:140433. [PMID: 39024882 DOI: 10.1016/j.foodchem.2024.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Oolong tea, a semi-fermented tea, has a prominent fruity and floral aroma, resembling green tea's astringency and pungency but lacking black tea's mellowness. Oolong tea incorporating black tea fermentation techniques (OT-IBTFT) not only retained its excellent floral and fruity aroma but also reduced astringency and enriched taste. However, metabolite changes remain unknown. In this study, widely targeted metabolomic analysis showed OT-IBTFT reduced prunin, gallocatechin, methyl gallate, and increased loliolide by changing the flavonoid biosynthesis and biosynthesis of secondary metabolites pathways, thereby reducing the astringency and increasing the mellow taste and richness to improve oolong tea quality. In addition, Wrap-rolling 5 times increased fermentation, improving the color and aroma of oolong tea by increasing theaflavic acid and 2-furoic acid, is more significant than wrap-rolling once. In conclusion, these findings provide a theoretical basis for the improvement of oolong tea processing techniques and flavor and quality control.
Collapse
Affiliation(s)
- Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| |
Collapse
|
13
|
Tian J, Wu Y, Xu S, Ma J, Zhang Z, Zhu J, Shen T, Xin Z, Fang W, Pan L, Zhu X. Non-invasive anticipation of infusion taste in fine-manipulated green teas through hyperspectral appearance analysis guided by ECG content. Food Chem 2024; 458:140254. [PMID: 38954958 DOI: 10.1016/j.foodchem.2024.140254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
The high catechin content in summer-to-autumn tea leaves often results in strong, unpleasant tastes, leading to significant resource waste and economic losses due to lignification of unpicked leaves. This study aims to improve the taste quality of summer-to-autumn green teas by combining fine manipulation techniques with hyperspectral observation. Fine manipulation notably enhanced infusion taste quality, particularly in astringency and its aftertaste (aftertasteA). Using Partial Least Squares Discriminant Analysis (PLSDA) on hyperspectral data, 100% prediction accuracy was achieved for dry tea appearance in the near-infrared spectrum. Astringency and aftertasteA correlated with hyperspectral data, allowing precise estimation with over 90% accuracy in both visible and near-infrared spectrums. Epicatechin gallate (ECG) emerged as a key taste compound, enabling non-invasive taste prediction. Practical applications in processing and quality control are demonstrated by the derived equations (Astringency = -0.88 × ECG + 45.401, AftertasteA = -0.353 × ECG + 18.609), highlighting ECG's role in shaping green tea taste profiles.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Yujing Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Shuofei Xu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Jinyan Ma
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Zhuyi Zhang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Jinqiao Zhu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China, 212013
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095
| | - Leiqing Pan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095.
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China, 210095.
| |
Collapse
|
14
|
Xiao H, Tian Y, Yang H, Zeng Y, Yang Y, Yuan Z, Zhou H. Are there any differences in the quality of high-mountain green tea before and after the first new leaves unfold? A comprehensive study based on E-sensors, whole metabolomics and sensory evaluation. Food Chem 2024; 457:140119. [PMID: 38936125 DOI: 10.1016/j.foodchem.2024.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
High-mountain green tea, where the first new leaf hasn't yet unfurled, is prized for perceived superior quality, but this hasn't yet been verified by experimentation. Electronic sensors, whole metabolomics and sensory evaluation were employed to assess the quality of yymj (tea buds with a newly unfurled leaf) and qymj (tea buds without new leaves). The qymj proved to have significant advantages in aroma, color and shape, but still had some shortcomings in umami, bitterness and sourness. Differences in the content of volatile organic compounds (including alcohols, hydrocarbons and lipids) and nonvolatile organic compounds (flavonoids, amino acids, sugars, and phenolic acids) quality of high-mountain green teas with different maturity levels and provides well explained these quality differences. This study establishes a systematic approach to study the quality of high-mountain green tea at different maturity levels, and provides important reference information for consumers, governments and tea farmers.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yajuan Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yang Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China.
| |
Collapse
|
15
|
Mo X, Chen Y, Zeng Z, Xiao S, Huang Y. Optimizing Lactic Acid Bacteria Fermentation for Enhanced Summer and Autumn Tea Quality. Foods 2024; 13:3126. [PMID: 39410161 PMCID: PMC11475831 DOI: 10.3390/foods13193126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The level of consumption of summer tea is a problem in the development of China's tea industry. Current strategies to enhance the quality of summer and autumn teas primarily target the cultivation environment, with less emphasis on processing improvements. This study aimed to optimize the fermentation parameters to impact the quality of summer and autumn teas. We screened four strains of lactic acid bacteria (LAB) suitable for tea fermentation and determined their optimal mix. This optimized blend was applied to ferment summer and autumn teas. Through single-factor experiments, we evaluated the impact of various processing parameters, including the fixation method, rolling degree, inoculation amount, glucose concentration, fermentation temperature, and fermentation duration, on LAB growth and tea quality. The optimal processing conditions were established as microwave fixation, heavy rolling, an inoculation rate of 1.8% LAB, glucose addition at 8.8%, and fermentation at 36.5 °C for five days. Analysis revealed that the fermentation process significantly reduced the levels of polyphenols and ester-type catechins, which are associated with astringency and bitterness while enhancing the content of gamma-aminobutyric acid (GABA). Specifically, after five days, polyphenol content decreased by 26.89%, and GABA levels increased from 0.051 mg/g to 0.126 mg/g. The predominant aroma compounds in the fermented tea were alcohols with floral and fruity scents, constituting 54.63% of the total aroma profile. This research presents a methodical approach to reduce the astringency and bitterness of summer and autumn teas while concurrently increasing GABA levels.
