1
|
Li B, Sun Y, Zhu X, Qian S, Pu J, Guo Y, Wu H, Zhang L, Xin Y. Aggregation Interface and Rigid Spots Sustain the Stable Framework of a Thermophilic N-Demethylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5614-5629. [PMID: 37000489 DOI: 10.1021/acs.jafc.3c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Enzymes from thermophilic microorganisms usually show high thermostability, which is of great potential in industrial application; to understand the structural logic of these enzymes is helpful for the construction of robust biocatalysts. In this study, based on the crystal structure of an N-demethylase─TrSOX─with outstanding thermostability from Thermomicrobium roseum, substitutions were introduced on the aggregation interface and rigid spots to reduce the aggregation ratio and the rigidity. Four substitutions on the aggregation interface─V162S, M308S, F170S, and V306S─considerably reduced the thermostability and slightly enhanced the catalytic efficiency. In addition, the thermostable framework was considerably disrupted in several multiple P → G substitutions in several local motifs (P129G/P134G, P237G/P259G, and P259G/P276G). These structural fluctuations were in good accordance with whole-structure or partial root-mean-square deviation, radius of gyration H-bonds, and solvent-accessible surface area values in molecular dynamics simulation. Furthermore, these key spots were introduced into an unstable homolog from Bacillus sp., resulting in a dramatical increase in the half-life at 60 °C from <10 to 1440 min. These results could help understand the natural stable framework of thermophilic enzymes, which could be references for the construction of robust enzymes in industrial applications.
Collapse
Affiliation(s)
- Bingjie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Yuqian Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Xinyi Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Siyu Qian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Jiayang Pu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Yuwen Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Haobo Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Bio Manufacturing, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Yu Xin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Bio Manufacturing, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
2
|
Using colorimetric spot test and digital imaging-based technique for volatile acidity determination in cachaça with the aid of a smartphone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
[Determination of 10 organic acids in alcoholic products by ion chromatography-tandem mass spectrometry]. Se Pu 2022; 40:1128-1135. [PMID: 36450353 PMCID: PMC9727743 DOI: 10.3724/sp.j.1123.2022.01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A method was developed for the determination of 10 organic acids in liquor, yellow rice wine, and dry red wine by ion chromatography-triple quadrupole mass spectrometry (IC-MS/MS). First, the liquor samples were diluted with deionized water, degassed with nitrogen, and analyzed by IC-MS/MS. Then, the yellow rice wine and dry red wine samples were purified with different solid-phase extraction cartridges. Finally, the GCB solid-phase extraction cartridge was selected for purification, diluted with deionized water, and analyzed by IC-MS/MS. The samples were separated using a Dionex IonPac AS11-HC anion analysis column with high capacity and strong hydrophilicity, with an KOH aqueous solution as the eluent, which was produced by an automatic generator for gradient elution. After being suppressed using a suppressor, the eluent was injected directly into the electrospray ionization tandem mass spectrometry (ESI-MS/MS), ionized in negative ion mode, detected in multiple reaction monitoring (MRM) mode, and quantified using an external standard method. Oxalic acid, fumaric acid, maleic acid, malic acid, tartaric acid, citric acid, quinic acid, and aconitic acid showed good linear relationships in the range of 0.05-2 mg/L. Succinic acid and lactic acid showed good linearities in the range of 0.05-5 mg/L and 0.05-10 mg/L, respectively. The correlation coefficients (r2) were >0.99. The limits of detection (LODs) and limits of quantification (LOQs) were 1.0-8.0 μg/L and 3.5-26.5 μg/L, respectively. The average recoveries ranged from 83.0% to 112.1%, and the relative standard deviations (RSDs) were <9.1% in spiked samples at three levels. The proposed method allowed easy pretreatment without using organic solvents or derivatization processing. Overall, the proposed method is accurate, rapid, sensitive, and it is suitable for the qualitative and quantitative analyses of the 10 organic acids in three wine samples. Moreover, it can be used for the determination of flavor and quality of alcoholic products.
