1
|
Razgonova MP, Shinkaruk PA, Maksimenko AA, Podvolotskaya AB, Tekutyeva LA. Supercritical CO 2 Extraction of Bioactive Compounds from Corn Grains ( Zea mays L., Hybrid Pri-15-7-16) with Metabolomic Profiling and Confocal Laser Microscopy. PLANTS (BASEL, SWITZERLAND) 2025; 14:913. [PMID: 40265870 PMCID: PMC11946826 DOI: 10.3390/plants14060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
This study aimed to optimize supercritical CO2 extraction conditions, analyze bioactive compounds, and visualize their distribution in corn grains (Zea mays L., hybrid Pri-15-7-16). The optimal extraction conditions were identified as a pressure of 200 bar and a temperature of 55 °C, yielding 2.2 mg/g of bioactive compounds. The distribution of autofluorescent compounds within corn grain tissues was visualized using confocal laser scanning microscopy. Image analysis showed that the pericarp and aleurone layer cell walls were rich in autofluorescent compounds, while the endosperm cell walls exhibited low autofluorescence. Metabolomic analysis, combining high-performance liquid chromatography and mass spectrometry, identified 44 compounds in the extracts, including 30 polyphenolic compounds from subgroups such as polyphenolic acids, flavones, flavan-3-ols, flavonols, and anthocyanidins as well as 14 compounds from other chemical groups, including amino acids and fatty acids.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya, 190031 Saint Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Pavel A. Shinkaruk
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Anastasiia A. Maksimenko
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Anna B. Podvolotskaya
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| | - Liudmila A. Tekutyeva
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (P.A.S.); (A.A.M.); (A.B.P.); (L.A.T.)
| |
Collapse
|
2
|
Jézéquel G, Grimanelli Z, Guimard C, Bigay J, Haddad J, Bignon J, Apel C, Steinmetz V, Askenatzis L, Levaïque H, Pradelli C, Pham VC, Huong DTM, Litaudon M, Gautier R, El Kalamouni C, Antonny B, Desrat S, Mesmin B, Roussi F. Minimalist Natural ORPphilin Macarangin B Delineates OSBP Biological Function. J Med Chem 2025; 68:196-211. [PMID: 39704626 DOI: 10.1021/acs.jmedchem.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OSBP ligands from the ORPphilin family are chemically complex natural products with promising anticancer properties. Here, we describe macarangin B, a natural racemic flavonoid selective for OSBP, which stands out from other ORPphilins due to its structural simplicity and distinct biological activity. Using a bioinspired strategy, we synthesized both (R,R,R) and (S,S,S)-macarangin B enantiomers, enabling us to study their interaction with OSBP based on their unique optical properties. Experimental and computational analyzes revealed that (R,R,R)-macarangin B has the highest affinity for OSBP. Importantly, both enantiomers showed significantly decreased cytotoxicity compared to other ORPphilins, suggesting OSBP is not the primary target in ORPphilin-induced cell death. Yet, OSBP is an attractive antiviral target, as it is hijacked by many positive-strand RNA viruses. Remarkably, (R,R,R)-macarangin B significantly inhibited Zika virus replication in human cells, highlighting its potential as a lead compound for antiviral drug development.
Collapse
Affiliation(s)
- Gwenaëlle Jézéquel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Zoé Grimanelli
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Carole Guimard
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Joëlle Bigay
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Juliano Haddad
- Inserm U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Sainte Clotilde 94791, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Cécile Apel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Vincent Steinmetz
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Hélène Levaïque
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Clara Pradelli
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Vietnam
| | - Doan T M Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Vietnam
| | - Marc Litaudon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Romain Gautier
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Chaker El Kalamouni
- Inserm U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Sainte Clotilde 94791, France
| | - Bruno Antonny
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Sandy Desrat
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Bruno Mesmin
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Fanny Roussi
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Prado-Fernández MF, Magdaleno-Madrigal VM, Cabañas-García E, Mucio-Ramírez S, Almazán-Alvarado S, Pérez-Molphe-Balch E, Gómez-Aguirre YA, Sánchez-Jaramillo E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Curr Issues Mol Biol 2024; 46:6885-6902. [PMID: 39057053 PMCID: PMC11275307 DOI: 10.3390/cimb46070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.