Collapse
Affiliation(s)
- Xiaoli Mo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.M.); (Z.Z.)
| | - Yingyu Chen
- Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Zhen Zeng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.M.); (Z.Z.)
| | - Sui Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.M.); (Z.Z.)
| |
Collapse
|
16
|
Li S, Tian H, Zhu G, Wei Z. The application of untargeted metabolomics coupled with chemometrics for the analysis of agitation effects on the sensory profiles of matcha tea. Curr Res Food Sci 2024; 9:100843. [PMID: 39309407 PMCID: PMC11415815 DOI: 10.1016/j.crfs.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
In the study, the effects of agitating parameters (different agitating rates and time) on the aroma and taste profiles of matcha tea were systematically investigated by the combination of untargeted metabolomics and chemometrics. The aroma profiles of matcha tea agitated at low rates (500 rpm) and for 30 s were more richness than that agitated with other parameters by sensory analysis and gas chromatography-ion mobility spectrometry. The key aroma compounds contributed to the sensory differences of matcha tea agitated at different rates and time were analyzed by gas chromatography-mass spectrometry and partial least square-discriminate analysis (PLS-DA), which were further verified by the triangle test. Thereinto, 2,4-decadienal associated with the sweet, brown and seaweed aroma significantly affected the aroma profiles of matcha tea with different agitating rates and time. The levels of bitterness and astringency were also higher in matcha tea with low agitating rates and time by sensory evaluation, which were attributed to the variations of phenolic compounds. Flavonol glycosides, gallic acid and (-)-gallocatechin were determined the key compound to the taste differences of matcha tea with different agitating parameters by the analysis of PLS-DA based on the results of high performance liquid chromatography and the sensory verification. And flavonol glycosides were mainly contributed to the bitterness and astringency, and gallic acid and (-)-gallocatechin influenced the umami and sweetness of matcha tea. Consequently, agitation has the potential to affect the sensory profiles of matcha tea by changing aroma and taste substances.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Department of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Hehe Tian
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Guilong Zhu
- College of Life Science and Engineering, Northwest MinZu University, Lanzhou, 730124, PR China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Department of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
17
|
Guerreiro C, Rinaldi A, Brandão E, de Jesus M, Gonçalves L, Mateus N, de Freitas V, Soares S. A look upon the adsorption of different astringent agents to oral models: Understanding the contribution of alternative mechanisms in astringency. Food Chem 2024; 448:139153. [PMID: 38569410 DOI: 10.1016/j.foodchem.2024.139153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Salivary proteins precipitation by interaction with polyphenols is the major mechanism for astringency. However, alternative mechanisms seem involved in the perception of different subqualities of astringency. In this study, adsorption of four astringent agents to in vitro oral models and their sensory properties were assessed. Overall, green tea infusion and tannic acid have shown a higher adsorption potential for models with oral cells and absence of saliva. Alum and grape seed extract presented higher adsorption in models with presence of oral cells and saliva. Multiple factor analysis suggested that adsorption may represent important mechanisms to elicit the astringency of alum. Models including saliva, were closely associated with overall astringency and aggressive subquality. Models with cells and absent saliva were closely associated with greenness, suggesting a taste receptor mechanism involvement in the perception. For the first time a correlation between an oral-cell based assay and astringency sensory perception was shown.
Collapse
Affiliation(s)
- Carlos Guerreiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | | | - Elsa Brandão
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Mónica de Jesus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Leonor Gonçalves
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, Porto, Portugal.
| |
Collapse
|
18
|
Saad MM, Saad AM, Hassan HM, Ibrahim EI, Hassabo AA, Ali BA. Bioremoval of tannins and heavy metals using immobilized tannase and biomass of Aspergillus glaucus. Microb Cell Fact 2024; 23:209. [PMID: 39054459 PMCID: PMC11271194 DOI: 10.1186/s12934-024-02477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.
Collapse
Affiliation(s)
- Moataza Mahmoud Saad
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt
| | - Abdelnaby Mahmoud Saad
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt
| | - Helmy Mohamed Hassan
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt
| | - Eman I Ibrahim
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt
| | - Amany A Hassabo
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt
| | - Basant A Ali
- Microbial Chemistry Department, National Research Centre (NRC), 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| |
Collapse
|
19
|
Yang X, Liu Z, Zhang Y, Zhao S, Yan S, Zhu L, Zhou Q, Chen L. Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea. Foods 2024; 13:2347. [PMID: 39123539 PMCID: PMC11311662 DOI: 10.3390/foods13152347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Mulberry leaf tea (MT) is a popular Chinese food with nutrition and medicinal functions. Solid-state fermentation with Eurotium cristatum of MT (FMT) can improve their quality. Differences in chromaticity, taste properties, and flavor characteristics were analyzed to evaluate the improvements of the sensory quality of FMT. After fermentation, the color of the tea infusion changed. The E-tongue evaluation results showed a significant decrease in unpleasant taste properties such as sourness, bitterness, astringency, and aftertaste-bitterness, while umami and saltiness taste properties were enhanced post-fermentation. Aroma-active compounds in MT and FMT were identified and characterized. A total of 25 key aroma-active compounds were screened in MT, and 2-pentylfuran showed the highest relative odor activity value (ROAV). A total of 26 key aroma-active compounds were identified in FMT, and the newly formed compound 1-octen-3-one showed the highest ROAV, which contributed to FMT's unique mushroom, herbal, and earthy flavor attributes. 1-octen-3-one, (E)-2-nonenal, trimethyl-pyrazine, 2-pentylfuran, and heptanal were screened as the potential markers that contributed to flavor differences between MT and FMT. E. cristatum fermentation significantly altered the sensory properties and flavor compounds of MT. This study provides valuable insights into the sensory qualities of MT and FMT, offering a theoretical basis for the development of FMT products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Yanhao Zhang
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Shuangzhi Zhao
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Shigan Yan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Z.L.); (S.Y.)