Collapse
|
4
|
Gao J, Wang M, Huang W, You Y, Zhan J. Indigenous Saccharomyces cerevisiae Could Better Adapt to the Physicochemical Conditions and Natural Microbial Ecology of Prince Grape Must Compared with Commercial Saccharomyces cerevisiae FX10. Molecules 2022; 27:molecules27206892. [PMID: 36296484 PMCID: PMC9610378 DOI: 10.3390/molecules27206892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Indigenous Saccharomyces cerevisiae, as a new and useful tool, can be used in fermentation to enhance the aroma characteristic qualities of the wine-production region. In this study, we used indigenous S. cerevisiae L59 and commercial S. cerevisiae FX10 to ferment Prince (a new hybrid variety from Lion Winery) wine, detected the basic physicochemical parameters and the dynamic changes of fungal communities during fermentation, and analyzed the correlations between fungal communities and volatile compounds. The results showed that the indigenous S. cerevisiae L59 could quickly adapt to the specific physicochemical conditions and microbial ecology of the grape must, showing a strong potential for winemaking. Compared with commercial S. cerevisiae FX10, the wine fermented by indigenous S. cerevisiae L59 contained more glycerol and less organic acids, contributing to a rounder taste. The results of volatile compounds indicated that the indigenous S. cerevisiae L59 had a positive effect on adding rosy, honey, pineapple and other sweet aroma characteristics to the wine. Overall, the study we performed showed that selection of indigenous S. cerevisiae from the wine-producing region as a starter for wine fermentation is conducive to improving the aroma profile of wine and preserving the aroma of the grape variety.
Collapse
Affiliation(s)
- Jie Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
| | - Mingfei Wang
- Beijing Chateau Lion Winery Co., Ltd., Beijing 102400, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| |
Collapse
|
5
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
New Isolated Autochthonous Strains of S. cerevisiae for Fermentation of Two Grape Varieties Grown in Poland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many commercial strains of the Saccharomyces cerevisiae species are used around the world in the wine industry, while the use of native yeast strains is highly recommended for their role in shaping specific, terroir-associated wine characteristics. In recent years, in Poland, an increase in the number of registered vineyards has been observed, and Polish wines are becoming more recognizable among consumers. In the fermentation process, apart from ethyl alcohol, numerous microbial metabolites are formed. These compounds shape the wine bouquet or become precursors for the creation of new products that affect the sensory characteristics and quality of the wine. The aim of this work was to study the effect of the grapevine varieties and newly isolated native S. cerevisiae yeast strains on the content of selected wine fermentation metabolites. Two vine varieties—Regent and Seyval blanc were used. A total of 16 different yeast strains of the S. cerevisiae species were used for fermentation: nine newly isolated from vine fruit and seven commercial cultures. The obtained wines differed in terms of the content of analyzed oenological characteristics and the differences depended both on the raw material (vine variety) as well as the source of isolation and origin of the yeast strain used (commercial vs. native). Generally, red wines characterized a higher content of tested analytes than white wines, regardless of the yeast strain used. The red wines are produced with the use of native yeast strains characterized by higher content of amyl alcohols and esters.