Collapse
Affiliation(s)
- María Fernanda Prado-Fernández
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Emmanuel Cabañas-García
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico;
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Salvador Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Eugenio Pérez-Molphe-Balch
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Yenny Adriana Gómez-Aguirre
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
- CONAHCyT Research Fellow, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo, Huipulco, Ciudad de México 14370, Mexico
| |
Collapse
|
4
|
Liu ZX, Tang SH, Wang Y, Tan J, Jiang ZT. Rapid, simultaneous and non-destructive determination of multiple adulterants in Panax notoginseng powder by front-face total synchronous fluorescence spectroscopy. Fitoterapia 2023; 166:105469. [PMID: 36907229 DOI: 10.1016/j.fitote.2023.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
The authentication of traditional herbal medicines in powder form is of great significance, as they are always of high values but vulnerable to adulteration. Based on the distinct fluorescence of protein tryptophan, phenolic acids and flavonoids, front-face synchronous fluorescence spectroscopy (FFSFS) was applied for the fast and non-invasive authentication of Panax notoginseng powder (PP) adulterated with the powder of rhizoma curcumae (CP), maize flour (MF) and whole wheat flour (WF). For either single or multiple adulterants in the range of 5-40% w/w, prediction models were built based on the combination of unfolded total synchronous fluorescence spectra and partial least square (PLS) regression, and were validated by both five-fold cross-validation and external validation. The constructed PLS2 models simultaneously predicted the contents of multiple adulterants in PP and gave suitable results, with most of the determination coefficients of prediction (Rp2) >0.9, the root mean square error of prediction (RMSEP) no >4% and residual predictive deviation (RPD) >2. The limits of detections (LODs) were 12.0, 9.1 and 7.6% for CP, MF and WF, respectively. All the relative prediction errors for simulated blind samples were between -22% and + 23%. FFSFS offers a novel alternative to the authentication of powdered herbal plants.
Collapse
Affiliation(s)
- Zhao-Xi Liu
- Tianjin International Joint Research & Development Center of Food Science and Engineering, Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shu-Hua Tang
- Tianjin International Joint Research & Development Center of Food Science and Engineering, Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ying Wang
- Tianjin International Joint Research & Development Center of Food Science and Engineering, Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jin Tan
- Tianjin International Joint Research & Development Center of Food Science and Engineering, Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Zi-Tao Jiang
- Tianjin International Joint Research & Development Center of Food Science and Engineering, Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Food Engineering, Tianjin Tianshi College, Tianjin 301700, China.
| |
Collapse
|
5
|
Selberg S, Vanker E, Peets P, Wright K, Tshepelevitsh S, Pagano T, Vahur S, Herodes K, Leito I. Non-invasive analysis of natural textile dyes using fluorescence excitation-emission matrices. Talanta 2023; 252:123805. [DOI: 10.1016/j.talanta.2022.123805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
|
6
|
Razgonova MP, Zinchenko YN, Kozak DK, Kuznetsova VA, Zakharenko AM, Ercisli S, Golokhvast KS. Autofluorescence-Based Investigation of Spatial Distribution of Phenolic Compounds in Soybeans Using Confocal Laser Microscopy and a High-Resolution Mass Spectrometric Approach. Molecules 2022; 27:molecules27238228. [PMID: 36500322 PMCID: PMC9735898 DOI: 10.3390/molecules27238228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, we present a detailed comparative analysis of the bioactive substances of soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia) using an LSM 800 confocal laser microscope and an amaZon ion trap SL mass spectrometer. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Our results revealed that the phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. High-performance liquid chromatography (HPLC) was used in combination with an amaZon SL BRUKER DALTONIKS ion trap (tandem mass spectrometry) to identify target analytes in soybean extracts. The results of initial studies revealed the presence of 63 compounds, and 45 of the target analytes were identified as polyphenolic compounds.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Yulia N. Zinchenko
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Darya K. Kozak