| | - Qingxin Zhou
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| | - Leilei Chen
- Institute of Food and Nutrition Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (Y.Z.); (S.Z.); (L.C.)
| |
Collapse
|
20
|
Sun Q, Wu F, Wu W, Yu W, Zhang G, Huang X, Hao Y, Luo L. Identification and quality evaluation of Lushan Yunwu tea from different geographical origins based on metabolomics. Food Res Int 2024; 186:114379. [PMID: 38729702 DOI: 10.1016/j.foodres.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.
Collapse
Affiliation(s)
- Qifang Sun
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Furu Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wei Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
21
|
Wang H, Feng X, Blank I, Zhu Y, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. Differences of Typical Wuyi Rock Tea in Taste and Nonvolatiles Profile Revealed by Multisensory Analysis and LC-MS-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8715-8730. [PMID: 38564531 DOI: 10.1021/acs.jafc.3c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imre Blank
- IBK Food & Beverage Consultancy Sàrl, 1073 Savigny, Switzerland
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan 30015, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Yang S, Pathak S, Tang H, Zhang D, Chen Y, Ntezimana B, Ni D, Yu Z. Non-Targeted Metabolomics Reveals the Effects of Different Rolling Methods on Black Tea Quality. Foods 2024; 13:325. [PMID: 38275692 PMCID: PMC10815122 DOI: 10.3390/foods13020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
A non-targeted metabolomics approach and sensory evaluation, coupled with multivariate statistical analysis, systematically uncover the impact of the rolling time on the quality parameters of black tea. GC-MS analysis reveals that a moderate extension of rolling time favorably contributes to the accumulation of characteristic aroma components in black tea. The volatile components reach their highest concentration in black tea samples processed during an 80-min rolling period. UHPLC-Q-TOF/MS analysis demonstrates a substantial decrease in the contents of catechins and flavonoids with an increase in rolling time. Simultaneously, the production of theaflavins, coupled with the degradation of green bitterness volatiles (GBVs), significantly contributes to the formation of endogenous aroma components in black tea. These findings underscore the close relationship between rolling time control and black tea quality, emphasizing that a moderate extension of the rolling time fosters the development of improved black tea flavor quality. The comprehensive quality evaluation indicates that the optimal duration is 80 min. However, the initial 0 to 20 min of rolling is a crucial phase for the genesis and transformation of black tea quality. This study offers valuable insights into the influence of rolling time on black tea quality, potentially enhancing future studies of rolling technology. It provides theoretical guidelines for optimizing the processing of Gongfu black tea.
Collapse
Affiliation(s)
- Shuya Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Sujan Pathak
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Haiyan Tang
- School of Horticulture and Landscape Architecture, Hubei Vocational College of Bio-Technology, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Bernard Ntezimana
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (S.P.); (D.Z.); (Y.C.); (B.N.); (D.N.)
| |
Collapse
|
23
|
Wang Z, Li H, Huang W, Duan S, Yan Y, Zeng Z, Fang Z, Li C, Hu B, Wu W, Lan X, Liu Y. Landscapes of the main components, metabolic and microbial signatures, and their correlations during pile-fermentation of Tibetan tea. Food Chem 2024; 430:136932. [PMID: 37572385 DOI: 10.1016/j.foodchem.2023.136932] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Microbial fermentation, a key step in Tibetan tea production, plays a pivotal role in forming the tea's unique quality. In our study, we mapped out the landscapes of major components, metabolomic signatures, and microbial features of Tibetan tea using component content determination, untargeted metabolomic analysis, and ITS and 16S rRNA sequencing. The results reveal that theabrownin content demonstrated a consistent growth trend post-fermentation, increasing from 41.96 ± 1.64 mg/g to 68.75 ± 2.58 mg/g. However, the content of epigallocatechin gallate (EGCG) significantly dwindled from 80.02 ± 0.51 mg/g to 8.12 ± 0.07 mg/g. Additionally, 518 metabolites were pinpointed as pivotal to the metabolic variation induced by microbial fermentation. The microbiome analysis exhibited a considerable shift in the microbiota signature, with Aspergillus emerging as the dominant microorganism. To conclude, these findings offer novel perspectives for enhancing the quality of Tibetan tea and abbreviating fermentation time through the regulation of microbiota structure.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Weimin Huang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yue Yan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xiguo Lan
- Sichuan Yingtai Tea Industry Co., Ltd, Yaan 625200, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
24
|
Yu Y, Zhu X, Ouyang W, Chen M, Jiang Y, Wang J, Hua J, Yuan H. Effects of electromagnetic roller-hot-air-steam triple-coupled fixation on reducing the bitterness and astringency and improving the flavor quality of green tea. Food Chem X 2023; 19:100844. [PMID: 37780241 PMCID: PMC10534162 DOI: 10.1016/j.fochx.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.0% and 3.2%, reducing bitterness and astringency of green tea; amino acids, soluble sugars, and chlorophyll contents were significantly increased, enhancing the freshness, sweetness, and greenness; the color indexes, such as L/L* value of brightness and -a/-a* value of greenness, were also improved, and ERHSF-treated samples had the highest sensory scores. These results provided theoretical support and technical guidance for precise quality improvement of summer-autumn green tea.
