1
|
Zhao YQ, Li ZP, Dong SC, Wang H, Zhao YM, Dong LY, Zhao ZY, Wang XH. Preparation of micron-sized benzamidine-modified magnetic agarose beads for trypsin purification from fish viscera. Talanta 2024; 280:126745. [PMID: 39180874 DOI: 10.1016/j.talanta.2024.126745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The effective method for trypsin purification should be established because trypsin has important economic value. In this work, a novel and simple strategy was proposed for fabricating micron-sized magnetic Fe3O4@agarose-benzamidine beads (MABB) with benzamidine as a ligand, which can efficiently and selectively capture trypsin. The micro-sized MABB, with clear spherical core-shell structure and average particle size of 6.6 μm, showed excellent suspension ability and magnetic responsiveness in aqueous solution. The adsorption capacity and selectivity of MABB towards target trypsin were significantly better than those of non-target lysozyme. According to the Langmuir equation, the maximum adsorption capacity of MABB for trypsin was 1946 mg g-1 at 25 °C, and the adsorption should be a physical sorption process. Furthermore, the initial adsorption rate and half equilibrium time of MABB toward trypsin were 787.4 mg g-1 min-1 and 0.71 min, respectively. To prove the practicability, MABB-based magnetic solid-phase extraction (MSPE) was proposed, and the related parameters were optimized in detail to improve the purification efficiency. With Tris-HCl buffer (50 mM, 10 mM CaCl2, pH 8.0) as extraction buffer, Tris-HCl buffer (50 mM, 100 mM CaCl2, pH 8.0) as rinsing buffer, acidic eluent (0.01 M HCl, 0.5 M NaCl, pH 2.0) as eluent buffer and alkaline buffer (1 M Tris-HCl buffer, pH 10.0) as neutralization solution, the MABB-based MSPE was successfully used for trypsin purification from the viscera of grass carp (Ctenopharyngodon idella). The molecular weight of purified trypsin was determined as approximate 23 kDa through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified trypsin was highly active from 30 °C to 60 °C, with an optimum temperature of 50 °C, and was tolerant to pH variation, exhibiting 85 % of maximum enzyme activity from pH 7.0 to 10.0. The results demonstrated that the proposed MABB-based MSPE could effectively purify trypsin and ensure the biological activity of purified trypsin. Therefore, we believe that the novel MABB could be applicable for efficient purification of trypsin from complex biological systems.
Collapse
Affiliation(s)
- Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Zhi-Peng Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shi-Chao Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yi-Mei Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Silva JAF, Silva MKS, Silva TA, Costa LDA, Leal MLE, Bezerra RS, Costa HMS, Freitas-Júnior ACV. Obtainment and characterization of digestive aspartic proteases from the fish Caranx hippos (Linnaeus, 1766). BRAZ J BIOL 2021; 82:e234500. [PMID: 33787732 DOI: 10.1590/1519-6984.234500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
This work aimed to obtain aspartic proteases of industrial and biotechnological interest from the stomach of the crevalle jack fish (Caranx hippos). In order to do so, a crude extract (CE) of the stomach was obtained and subjected to a partial purification by salting-out, which resulted in the enzyme extract (EE) obtainment. EE proteases were characterized physicochemically and by means of zymogram. In addition, the effect of chemical agents on their activity was also assessed. By means of salting-out it was possible to obtain a purification of 1.6 times with a yield of 49.4%. Two acid proteases present in the EE were observed in zymogram. The optimum temperature and thermal stability for EE acidic proteases were 55 ºC and 45 °C, respectively. The optimum pH and pH stability found for these enzymes were pH 1.5 and 7.0, respectively. Total inhibition of EE acid proteolytic activity was observed in the presence of pepstatin A. dithiothreitol (DTT) and Ca2+ did not promote a significant effect on enzyme activity. In the presence of heavy metals, such as Al3+, Cd2+ and Hg2+, EE acidic proteases showed more than 70% of their enzymatic activity. The results show that it is possible to obtain, from the stomach of C. hippos, aspartic proteases with high proteolytic activity and characteristics that demonstrate potential for industrial and biotechnological applications.
Collapse
Affiliation(s)
- J A F Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - M K S Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - T A Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - L D A Costa
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil
| | - M L E Leal
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil
| | - R S Bezerra
- Universidade Federal de Pernambuco - UFPE, Centro de Biociências, Departamento de Bioquímica, Laboratório de Enzimologia, Cidade Universitária, Recife, PE, Brasil
| | - H M S Costa
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - A C V Freitas-Júnior
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| |
Collapse
|
3
|
Carretas-Valdez MI, Moreno-Cordova EN, Ibarra-Hernandez BG, Cinco-Moroyoqui FJ, Castillo-Yañez FJ, Casas-Flores S, Osuna-Amarillas PS, Islas-Osuna MA, Arvizu-Flores AA. Characterization of the trypsin-III from Monterey sardine (Sardinops caeruleus): Insights on the cold-adaptation from the A236N mutant. Int J Biol Macromol 2020; 164:2701-2710. [PMID: 32827617 DOI: 10.1016/j.ijbiomac.2020.08.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.