- Laboratory of Biochemistry, Blagoveshchensk State Pedagogical University, 675000 Blagoveshchensk, Russia
| | - Victoria A. Kuznetsova
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Laboratory of Biochemistry, Blagoveshchensk State Pedagogical University, 675000 Blagoveshchensk, Russia
| | - Alexander M. Zakharenko
- Laboratory of Pesticide Toxicology, Siberian Federal Scientific Center of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Kirill S. Golokhvast
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Pesticide Toxicology, Siberian Federal Scientific Center of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Correspondence:
| |
Collapse
|
7
|
Fu Y, Liu T, Zhang Z, Li H, Li W, Huang M. The crosstalk fluorescence spectroscopy analysis principle and an accurate fluorescence quantitative method for multi-composition fluorescence substances. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121472. [PMID: 35717931 DOI: 10.1016/j.saa.2022.121472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence quantitative analysis methods are extensively used in biomedicine inspection, petrochemical industry, environmental monitoring, and many other fields in the past decades. When the analyte is composed of multiple compositions, the accuracy of the conventional method declines significantly due to the fluorescence spectral crosstalk. In this research, the interactions between the light and the multiple compositions are comprehensively analyzed. The concepts of the quenching due to mutual absorption and the fluorescence overlapping are considered, and the mechanism of multi-composition fluorescence emission under single-wavelength excitation light is analyzed theoretically. The mixture experiment and the dilution experiment are designed to illustrate that the quenching due to mutual absorption has a significant nonlinear impact on fluorescence quantitative analysis and the mechanism of fluorescence spectral crosstalk gives a good explanation for these experiments. Through the in-depth theoretical analysis, the computer simulation, and the experiments, a novel principle named the Crosstalk Fluorescence Spectroscopy Analysis (CFSA) is proposed and verified, which has much higher quantitative analysis accuracy (R2>0.99 and RMSE≤0.2) than the conventional methods when analyzing the multi-composition samples. Unlike many correction approaches to fluorescence spectroscopy, the novel CFSA can serve as a complete analysis method rather than a correction method. These concepts and the principle are expected to be applied in many practical analysis fields.
Collapse
Affiliation(s)
- Yuchao Fu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianyuan Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhen Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haochen Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanxiang Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meizhen Huang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Razgonova MP, Burlyaeva MO, Zinchenko YN, Krylova EA, Chunikhina OA, Ivanova NM, Zakharenko AM, Golokhvast KS. Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. PLANTS 2022; 11:plants11162147. [PMID: 36015450 PMCID: PMC9412441 DOI: 10.3390/plants11162147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The research presents a comparative metabolomic study of extracts of Vigna unguiculata seed samples from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources. Analyzed samples related to different areas of use in agricultural production, belonging to different cultivar groups sesquipedalis (vegetable accessions) and unguiculata (grain accessions). Metabolome analysis was performed by liquid chromatography combined with ion trap mass spectrometry. Substances were localized in seeds using confocal and laser microscopy. As a result, 49 bioactive compounds were identified: flavonols, flavones, flavan-3-ols, anthocyanidin, phenolic acids, amino acids, monocarboxylic acids, aminobenzoic acids, fatty acids, lignans, carotenoid, sapogenins, steroids, etc. Steroidal alkaloids were identified in V. unguiculata seeds for the first time. The seed coat (palisade epidermis and parenchyma) is the richest in phenolic compounds. Comparison of seeds of varieties of different directions of use in terms of the number of bioactive substances identified revealed a significant superiority of vegetable accessions over grain ones in this indicator, 36 compounds were found in samples from cultivar group sesquipedalis, and 24 in unguiculata. The greatest variety of bioactive compounds was found in the vegetable accession k-640 from China.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Correspondence: (M.P.R.); (K.S.G.)