Collapse
Affiliation(s)
| | | | - Wen Ouyang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
25
|
Saad MM, Saad AM, Hassan HM, Ibrahim EI, Abdelraof M, Ali BA. Optimization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. BIORESOUR BIOPROCESS 2023; 10:73. [PMID: 38647901 PMCID: PMC10991964 DOI: 10.1186/s40643-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 04/25/2024] Open
Abstract
Tannases are valuable industrial enzymes used in food, pharmaceutical, cosmetic, leather manufacture and in environmental biotechnology. In this study, 15 fungal isolates were obtained from Egyptian cultivated soil and marine samples. The isolated fungi were qualitatively and quantitatively screened for their abilities to produce tannase. The selected fungal isolate NRC8 giving highest tannase activity was identified by molecular technique (18S rRNA) as Aspergillus glaucus. Among different tannin-containing wastes tested, the black tea waste was the best substrate for tannase production by Aspergillus glaucus in solid-state fermentation (SSF). Optimization of the different process parameters required for maximum enzyme production was carried out to design a suitable SSF process. Maximal tannase production was achieved with moisture content of 75%, an inoculums size of 6 × 108 spore/ml and sodium nitrate 0.2% (pH of 5.0) at 30 °C after 5 days of incubation. Box-Behnken experiment was designed to get a quadratic model for further optimization studies. Four-factor response-surface method with 27 runs was prepared using independent parameters including (moisture content %, initial pH, substrate concentration (g) and sodium nitrate concentration (g) for tannase model. The F- and P-values of the model were 4.30 and 0.002, respectively, which implied that the model is significant. In addition, the lack-of-fit was 1040.37 which indicates the same significance relative to the pure error. A. glaucus tannase was evaluated by the efficiency of conversion of tannic acid to gallic acid. Moreover, production of gallic acid from SSF process of A. glaucus using black tea waste was found to be 38.27 mg/ml. The best bioconversion efficiency was achieved at 40 °C with tannic acid concentration up to 200 g/L.
Collapse
Affiliation(s)
- Moataza Mahmoud Saad
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt
| | - Abdelnaby Mahmoud Saad
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt
| | - Helmy Mohamed Hassan
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt
| | - Eman I Ibrahim
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt.
| | - Basant A Ali
- Microbial Chemistry Department, National Research Centre (NRC), 33 Bohouth St, Dokki, 12622, Giza, Egypt
| |
Collapse
|
26
|
Zhong N, Zhao X, Yu P, Huang H, Bao X, Li J, Zheng H, Xiao L. Characterization of the Sensory Properties and Quality Components of Huangjin Green Tea Based on Molecular Sensory-Omics. Foods 2023; 12:3234. [PMID: 37685167 PMCID: PMC10486783 DOI: 10.3390/foods12173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Huangjin green tea (HJC) is one of the most famous regional green teas in China, and has gained attention for its unique flavor. Research on HJC has focused mainly on the synthesis of L-theanine, with fewer studies concentrating on sensory characteristics. In this study, molecular sensory science techniques, including color analysis, gas chromatography-ion mobility spectrometry, and E-tongue, were used to characterize the sensory properties of HJC, with Fuding Dabai and Anji Baicha teas used as conventional and high amino acid controls, respectively. The sensory characteristics and main quality components of HJC lie somewhere between these two other teas, and somewhat closer to the conventional control. They were difficult to distinguish by color, but significant differences exist in terms of volatile organic compounds (VOCs), E-tongue values on bitterness and astringency, and their contents of major taste components. VOCs such as (E)-2-octenal, linalool, ethyl acrylate, ethyl acetate, and 2-methyl-3-furanethiol were found to be the main differential components that contributed to aroma, significantly influencing the tender chestnut aroma of HJC. Free amino acids, tea polyphenols, and ester catechins were the main differential components responsible for taste, and its harmonious phenol-to-ammonia ratio was found to affect the fresh, mellow, heavy, and brisk taste of HJC.