Collapse
|
7
|
Onozato M, Kanda R, Sato Y, Sakamoto T, Umino M, Fukushima T. Column-switching high-performance liquid chromatography-fluorescence detection method for malic acid enantiomers in commercial wines. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Chip-based separation of organic and inorganic anions and multivariate analysis of wines according to grape varieties. Talanta 2021; 231:122381. [PMID: 33965044 DOI: 10.1016/j.talanta.2021.122381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
This report describes the use of electrophoresis microchips integrated with contactless conductivity detection for the determination of organic acids and inorganic anions in wine samples and the subsequent classification based on the grape varieties. The best separation was achieved using a buffer composed of 30 mmol L-1 2-(N-morpholino)ethanesulfonic acid, 15 mmol L-1l-histidine and 0.05 mmol L-1 cetyltrimethylammonium bromide (pH 5.8), allowing the determination of chloride, nitrate, sulfate, oxalate, tartrate, maleate, succinate, citrate, acetate, lactate, pyroglutamate and phosphate within ca. 100 s. The relative standard deviations obtained for the migration times were lower than 2%, while the obtained values for peak areas ranged from 2.5 to 8.4%. The limits of detection achieved for all compounds ranged between 3.0 and 12.6 μmol L-1. A total of 18 wines from Brazil and Chile were successfully investigated, including red, white and rosé, and the anionic species were quantified with recovery values between 92 and 117%. A statistical difference has not been observed between the data obtained by using electrophoresis microchips integrated with contactless conductivity detection (ME-C4D) and capillary electrophoresis with ultra-violet detection (CE-UV) and thus the results from newly developed method is validated. Finally, similarities among the anionic profile of wines were investigated by using a multivariate approach, and it was possible to discriminate samples mainly by grapes varieties. Furthermore, the proposed methodology has provided instrumental simplicity and good analytical performance, demonstrating to be useful for routine quality control of wines.
Collapse
|
9
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
10
|
Gao Q, Shao J, Tang M, Xin Y, Zhang L. Promote the expression and corrected folding of an extremely stable N-demethylase by promoter reconstruction, native environment simulation and surface design. Int J Biol Macromol 2021; 178:434-443. [PMID: 33647338 DOI: 10.1016/j.ijbiomac.2021.02.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
Thermomicrobium roseum sarcosine oxidase (TrSOX) was a N-demethylase with specific substrate chiral selectivity, outstanding thermostability and environmental resistance. To promote the expression of TrSOX in Bacillus subtilis W600, the HpaII promoter of pMA5 plasmid was replaced by constitutive or inducible promoters. Through orthogonal experiment, the expression process was optimized, B. subtilis W600 cells containing pMA5-Pxyl-trSOX plasmid were cultivated until OD600nm reached 2.0 and were then induced with 1.6% xylose at 37 °C for 2 h, and the native environment of T. roseum was simulated by heating at 80 °C, with the productivity of TrSOX increased from ~8.3 to ~66.7 μg/g wet cells; and the simulated high temperature was the key switch for the final folding. To reduce the surface hydrophobicity, a S320R mutant was built to form a hydrophilic lid around the entrance of the substrate pocket, and the yield of TrSOX (S320R) was ~163.0 μg/g wet cells, approximately 20 folds as that in the initial expression system. This mutant revealed the similar secondary structure, stability, resistance, chiral substrate selectivity and optimal reaction environment with wild type TrSOX; however, the N-demethylation activities for amino acid derivative substrates were dramatically increased, while those for hydrophobic non-amino acid compounds were repressed.
Collapse
Affiliation(s)
- Qiuyue Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Mengwei Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yu Xin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| |
Collapse
|
11
|
Izquierdo-Llopart A, Carretero A, Saurina J. Organic Acid Profiling by Liquid Chromatography for the Characterization of Base Vines and Sparkling Wines. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01808-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Robles AD, Fabjanowicz M, Płotka-Wasylka J, Konieczka P. Organic Acids and Polyphenols Determination in Polish Wines by Ultrasound-Assisted Solvent Extraction of Porous Membrane-Packed Liquid Samples. Molecules 2019; 24:molecules24234376. [PMID: 31795471 PMCID: PMC6930624 DOI: 10.3390/molecules24234376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
In the near future, Poland is going to have more and more favorable conditions for viticulture. Organic acids and polyphenols are among the most commonly analyzed compounds due to their beneficial properties for human health and their importance in the winemaking process. In this work, a new technique involving ultrasound-assisted solvent extraction of porous membrane-packed liquid samples (UASE-PMLS) was for the first time described and applied for real samples. The methodology based on UASE-PMLS for organic acids and polyphenols in wine samples was optimized and validated. Using the new technique coupled to GC–MS, organic acids and polyphenols were evaluated in Polish wine samples. Extraction solvent, extraction temperature, derivatization time and sample pH were optimized. Chemometric tools were used for data treatment. Good linearity was obtained for the concentration ranges evaluated with r values between 0.9852 and 0.9993. All parameters of method validation (intra- and inter-day precision and matrix effect) were over 80% with coefficient of variation (CV) up to 17%. Recovery was between (92.0 ± 8.5)% and (113 ± 16)%. Finally, green assessment was evaluated using Analytical Eco-Scale and Green Analytical Procedure Index (GAPI). The UASE-PMLS is characterized by many advantages, e.g., the extraction process is fast and easy coupled to GC–MS. Regarding other extraction techniques, the amount of used solvent is minimum, and no waste is generated. Therefore, it is an environmentally friendly technique.