| | - Marina O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Yulia N. Zinchenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Ekaterina A. Krylova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Olga A. Chunikhina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Natalia M. Ivanova
- Department of Botany, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Alexander M. Zakharenko
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, 634050 Tomsk, Russia
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.P.R.); (K.S.G.)
| |
Collapse
|
9
|
Morales Santos FJ, Piñón Castillo HA, QuinteroRamos A, Zaragoza Galán G, Duran R, Orrantia Borunda E. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Fioratti CAG, Falcão EA, da Silva RM, do Carmo Vieira M, Caires ARL, Mussury RM. Application of Optical Fluorescence Spectroscopy for Studying Bee Abundance in Tropaeolum majus L. (Tropaeolaceae). BIOLOGY 2022; 11:887. [PMID: 35741408 PMCID: PMC9219692 DOI: 10.3390/biology11060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Tropaeolum majus L. species produce flowers with all sorts of colors, from yellow to red. This work aimed to apply optical fluorescence spectroscopy to study bee abundance in T. majus, answering the following questions: (1) do corolla temperature and weather conditions affect the abundance of visiting bee species? (2) do flower color and corolla fluorescence affect the abundance of visiting bee species? (3) do red flowers attract more visiting bees? (4) is there a relationship between bee visits and flower compounds? The bee species Apis mellifera, Paratrigona lineata, and Trigona spinipes were the most observed in T. majus flowers. The latter was more active in the morning and preferred orange and yellow flowers. These colors also had higher temperatures and fluorescence emissions than did the red ones and those with yellow-red and orange-red nectar guides. Orange flowers emitted a broadband UV spectrum (between 475 and 800 nm). This range might be due to compounds such as hydroxycinnamic acid, flavonols, isoflavonoids, flavones, phenolic acid, and chlorophyll. Extracts from different T. majus corolla colors showed that flowers emit specific fluorescent signals, mainly related to bee color vision and learning, thus acting as a means of communication between bees and flowers. In this way, this information evidences the interaction between bees and T. majus flowers, allowing conservation actions for pollinators.
Collapse
Affiliation(s)
- Claudemir Antonio Garcia Fioratti
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| | - Evaristo Alexandre Falcão
- Applied Optics Group, College of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil;
| | - Rosicleia Matias da Silva
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| | - Maria do Carmo Vieira
- Laboratory of Medicinal Plants, College of Agricultural Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil;
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Rosilda Mara Mussury
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| |
Collapse
|
11
|
Predicting ASTA color values of peppers via LED-induced fluorescence. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Karole A, Parvez S, Thakur RS, Mudavath SL. Effervescent based nano-gas carrier enhanced the bioavailability of poorly aqueous soluble drug: A comprehensive mechanistic understanding. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Dinç E, Selimoğlu F, Ünal N, Ertekin ZC. Simultaneous Determination of the Acid Dissociation Constants of Phenolics by Multivariate Analysis of pH and Ultraviolet-Visible Spectrophotometric Measurements. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1880424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Erdal Dinç
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Faysal Selimoğlu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Nazangül Ünal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zehra Ceren Ertekin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Angeline P, Thomas A, Sankaranarayanan SA, Rengan AK. Effect of pH on Isoliquiritigenin (ISL) fluorescence in lipo- polymeric system and metallic nanosystem. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119545. [PMID: 33588365 DOI: 10.1016/j.saa.2021.119545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids have various medicinal properties such as anti-inflammatory, anti-oxidant, anti-cancer, antiviral. Yet, the fluorescent properties of flavonoids are less explored and termed as autofluorescence in general. This study investigates the fluorescence properties of Isoliquiritigenin (ISL) in various alkaline conditions. The maximum fluorescence emission was obtained at pH 12 on excitation wavelength of 440 nm. Theoretical and experimental investigation on the shift in UV-Vis absorbance spectra, upon the variation in pH, performed, indicated deprotonation as the cause. PEG-based stable liposome carrier, with an internal alkaline environment (LIP-ISL-NaOH) that aids in flavonoid fluorescence, was synthesized using a modified thin-film hydration method. The hydrodynamic size of the liposome synthesized was in the range of 50-70 nm. PEG, on the addition, found maintaining the alkaline environment in the internal chamber of the lipo-polymer system, helps the LIP-ISLNaOH nanosystem to exhibit fluorescence irrespective of the suspension pH. Further, reducing property of ISL was used for the synthesis of Au nanoclusters to achieve theranostic nature.