Collapse
Affiliation(s)
- Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xiaocun Bao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Jin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
27
|
Yu J, Zhang K, Wang Y, Zhai X, Wan X. Flavor perception and health benefits of tea. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:129-218. [PMID: 37722772 DOI: 10.1016/bs.afnr.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
As one of the most consumed non-alcoholic beverages in the world, tea is acclaimed for its pleasant flavor and various health benefits. Different types of tea present a distinctive flavor and bioactivity due to the changes in the composition and proportion of respective compounds. This article aimed to provide a more comprehensive understanding of tea flavor (including aroma and taste) and the character of tea in preventing and alleviating diseases. The recent advanced modern analytical techniques for revealing flavor components in tea, including enrichment, identification, quantitation, statistics, and sensory evaluation methodologies, were summarized in the following content. Besides, the role of tea in anti-cancer, preventing cardiovascular disease and metabolic syndrome, anti-aging and neuroprotection, and regulating gut microbiota was also listed in this article. Moreover, questions and outlooks were mentioned to objectify tea products' flavor quality and health benefits on a molecular level and significantly promote our understanding of the comprehensive value of tea as a satisfactory health beverage in the future.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
28
|
Li L, Sheng X, Zan J, Yuan H, Zong X, Jiang Y. Monitoring the dynamic change of catechins in black tea drying by using near-infrared spectroscopy and chemometrics. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
29
|
Zhang JY, Cui HC, Feng ZH, Wang WW, Zhao Y, Deng YL, Jiang HY, Yin JF, Engelhardt UH. Bitterness quantification and simulated taste mechanism of theasinensin A from tea. Front Nutr 2023; 10:1138023. [PMID: 37229471 PMCID: PMC10203438 DOI: 10.3389/fnut.2023.1138023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
Theasinensin A is an important quality chemical component in tea, but its taste characteristics and the related mechanism are still unclear. The bitterness quantification and simulated taste mechanism of theasinensin A were researched. The results showed that theasinensin A was significantly correlated with the bitterness of tea. The bitterness threshold of theasinensin A was identified as 65 μmol/L for the first time. The dose-over-threshold (DOT) value of theasinensin A was significantly higher than that of caffeine in black tea soup. The concentration-bitterness curve and time-intensity curve of theasinensin A were constructed. The bitterness contribution of theasinensin A in black tea was higher than in oolong and green tea. Theasinensin A had the highest affinity with bitterness receptor protein TAS2R16, which was compared to TAS2R13 and TAS2R14. Theasinensin A was mainly bound to a half-open cavity at the N-terminal of TAS2R13, TAS2R14, and TAS2R16. The different binding capacity, hydrogen bond, and hydrophobic accumulation effect of theasinensin A and bitterness receptor proteins might be the reason why theasinensin A presented different bitterness senses in human oral cavity.
Collapse
Affiliation(s)
- Jian-yong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hong-chun Cui
- Tea Research Institute of Hangzhou Academy of Agricultural Science, Hangzhou, China
| | - Zhi-hui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-wei Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Zhao
- Tea Research Institute of Hangzhou Academy of Agricultural Science, Hangzhou, China
| | - Yu-liang Deng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - He-yuan Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jun-feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ulrich H. Engelhardt
- Institute of Food Chemistry, Brunswick University of Technology, Braunschweig, Germany
| |
Collapse
|
30
|
Improving flavor of summer Keemun black tea by solid-state fermentation using Cordyceps militaris revealed by LC/MS-based metabolomics and GC/MS analysis. Food Chem 2023; 407:135172. [PMID: 36508871 DOI: 10.1016/j.foodchem.2022.135172] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cordyceps militaris (C. militaris) has been approved and widely used in healthy food. The present study aimed to improve the flavor of summer Keemun black tea (KBT) using C. militaris solid-state fermentation. Combined with sensory evaluation, the volatile and non-volatile components of solid-state fermentation of KBT (SSF-KBT) and KBT were analyzed. The results showed that after the solid-state fermentation, the contents of total polyphenol, total flavonoid, and total free amino acids were significantly reduced. Further non-targeted metabolomics analysis revealed that the contents of non-galloylated catechins and d-mannitol increased, while the galloylated catechins and flavonoid glycosides decreased as did the bitterness and astringency of KBT. Dihydro-β-ionone and β-ionone (OAV = 59321.97 and 8154.17) were the aroma-active compounds imparting woody and floral odors in SSF-KBT, respectively. Current study provides a new avenue to develop summer-autumn KBT.
Collapse
|
31
|
Gao Y, Han Z, Xu YQ, Yin JF. Chemical composition and anti-cholesterol activity of tea (Camellia sinensis) flowers from albino cultivars. Front Nutr 2023; 10:1142971. [PMID: 37051128 PMCID: PMC10083420 DOI: 10.3389/fnut.2023.1142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
| | - Zhen Han
- Agro-Technical Extension Station of Ningbo City, Ningbo, China
| | - Yong-Quan Xu
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- Jun-Feng Yin,
| |
Collapse
|
32
|
Discovery and Flavor Characterization of High-Grade Markers in Baked Green Tea. Molecules 2023; 28:molecules28062462. [PMID: 36985433 PMCID: PMC10051951 DOI: 10.3390/molecules28062462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Green tea is a popular beverage around the world and possesses a unique flavor. The flavor qualities of green tea are closely related to its grade and this relationship has not yet been studied. Three baked green teas with similar flavor were studied, namely, Huangshan Maofeng, Taiping Houkui, and Shucheng Xiaolanhua. A total of 34 odor compounds were identified by solid phase microextraction (SPME) combined with two-dimensional comprehensive gas chromatography–olfactometry–mass spectrometry analysis (GC×GC-O-MS). The results of the clustering analysis showed that the content of D-limonene and linalool in the high-grade (Grade A) tea was much higher than the content in other grades, so they were identified as odor markers of Grade A baked green tea. The taste components of different grades of green tea infusion were analyzed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and HPLC. A combination of clustering analysis, principal component analysis (PCA), and orthogonal partial least squares discrimination analysis (OPLS-DA) indicated that galloylglucose, digalloylglucose, trigalloyglucose, strictinin, and gallic acid could be used as taste markers of Grade A baked green tea. Therefore, the results in this paper reveal the substances responsible for the odor and taste markers of high-grade baked green tea.