Collapse
Affiliation(s)
- Alicia D. Robles
- Department of Chemistry, Bromatology, Faculty of Exact and Natural Sciences, National University of Mar del Plata, 3350 Funes Street, Mar del Plata, Buenos Aires 7600, Argentina;
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (M.F.); (J.P.-W.)
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (M.F.); (J.P.-W.)
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
13
|
Determination and identification of organic acids in wine samples. Problems and challenges. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115630] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Milovanovic M, Žeravík J, Obořil M, Pelcová M, Lacina K, Cakar U, Petrovic A, Glatz Z, Skládal P. A novel method for classification of wine based on organic acids. Food Chem 2019; 284:296-302. [DOI: 10.1016/j.foodchem.2019.01.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
15
|
Soluble expression of Thermomicrobium roseum sarcosine oxidase and characterization of N-demethylation activity. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Quantification of inorganic anions and organic acids in apple and orange juices using novel covalently-bonded hyperbranched anion exchanger with improved selectivity. J Chromatogr A 2018; 1567:130-135. [DOI: 10.1016/j.chroma.2018.06.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
|
17
|
Preparation, reconstruction, and characterization of a predicted Thermomicrobium roseum sarcosine oxidase. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Simultaneous Determination of Organic Acids, Inorganic Anions, and Alditols in Wine with Valve-Switching Ion Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3563-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Lourenço AS, Nascimento RF, Silva AC, Ribeiro WF, Araujo MC, Oliveira SC, Nascimento VB. Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Anal Chim Acta 2018; 1008:29-37. [DOI: 10.1016/j.aca.2018.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 11/15/2022]
|
20
|
Esteban-Fernández A, Ibañez C, Simó C, Bartolomé B, Moreno-Arribas MV. An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. J Proteome Res 2018; 17:1624-1635. [DOI: 10.1021/acs.jproteome.7b00904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adelaida Esteban-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Clara Ibañez
- IMDEA Alimentación, Carretera de Canto Blanco no. 8, 28049 Madrid, Spain
| | - Carolina Simó
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - M. Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
21
|
Majstorović DM, Živković EM, Kijevčanin ML. Volumetric and viscometric study and modelling of binary systems of diethyl tartrate and alcohols. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2017; 39:136-159. [PMID: 28975648 DOI: 10.1002/elps.201700321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.
Collapse
Affiliation(s)
| | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Madrid, Spain
| | | |
Collapse
|
23
|
Xin Y, Zheng M, Wang Q, Lu L, Zhang L, Tong Y, Wang W. Structural and catalytic alteration of sarcosine oxidase through reconstruction with coenzyme-like ligands. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Liu Q, Wang L, Hu J, Miao Y, Wu Z, Li J. Main Organic Acids in Rice Wine and Beer Determined by Capillary Electrophoresis with Indirect UV Detection Using 2, 4-Dihydroxybenzoic Acid as Chromophore. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0559-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Smolko V, Shurpik D, Evtugyn V, Stoikov I, Evtugyn G. Organic Acid and DNA Sensing with Electrochemical Sensor Based on Carbon Black and Pillar[5]arene. ELECTROANAL 2016. [DOI: 10.1002/elan.201501080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
del Valle M. Bioelectronic Tongues Employing Electrochemical Biosensors. TRENDS IN BIOELECTROANALYSIS 2016. [DOI: 10.1007/11663_2016_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|