Collapse
Affiliation(s)
- Phebee Angeline
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Aswathi Thomas
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Sri Amruthaa Sankaranarayanan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| |
Collapse
|
15
|
Selimoğlu F, Ünal N, Ceren Ertekin Z, Dinç E. PARAFAC and MCR-ALS approaches to the pKa determination of benzoic acid and its derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119253. [PMID: 33302215 DOI: 10.1016/j.saa.2020.119253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In general, the identification of biological activities of a molecule requires the observation of its physicochemical characteristics with its molecular interactions in an organism. The acid-base ionization constant (or pKa) is one of the key parameters that shows the physicochemical behaviors of molecules used in pharmaceuticals, foods, cosmetics etc. Therefore, the development of new methods (or approaches) is necessary to get simple, rapid, inexpensive and reliable determination of the acidity constants of active and inactive ingredients used in commercial products. In this paper, new UV spectroscopic methods were developed for the first time, by applying parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least squares (MCR-ALS) to the pH-UV spectral data arrays for determining the pKa values of benzoic acid and its five derivatives (4-fluorobenzoic acid, thiosalicylic acid, anthranilic acid, phthalic acid, 4-aminobenzoic acid). The pH profiles obtained by the PARAFAC and MCR-ALS decomposition of the pH-UV data arrays were used for the quantitative estimation of the acid-base ionization constants for the investigated compounds without classical titration procedure. We concluded that the proposed PARAFAC and MCR-ALS provided us an opportunity for simple and rapid pKa determination of relevant compounds, which have functional importance in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Faysal Selimoğlu
- Necmettin Erbakan University, Faculty of Science, Department of Biotechnology, 42090 Meram, Konya, Turkey
| | - Nazangül Ünal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Yenimahalle, Ankara, Turkey
| | - Zehra Ceren Ertekin
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Yenimahalle, Ankara, Turkey
| | - Erdal Dinç
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Yenimahalle, Ankara, Turkey.
| |
Collapse
|
16
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
17
|
Wu HL, Wang T, Yu RQ. Recent advances in chemical multi-way calibration with second-order or higher-order advantages: Multilinear models, algorithms, related issues and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Sims K, He B, Koo H, Benoit DS. Electrostatic Interactions Enable Nanoparticle Delivery of the Flavonoid Myricetin. ACS OMEGA 2020; 5:12649-12659. [PMID: 32548448 PMCID: PMC7288370 DOI: 10.1021/acsomega.9b04101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/15/2020] [Indexed: 05/18/2023]
Abstract
Flavonoids are natural polyphenolic compounds with myriad biological activities and potential as prophylactic and therapeutic agents. However, poor aqueous solubility and low bioavailability have limited the clinical utility of flavonoids, suggesting that drug delivery systems (DDSs) may improve their clinical relevance. Therefore, loading of a representative flavonoid (i.e., myricetin) into a diblock, polymeric nanoparticle carrier (NPC) DDS with a cationic corona and hydrophobic core was investigated. Absorbance and fluorescence spectroscopy results revealed association constants and standard Gibbs free energy values that align with previously reported values (K a = ∼1-3 × 104 M-1; ΔG° = -5.4 to -6.0 kcal mol-1), suggesting that NPCs load myricetin via electrostatic interactions. The zeta potential and gel electrophoresis analysis confirmed this loading mechanism and indicated that NPCs improve myricetin solubility >25-fold compared to myricetin alone. Finally, the dual-drug loading of NPCs was tested using a combination of myricetin and a hydrophobic drug (i.e., farnesol). Electrostatic loading of NPCs with myricetin at concentrations ≤1.2 mM did not affect NPC core loading and release of farnesol, thus demonstrating a novel formulation strategy for the dual-drug-loaded NPC. These findings offer key insights into the NPC DDS design that may enhance the clinical relevance of flavonoid-based therapeutic approaches.