Collapse
|
33
|
Huang H, Li M, Tan Q, Tang C, Gao J, Bao X, Fan S, Mo T, Han L, Zhang D, Lin J. The impact of thermal extraction on the quality of Phyllanthus emblica Linn.: A systematic study based on composition changes. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
34
|
Tu Q, Liu S, Li Y, Zhang L, Wang Z, Yuan C. The effects of regions and the wine aging periods on the condensed tannin profiles and the astringency perceptions of Cabernet Sauvignon wines. Food Chem X 2022; 15:100409. [PMID: 36211762 PMCID: PMC9532778 DOI: 10.1016/j.fochx.2022.100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022] Open
Abstract
Thirty-two commercial red wines of Cabernet Sauvignon produced in five continuous vintages (2015–2019) and collected from four production regions were statistically different for the analyzed condensed tannin profiles. Cabernet Sauvignon wines from four regions were rich in the (–)-epicatechin as the extension subunit. Condensed tannin profiles could be used to distinguish some of the production region, but the different vintage samples were not well differentiated. A negative correlation of ageing periods and condensed tannin concentration of Cabernet Sauvignon wines was observed.
This study sought to determine the effects of wine-producing regions and aging periods on the astringency and chemistry of condensed tannins of Cabernet Sauvignon dry red wines. A wine quality study was performed with 5 vintages of 32 Cabernet Sauvignon wines produced in four Chinese wine-producing regions, Hebei (H), Xinjiang (X), Inner Mongolia (NM), and Ningxia (NX). Condensed tannin profiles were assessed by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). The (–)-epicatechin as the terminal subunit (tEC) is the major differential component between regions. Correlation analysis revealed that condensed tannin concentration and composition significantly affected the sensory evaluation of astringency. Condensed tannin concentrations were significantly and negatively correlated with wine aging periods. However, no significant correlation was found between aging periods and condensed tannin subunits (as mole%) composition. The current findings enhance the understanding of condensed tannins' chemical and astringency characteristics in Cabernet Sauvignon wines.
Collapse
|
35
|
Relationship between the Grade and the Characteristic Flavor of PCT (Panyong Congou Black Tea). Foods 2022; 11:foods11182815. [PMID: 36140943 PMCID: PMC9497606 DOI: 10.3390/foods11182815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Panyong Congou black tea (PCT) is one of the most representative and historically famous Congou black teas in China and has been gaining more and more attention for its beneficial health properties. Currently, four grades of PCT are available, based on the raw leaf materials and consumer palatability. The chemical profiles distinguishing different grades of PCT are yet to be defined, nor has the relationship with grade been evaluated. In the present study, chemometric analysis showed that epigallocatechin (EGC), catechin (C), polyphenols, gallic acid (GA), and free amino acids are grade related bio-markers of PCT. These compounds are associated with the sweet and mellow aftertaste of PCT. A total of 34 volatile components were identified, of which the three component types with the highest relative percentages were alcohols (51.34–52.51%), ketones (27.31–30.28%), and aldehydes (12.70–13.18%). Additionally, our results revealed that sweet floral and fruity aromas were positively correlated with six volatile organic compounds (VOCs), 1-pentanol, propyl hexanoate, linalool, cyclohexanone, hexanal, and 2,5-dimethylpyrazine. Clear discrimination was achieved using orthogonal projections to latent structures discriminant analysis (OPLS-DA). The findings provide vital information on the characteristic flavor of each grade of PCT.
Collapse
|
36
|
Cui Y, Lai G, Wen M, Han Z, Zhang L. Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry. Food Chem 2022; 386:132788. [PMID: 35344723 DOI: 10.1016/j.foodchem.2022.132788] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Nine black tea samples with different color intensity were firstly determined by chromatic difference analyzer. The color characteristics were secondly quantitatively described by UV-visible spectroscopy. Thirdly, liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics analysis was applied in low-molecular-weight compounds. Finally, the color contributors were identified by the correlation analysis of color, spectrometry and mass data. UV-visible based metabolomics analysis revealed that the wavelength at 380-520 nm (VIP > 1.50) was the critical absorbance band for distinguishing different color of BT infusions, while LC-MS based metabolomics analysis indicated that there were 48 main marker compounds responsible for the classification of different BT infusions. Correlation analysis results showed that the coefficients of theaflavins, thearubigins, theabrownins, flavonoid glycosides, and some hydroxycinnamoyl acids were > 0.7, which suggested they were main color contributors of BT infusion. The present study expanded a new vision on the color analysis of BT infusion.
Collapse
Affiliation(s)
- Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
37
|
Kim D, Wang Y. Health-beneficial aroma and taste compounds in a newly developed kombucha using a Huanglongbing-tolerant mandarin hybrid. J Food Sci 2022; 87:2595-2615. [PMID: 35534223 DOI: 10.1111/1750-3841.16170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus greening disease; no commercially applicable measures exist. 'LB8-9' Sugar Belle® (SB), originally developed for the fresh market, is the most HLB-tolerant cultivar among commercially available varieties. Due to the limited capacity of the fresh fruit market, there is a need to increase the demand for SB juice. Kombucha is a fermented tea beverage with black tea and sugar, and is considered a healthy drink with an increasing market. Therefore, we aim to study the potential of using SB juice in kombucha production. Regular (black tea with no citrus juice added), Hamlin (black tea with Hamlin juice added), and SB kombucha (black tea with SB juice added) were prepared and analyzed to observe the composition of aroma and taste compounds in the kombuchas. Aroma and taste compounds in the kombuchas were analyzed using gas chromatography-mass spectrometry/olfactometry and liquid chromatography-triple quadrupole mass spectrometry, respectively. For aroma compounds, SB kombucha was characterized by high concentrations of terpenes and their derivatives, which have mandarin-like aroma characteristics and health benefits such as antidiabetic and antioxidant effects. For taste compounds, SB kombucha contained higher amount of fructose and organic acids, which have the potential to increase the intensity of sweetness and sourness, and flavonoids. This would support the potential benefits of using SB to make kombucha. This study provides valuable information about the aroma and taste compounds in SB kombucha and its potential health benefits, compared with regular and Hamlin kombucha. PRACTICAL APPLICATION: This experiment provided valuable information on the elevated aroma and taste compounds, their potential health benefits, and the changes of those compounds during kombucha fermentation in 'LB8-9' Sugar Belle® kombucha, compared to regular and Hamlin kombucha. In the absence of an effective cure or therapy for HLB, this can be the first step for developing alternative citrus product to help the citrus industry mitigate the negative impacts from HLB.