Collapse
Affiliation(s)
- Manuel I Carretas-Valdez
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Elena N Moreno-Cordova
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Brisa G Ibarra-Hernandez
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Francisco J Cinco-Moroyoqui
- Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Francisco J Castillo-Yañez
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, Col. Lomas 4a sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Pablo S Osuna-Amarillas
- Universidad Estatal de Sonora, Carretera Navojoa-Huatabampo km 5, Navojoa, Sonora 85874, Mexico
| | - Maria A Islas-Osuna
- Centro de Investigación en Alimentación y Desarrollo, Laboratorio de Genética y Biología Molecular de Plantas, Carr. Gustavo Enrique Astiazarán Rosas, N0. 46. Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| | - Aldo A Arvizu-Flores
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas, Blvd. Luis Encinas y Blvd. Rosales s/n, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
4
|
Trypsin purified from Coryphaena hippurus (common dolphinfish): Purification, characterization, and application in commercial detergents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Osuna-Amarillas PS, Rouzaud-Sandez O, Higuera-Barraza OA, Arias-Moscoso JL, López-Mata MA, Campos-García JC, Valdez-Melchor RG. Cromatografía de interacción hidrofóbica como método de separación de proteasas alcalinas de vísceras de Scomberomorus sierra. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Este estudio se enfocó en recuperar proteasas alcalinas de vísceras de Scomberomorus sierra mediante cromatografía de interacción hidrofóbica. Tres proteasas alcalinas se lograron separar parcialmente usando esta técnica cromatográfica; dos de ellas con pesos moleculares de 19 y 31 kDa fueron identificadas como enzimas tipo tripsina de acuerdo a ensayos de inhibición. La proteasa alcalina con peso molecular de 31 kDa, única enzima aislada, fue purificada bajo las siguientes condiciones cromatográficas: sulfato de amonio l3% (p/v) y etilenglicol al 27% (p/v); esta enzima mostró actividad máxima a pH 9 – 10 y 50 – 60 °C y fue fuertemente inhibida por el inhibidor de tripsina de soya (SBTI) como por el inhibidor de tripsina porcina (TPI). Una tercera proteasa alcalina con peso molecular de 20 kDa fue parcialmente separada e inhibida por tosil fenilalanil clorometil cetona (TPCK), la cual mostró actividad óptima a pH 9 – 11 y 60 °C. Estos resultados muestran que las vísceras de Scomberomorus sierra podrían ser de utilidad como fuente de proteasas.
Collapse
|
6
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Osatomi K, Klomklao S. Anionic trypsin from the spleen of albacore tuna (Thunnus alalunga): Purification, biochemical properties and its application for proteolytic degradation of fish muscle. Int J Biol Macromol 2019; 133:971-979. [DOI: 10.1016/j.ijbiomac.2019.04.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
|
7
|
Kanno G, Klomklao S, Kumagai Y, Kishimura H. A thermostable trypsin from freshwater fish Japanese dace (Tribolodon hakonensis): a comparison of the primary structures among fish trypsins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:561-571. [PMID: 30547269 DOI: 10.1007/s10695-018-0600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Trypsin from Japanese dace (Tribolodon hakonensis) (JD-T) living in freshwater (2-18 °C) was purified. JD-T represented typical fish trypsin characteristics regarding the effects of protease inhibitor, calcium-ion, and pH. For the effect of temperature, JD-T quite resembled to the trypsins from tropical-zone marine fish and freshwater fish (the catfish cultured in Thailand), i.e., the optimum temperature was 60 °C, and it was stable below 60 °C at pH 8.0 for 15 min incubation. From the data, it seemed that the trypsin from freshwater fish is thermostable in spite of the fact that their habitat temperatures are low. So, we determined the primary structure of JD-T to discuss its thermostability-structure relationship. JD-T possessed basic structural features of fish trypsin such as the catalytic triad, the Asp189 residue for substrate specificity, 12 Cys residues forming six disulfide-bridges, and the calcium-ion-binding loop. On the other hand, the contents of charged amino acid residues in whole JD-T molecule (16.2%) and N-terminal region (13.8%) were similar to those of tropical-zone marine fish and other freshwater fish trypsins. Then, JD-T conserved the five amino acid residues (Glu70, Asn72, Val75, Glu77, and Glu80) coordinate with calcium-ion, and the proportion of negatively charged amino acids to charged amino acids in the calcium-ion-binding region of JD-T (75.0%) was equivalent to those of tropical-zone marine fish and freshwater fish trypsins. Therefore, it was suggested that the high thermostability of JD-T are stemmed from these structural specificities.
Collapse
Affiliation(s)
- Gaku Kanno
- Laboratory of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro- and Bio- Industry, Thaksin University, Phatthalung Campus, Pa-Phayom, Phatthalung, 93210, Thailand
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
8
|
Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 2018; 8:186. [PMID: 29556440 DOI: 10.1007/s13205-018-1208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022] Open
Abstract
In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli-based systems have been tested for the production of fish trypsins; however, P. pastoris-based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.