Collapse
Affiliation(s)
- Kenneth
R. Sims
- Translational
Biomedical Science, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14642, United
States
| | - Brian He
- Department
of Statistics, University of Rochester, Rochester, New York 14642, United States
| | - Hyun Koo
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danielle S.W. Benoit
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14642, United
States
- Materials
Science Program, University of Rochester, Rochester, New York 14642, United States
- Department
of Orthopaedics and Center for Musculoskeletal Research, School of
Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Center
for Oral Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14642, United States
- . Phone: 585
273 2698. Fax: 585 276 1999
| |
Collapse
|
19
|
Abstract
Plants contain abundant autofluorescent molecules that can be used for biochemical, physiological, or imaging studies. The two most studied molecules are chlorophyll (orange/red fluorescence) and lignin (blue/green fluorescence). Chlorophyll fluorescence is used to measure the physiological state of plants using handheld devices that can measure photosynthesis, linear electron flux, and CO2 assimilation by directly scanning leaves, or by using reconnaissance imaging from a drone, an aircraft or a satellite. Lignin fluorescence can be used in imaging studies of wood for phenotyping of genetic variants in order to evaluate reaction wood formation, assess chemical modification of wood, and study fundamental cell wall properties using Förster Resonant Energy Transfer (FRET) and other methods. Many other fluorescent molecules have been characterized both within the protoplast and as components of cell walls. Such molecules have fluorescence emissions across the visible spectrum and can potentially be differentiated by spectral imaging or by evaluating their response to change in pH (ferulates) or chemicals such as Naturstoff reagent (flavonoids). Induced autofluorescence using glutaraldehyde fixation has been used to enable imaging of proteins/organelles in the cell protoplast and to allow fluorescence imaging of fungal mycelium.
Collapse
|
20
|
Targeted UHPLC-HRMS (Orbitrap) Polyphenolic and Capsaicinoid Profiling for the Chemometric Characterization and Classification of Paprika with Protected Designation of Origin (PDO) Attributes. Molecules 2020; 25:molecules25071623. [PMID: 32244783 PMCID: PMC7181276 DOI: 10.3390/molecules25071623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Society’s interest in the quality of food products with certain attributes has increased, the attribute of a Protected Designation of Origin (PDO) being an effective tool to guarantee the quality and geographical origin of a given food product. In Spain, two paprika production areas with PDO (La Vera and Murcia) are recognized. In the present work, targeted UHPLC-HRMS polyphenolic and capsaicinoid profiling through the TraceFinderTM screening software, using homemade accurate mass databases, was proposed as a source of chemical descriptors, to address the characterization, classification, and authentication of paprika. A total of 126 paprika samples from different production regions—Spain (La Vera PDO and Murcia PDO) and the Czech Republic, each including different flavor varieties, were analyzed. UHPLC-HRMS polyphenolic profiles showed to be good chemical descriptors to achieve paprika classification and authentication, based on the production region, through principal component analysis and partial least squares regression-discriminant analysis, with classification rates of 82%, 86%, and 100% for La Vera PDO, Murcia PDO, and the Czech Republic, respectively. In addition, a perfect classification was also accomplished among the flavor varieties for the Murcia PDO and Czech Republic samples. By employing the UHPLC-HRMS polyphenolic and capsaicinoid profiles as chemical descriptors, acceptable discrimination among La Vera PDO flavor varieties was also achieved.