Collapse
Affiliation(s)
- Dongjoo Kim
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida, USA
| | - Yu Wang
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
38
|
Characterization analysis of flavor compounds in green teas at different drying temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Jiang Z, Han Z, Wen M, Ho CT, Wu Y, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Kim M, Park SK. Effects of enzyme treatment on volatile and non-volatile compounds in dried green tea leaves. Food Sci Biotechnol 2022; 31:539-547. [PMID: 35529688 PMCID: PMC9033917 DOI: 10.1007/s10068-022-01063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Green tea contains polyphenols, mainly four catechins, including (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epicatechin. Enzyme tannase is known to hydrolyze gallated catechins into non-gallated catechins and gallic acid (GA). In this study, dried green tea leaves were treated with tannase to determine changes of volatile and non-volatile compounds by the hydrolysis. The results indicated that (-)-epigallocatechin, (-)-epicatechin, and GA increased, while (-)-epigallocatechin gallate and (-)-epicatechin gallate decreased after the treatment. The GA level increased in the treated samples, which increased titratable acidity significantly, while the pH became lower. Furthermore, the antioxidant activity of the tannase-treated tea leaves increased. The level of glycosidically bound aromas decreased with the concomitant increase of corresponding volatile compounds, while some alcohols derived from fatty acids decreased significantly after the treatment. These results suggest that tannase-treatment influences both volatile and non-volatile compounds in dried green tea leaves.
Collapse
Affiliation(s)
- Mingi Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Seung-Kook Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
41
|
Ye JH, Ye Y, Yin JF, Jin J, Liang YR, Liu RY, Tang P, Xu YQ. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wei Y, Yin X, Wu H, Zhao M, Huang J, Zhang J, Li T, Ning J. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process. Food Chem 2022; 388:132982. [PMID: 35447593 DOI: 10.1016/j.foodchem.2022.132982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Summer green tea (SGT) has poor flavor due to its high levels of bitterness and astringency. The present study aimed to improve the flavor of SGT using the yellowing process. The results showed that after the yellowing process, the sweetness and overall acceptability increased, and the content of gallated catechins and flavonol glycosides decreased by 30.2% and 27.4%, respectively, as did the bitterness and astringency of SGT. Yellowing caused a decrease in the concentration of some aroma compounds, such as (z)-3-hexen-1-ol, 1-hexanol, pentanal, heptanal and 1-octanol, which caused grassy, floral and fruity aromas. In contrast, the concentrations of 1-octen-3-ol, benzene acetaldehyde and β-ionone increased, which have mushroom and sweet aromas. Meanwhile, the sweetness and umami of SGT were enhanced by the addition of selected aroma compounds (1-octen-3-ol, benzene acetaldehyde and β-ionone), demonstrating that the yellowing process improves the flavor of SGT through odor-taste interactions.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huiting Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
43
|
Ren Y, Hou Y, Granato D, Zha M, Xu W, Zhang L. Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Deng S, Zhang G, Olayemi Aluko O, Mo Z, Mao J, Zhang H, Liu X, Ma M, Wang Q, Liu H. Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Res Int 2022; 157:111262. [DOI: 10.1016/j.foodres.2022.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]
|
45
|
González-Muñoz B, Garrido-Vargas F, Pavez C, Osorio F, Chen J, Bordeu E, O'Brien JA, Brossard N. Wine astringency: more than just tannin-protein interactions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1771-1781. [PMID: 34796497 DOI: 10.1002/jsfa.11672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Red wines are characterized by their astringency, a very important sensory attribute that affects the perceived quality of wines. Three mechanisms have been proposed to explain astringency, and two theories describe how these mechanisms work in an integrated manner to produce tactile sensations such as drying, roughening, shrinking and puckering. The factors involved include not only tannins and salivary proteins, but also anthocyanins, grape polysaccharides and mannoproteins, as well as other wine matrix components that modulate their interactions. These multifactorial interactions could be responsible for different sensory responses and therefore need to be further studied. This review presents the latest advances in astringency perception and its possible origins, with special attention on the interactions of components, their impact on oral perception and the development of astringency sub-qualities. Future research efforts should concentrate on understanding the mechanisms involved as well as on the limiting factors related to the conformation and stability of the tannin-salivary protein complexes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz González-Muñoz
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Garrido-Vargas
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Pavez
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Osorio
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Edmundo Bordeu
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A O'Brien
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Brossard
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Comparative Analysis of Purine Alkaloids and Main Quality Components of the Three Camellia Species in China. Foods 2022; 11:foods11050627. [PMID: 35267260 PMCID: PMC8909160 DOI: 10.3390/foods11050627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Tea (Camelliasinensis var. sinensis) is a widely consumed caffeine-containing beverage, however the Camellia genus also includes other species, which are consumed as tea in their local growing regions. Presently, HPLC analysis assessed 126 unique Camellia germplasms belonging to three Camellia species, C. sinensis var. pubilimba Chang (Csp), C. gymnogyna Chang (CgC) and C. crassicolumna Chang (CcC). Theobromine was the predominant purine alkaloid in all species, representing over 90% of purine alkaloids in Csp and CgC, and 50% in CcC. Significant variability existed in purine alkaloid patterns both between and within species, and some germplasms possessed highly unique alkaloid profiles. Sensory evaluation and quality composition analysis of green tea products produced from the three Camellia species suggested their unsuitability for use in tea production due to their unpalatable flavor. The results of this study revealed the differences in purine alkaloids and main quality components between Camellia species and tea, which contributed to understand why tea, rather than other Camellia species, has become a popular beverage in the world after long-term artificial selection. In addition, unique alkaloid profiles suggest usefulness of these germplasm resources in future breeding of decaffeinated tea plant varieties and alkaloid metabolism research.