Collapse
Affiliation(s)
- Kristal Jesús-de la Cruz
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
| | | | - Emyr Peña
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
- Cátedra Consejo Nacional de Ciencia y Tecnología-UJAT, Villahermosa, Tabasco México
| | - José Antonio Morales-Contreras
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| | - Ángela Ávila-Fernández
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| |
Collapse
|
9
|
Zhang Y, He S, Simpson BK. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Klomklao S, Benjakul S. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: Purification and physicochemical and biochemical characterization. Int J Biol Macromol 2017; 107:1864-1870. [PMID: 29032086 DOI: 10.1016/j.ijbiomac.2017.10.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
Two trypsins (A and B) from the liver of albacore tuna (Thunnus alalunga) were purified to homogeneity using a series of column chromatographies including Sephacryl S-200, Sephadex G-50 and Diethylaminoethyl-cellulose. Purity was increased to 80.35- and 101.23-fold with approximately 3.1 and 19.2% yield for trypsins A and B, respectively. The molecular weights of trypsins A and B were estimated to be 21 and 24kDa, respectively, by SDS-PAGE and size exclusion chromatography. Both trypsins showed only one band on native-PAGE. Trypsins A and B exhibited the maximal activity at 60°C and 55°C, respectively, and had the same optimal pH at 8.5 using Nα-p-Tosyl-l-arginine methyl ester hydrochloride (TAME) as a substrate. Stabilities of both trypsins were well maintained at a temperature up to 50°C and in the pH range of 7.0-11.0 and were highly dependent on the presence of calcium ion. The inhibition test demonstrated strong inhibition by soybean trypsin inhibitor and TLCK. Activity of both trypsins continuously decreased with increasing NaCl concentration (0-30%). The N-terminal amino acid sequence of 20 residues of the two trypsin isoforms had homology when compared to those of other fish trypsins.
Collapse
Affiliation(s)
- Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung, 93210, Thailand.
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
11
|
Smichi N, Othman H, Achouri N, Noiriel A, Arondel V, Srairi-Abid N, Abousalham A, Gargouri Y, Miled N, Fendri A. Functional and Structural Characterization of a Thermostable Phospholipase A 2 from a Sparidae Fish (Diplodus annularis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2468-2480. [PMID: 28287729 DOI: 10.1021/acs.jafc.6b05810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel phospholipase (PLA2) genes from the Sparidae family were cloned. The sequenced PLA2 revealed an identity with pancreatic PLA2 group IB. To better understand the structure/function relationships of these enzymes and their evolution, the Diplodus annularis PLA2 (DaPLA2) was overexpressed in E. coli. The refolded enzyme was purified by Ni-affinity chromatography and has a molecular mass of 15 kDa as determined by MALDI-TOF spectrometry. Interestingly, unlike the pancreatic type, the DaPLA2 was active and stable at higher temperatures, which suggests its great potential in biotechnological applications. The 3D structure of DaPLA2 was constructed to gain insights into the functional properties of sparidae PLA2. Molecular docking and dynamic simulations were performed to explain the higher thermal stability and the substrate specificity of DaPLA2. Using the monolayer technique, the purified DaPLA2 was found to be active on various phospholipids ranging from 10 to 20 mN·m-1, which explained the absence of the hemolytic activity for DaPLA2.
Collapse
Affiliation(s)
- Nabil Smichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
- Enzymologie Interfaciale et Physiologie de la Lipolyse, UMR7282, CNRS, Aix-Marseille Université , 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Houcemeddine Othman
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Université Tunis-El Manar, Institut Pasteur de Tunis , Tunis 1002, Tunisia
| | - Neila Achouri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Alexandre Noiriel
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2 , F-69622 Villeurbanne cedex, France
| | - Vincent Arondel
- Univ Bordeaux, UMR 5200, Laboratoire de Biogenèse Membranaire , Bat. A3 Campus INRA de Bordeaux 71 avenue E., Bourlaux CS 2003233140 Villenave d'Ornon, France
| | - Najet Srairi-Abid
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Université Tunis-El Manar, Institut Pasteur de Tunis , Tunis 1002, Tunisia
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM2 , F-69622 Villeurbanne cedex, France
| | - Youssef Gargouri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Nabil Miled
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS , 3038 Sfax, Tunisia
| |
Collapse
|
12
|
Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem 2016; 212:460-8. [DOI: 10.1016/j.foodchem.2016.06.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 01/05/2023]
|
13
|
França RCDP, Assis CRD, Santos JF, Torquato RJS, Tanaka AS, Hirata IY, Assis DM, Juliano MA, Cavalli RO, Carvalho Jr LBD, Bezerra RS. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia ( Rachycentron canadum ) processing waste. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:210-217. [DOI: 10.1016/j.jchromb.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|