Collapse
|
21
|
Barbosa S, Campmajó G, Saurina J, Puignou L, Núñez O. Determination of Phenolic Compounds in Paprika by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry: Application to Product Designation of Origin Authentication by Chemometrics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:591-602. [PMID: 31859496 DOI: 10.1021/acs.jafc.9b06054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An ultrahigh performance liquid chromatography-electrospray-tandem mass spectrometry method was developed for the determination of 36 phenolic compounds in paprika. The proposed method showed good method performance with limits of quantitation between 0.03 and 50 μg/L for 16 compounds and between 50 μg/L and 1 mg/L for 12 compounds. Good linearity (R2 > 0.995), run-to-run and day-to-day precisions (%RSD values < 12.3 and < 19.2%, respectively), and trueness (relative errors < 15.0%) were obtained. The proposed method was applied to the analysis of 111 paprika samples from different production regions: Spain (La Vera PDO and Murcia PDO) and Czech Republic, each one including different flavor varieties (sweet, bittersweet, and spicy). Phenolic profiles and concentration levels showed to be good chemical descriptors to achieve paprika classification and authentication according to the production region by principal component analysis and partial least squares regression-discriminant analysis. In addition, perfect classification among flavor varieties for Murcia PDO and Czech Republic samples was also obtained.
Collapse
Affiliation(s)
- Sergio Barbosa
- Department of Chemical Engineering and Analytical Chemistry , University of Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| | - Guillem Campmajó
- Department of Chemical Engineering and Analytical Chemistry , University of Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
- Research Institute in Food Nutrition and Food Safety , University of Barcelona . Av. Prat de la Riba 171 , Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramenet, Barcelona , Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry , University of Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
- Research Institute in Food Nutrition and Food Safety , University of Barcelona . Av. Prat de la Riba 171 , Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramenet, Barcelona , Spain
| | - Lluis Puignou
- Department of Chemical Engineering and Analytical Chemistry , University of Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
- Research Institute in Food Nutrition and Food Safety , University of Barcelona . Av. Prat de la Riba 171 , Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramenet, Barcelona , Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry , University of Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
- Research Institute in Food Nutrition and Food Safety , University of Barcelona . Av. Prat de la Riba 171 , Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramenet, Barcelona , Spain
| |
Collapse
|
22
|
Zhu Z, Pan T, Hsieh C, Wu R. Fabrication of novel Ag/g‐C
3
N
4
electrode for resveratrol sensors. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Zhu
- School of Environmental Science and Safety EngineeringTianjin University of Technology Tianjin China
| | - Tzu‐Ying Pan
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| | - Chia‐Ying Hsieh
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| | - Ren‐Jang Wu
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| |
Collapse
|
23
|
Collett MG. Photosensitisation diseases of animals: Classification and a weight of evidence approach to primary causes. Toxicon X 2019; 3:100012. [PMID: 32550569 PMCID: PMC7285960 DOI: 10.1016/j.toxcx.2019.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Clare's (1952) classification system for photosensitisation diseases (types I, II, III and Uncertain) has endured many years of use despite some confusion regarding his secondary, or type III, category, as well as the more recent discovery of two mechanisms (types I and II) of phototoxicity. Therefore, to reduce confusion in terminology, I propose that Clare's four groups be known as primary (or direct), secondary (indirect or hepatogenous), endogenous (aberrant porphyrin synthesis), and idiopathic. The use of the word type can then be reserved for the mechanisms of phototoxicity. Clare's (1952, 1955) papers listed three plants as primary photosensitisers and three as idiopathic. In the literature, several other plants have been associated with photosensitisation in farm animals. Most of these are likely to have a primary pathogenesis; however, the weight of evidence for all but a few is sparse. With respect to plants (and certain mycotoxins and insects) implicated in primary photosensitisation outbreaks, McKenzie's "toxicity confidence rankings" (Australia's Poisonous Plants, Fungi and Cyanobacteria, 2012) has been adapted to "phototoxic agent confidence rankings". Thus, plants, mycotoxins or insects can be categorised regarding phototoxicity, i.e. definite (A); some evidence (B); suspected (C); or phototoxin isolated but no field cases known (D), and weight of evidence, i.e. field cases (1); experimental feeding produces photosensitisation (2); phototoxin isolated (3); phototoxin produces photosensitisation experimentally (4); and/or correlation of the action spectrum/chromatogram in blood or skin with the absorption spectrum/chromatogram of the phototoxin (5). As a result, confidence rankings ranging from A5 to D1 can be allocated. From the available literature, at least seventeen plant species can be ranked as A5 (definite phototoxicity with a maximum weight of evidence). The relatively recent breakthrough regarding the discovery of phototoxic anthraquinones in Heterophyllaea spp. has led to the serendipitous association of the same and similar anthraquinones as the most likely phototoxins in alligator weed (Alternanthera philoxeroides).