Collapse
|
47
|
Chong PH, Chen J, Yin D, Qin L. Tea compound-saliva interactions and their correlations with sweet aftertaste. NPJ Sci Food 2022; 6:13. [PMID: 35140228 PMCID: PMC8828886 DOI: 10.1038/s41538-022-00123-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Huigan is an important sensory attribute which is commonly used as a quality indicator evaluation of tea products. Previous studies showed a strong correlation between the lubrication behavior of saliva-tea compound mixture and the sensory perception of Huigan from trained panelists. This work was further designed to investigate how the effect of tea consumption on the rate of saliva secretion and its functional properties including total protein content of saliva (TPC), salivary α-amylase (AMY) and lipase activity (LP). A quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to reveal the adsorption behavior of human whole saliva and how the salivary film is affected by the presence of tea compounds. Results showed a significant positive correlation among TPC, LP and Huigan intensity for subjects who are Huigan-sensitive. Compared to the desorption of salivary film, the desorption of saliva-EC/EGC (epicatechin/epigallocatechin) mixture from the gold surface by QCM-D observation showed a significant effect on Huigan intensity in sensitive group when comparing to the salivary layer (blank).
Collapse
Affiliation(s)
- Pik Han Chong
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jianshe Chen
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Danting Yin
- Firmenich Aromatics (China) Co., Ltd., No. 3901, Jindu Road, Minhang District, 201108, Shanghai, China
| | - Lanxi Qin
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
48
|
Huang H, Tan P, Li M, Tan Q, Gao J, Bao X, Fan S, Mo T, Mao W, Lin F, Han L, Zhang D, Lin J. Quality analysis combined with mass spectrometry imaging reveal the difference between wild and cultivated Phyllanthus emblica Linn.: From chemical composition to molecular mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Identification of 4-O-p-coumaroylquinic acid as astringent compound of Keemun black tea by efficient integrated approaches of mass spectrometry, turbidity analysis and sensory evaluation. Food Chem 2022; 368:130803. [PMID: 34403995 DOI: 10.1016/j.foodchem.2021.130803] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Hydroxycinnamoyl quinic acids are important phenolic acids in tea, particularly fermented teas. However, there have been fewer studies that have confirmed their taste properties. The aim of this study was to investigate the astringent compounds in Keemun congou black tea (KBT) using a combination of mass spectrometry, turbidity analysis, and sensory evaluation. Turbidity analysis determined that p-coumaroylquinic acids were the astringent contributing compounds in KBT. Moreover, the separated compound D16 was identified as trans-4-O-p-coumaroylquinic acid (trans-4-O-pCoQA) by nuclear magnetic resonance spectroscopy and first confirmed to be the astringent contributing compound in KBT by sensory evaluation. Its astringent threshold concentration was tested to be 38 µM. The trans-4-O-pCoQA content in eight KBT samples of various grades ranged from 40.20 ± 0.15 ~ 65.53 ± 0.22 µM. Turbidity analysis combined with sensory evaluation could be a powerful tool for identifying critical compounds responsible for the astringent taste.
Collapse
|
50
|
Li J, Wu S, Yu Q, Wang J, Deng Y, Hua J, Zhou Q, Yuan H, Jiang Y. Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation. Food Chem 2022; 378:132126. [PMID: 35033721 DOI: 10.1016/j.foodchem.2022.132126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
Ripened Pu-erh tea is a unique tea type produced from microbial fermentation. Recently, a novel ripened Pu-erh tea (NPT) produced using a patented pile fermentation method has become increasingly popular due to its improved flavor and enriched bioactive gallic acid (GA). However, the detailed chemical features of NPT and their formation during pile fermentation remain unclear. Herein, untargeted metabolomics revealed enrichment of GA, amino acids, free sugars and reduction in catechins and flavonol glycosides in NPT. Mainly, GA was 1.99 times higher in NPT than traditional Pu-erh tea (p < 0.001). The metabolic changes were tracked during pile fermentation, and possible pathways were mapped. GA enrichment may be produced from enhanced hydrolysis of galloyl catechins and phenolic acid esters. Degradation of flavonol glycosides and formation of other metabolites were observed. This study will advance our understanding of conversions during pile fermentation and provide new insights into directional manufacturing of high-quality ripened tea.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shimin Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|