Collapse
|
24
|
|
25
|
Hu Y, Wu HL, Yin XL, Gu HW, Liu Z, Xiao R, Xie LX, Fang H, Yu RQ. A flexible and novel strategy of alternating trilinear decomposition method coupled with two-dimensional linear discriminant analysis for three-way chemical data analysis: Characterization and classification. Anal Chim Acta 2018; 1021:28-40. [DOI: 10.1016/j.aca.2018.03.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
26
|
Kumar K, Tarai M, Mishra AK. Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Chamizo-González F, Monago-Maraña O, Galeano-Díaz T. Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration. ELECTROANAL 2017. [DOI: 10.1002/elan.201700403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Olga Monago-Maraña
- Department of Analytical Chemistry; University of Extremadura; Badajoz 06006 Spain
- Research Institute on Water, Climate Change and Sustainability (IACYS); University of Extremadura; Badajoz 06006 Spain
| | - Teresa Galeano-Díaz
- Department of Analytical Chemistry; University of Extremadura; Badajoz 06006 Spain
- Research Institute on Water, Climate Change and Sustainability (IACYS); University of Extremadura; Badajoz 06006 Spain
| |
Collapse
|
28
|
Screening of Antioxidant Properties of the Apple Juice Using the Front-Face Synchronous Fluorescence and Chemometrics. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0711-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Cabrera-Bañegil M, Hurtado-Sánchez MDC, Galeano-Díaz T, Durán-Merás I. Front-face fluorescence spectroscopy combined with second-order multivariate algorithms for the quantification of polyphenols in red wine samples. Food Chem 2016; 220:168-176. [PMID: 27855885 DOI: 10.1016/j.foodchem.2016.09.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 12/19/2022]
Abstract
The potential of front-face fluorescence spectroscopy combined with second-order chemometric methods was investigated for the quantification of the main polyphenols present in wine samples. Parallel factor analysis (PARAFAC) and unfolded-partial least squares coupled to residual bilinearization (U-PLS/RBL) were assessed for the quantification of catechin, epicatechin, quercetin, resveratrol, caffeic acid, gallic acid, p-coumaric acid, and vanillic acid in red wines. Excitation-emission matrices of different red wine samples, without pretreatment, were obtained in front-face mode, recording emission between 290 and 450 nm, exciting between 240 and 290 nm, for the analysis of epicatechin, catechin, caffeic acid, gallic acid, and vanillic acid; and excitation and emission between 300-360 and 330-400nm, respectively, for the analysis of resveratrol. U-PLS/RBL algorithm provided the best results and this methodology was validated by an optimized liquid chromatographic coupled to diode array and fluorimetric detectors procedure, obtaining a very good correlation for vanillic acid, caffeic acid, epicatechin and resveratrol.
Collapse
Affiliation(s)
- Manuel Cabrera-Bañegil
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta de Extremadura, Avda. Adolfo Suárez S/N, 06007 Badajoz, Spain
| | | | - Teresa Galeano-Díaz
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), University of Extremadura, 06006 Badajoz, Spain
| | - Isabel Durán-Merás
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), University of Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
30
|
Monago-Maraña O, Muñoz de la Peña A, Galeano-Díaz T. Isocratic LC–DAD–FLD method for the determination of flavonoids in paprika samples by using a rapid resolution column and post-column pH change. Talanta 2016; 152:15-22. [DOI: 10.1016/j.talanta.2016.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/27/2022]
|