1
|
Yee LS, Abu Bakar MF, Abdullah N, Abu Bakar FI, Fatmawati S. Optimization of total phenolic content, total flavonoid content and anti-gout properties of polyherbal formulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:772-778. [PMID: 37561949 DOI: 10.1515/jcim-2020-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVES An increase in gout prevalence has drawn attention among society and this situation drives the exploration of more favourable treatment using traditional medicinal plants which are rich in phenolic and flavonoid to avoid the side effects of modern medication. However, there are only few studies regarding the optimization of phytochemicals and anti-gout properties of medicinal plants and their combinations. The objectives of this study were to determine the optimal formulation of Strobilanthes crispus, Orthosiphon stamineus Benth and Stevia rebaudiana with maximum total phenolic and flavonoid contents as well as minimum IC50 of in vitro xanthine oxidase inhibitory activity and to examine their correlations among the formulations. METHODS Plant extracts from hot water infusion were tested for the total phenolic content, total flavonoid content and enzyme inhibition through Folin-ciocalteu assay, aluminium chloride method and xanthine oxidase inhibition assay, respectively. Simplex-centroid mixture design was applied in this study and 13 polyherbal formulations were generated by Design Expert Software. RESULTS Linear, special cubic and quadratic models were selected to describe the interaction effect between polyherbal formulations and their responses. Low IC50 value (13.90 μg/mL) of xanthine oxidase activity was found in the binary combination of O. stamineus and S. rebaudiana and this probably related to its high phenolic and flavonoid contents as xanthine oxidase inhibition and phytochemicals were correlated. CONCLUSIONS The suggested optimal formulation was comprised of 44.26 % O. stamineus and 55.74 % S. rebaudiana and it could be developed as an alternative treatment for gout.
Collapse
Affiliation(s)
- Lim Sin Yee
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Muar, Johor, Malaysia
| | - Mohd Fadzelly Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Muar, Johor, Malaysia
| | - Norazlin Abdullah
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Muar, Johor, Malaysia
| | - Fazleen Izzany Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Muar, Johor, Malaysia
| | - Sri Fatmawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institute Technology Sepuluh Nopember, Sukolilo, Surabaya, East Java, Indonesia
| |
Collapse
|
2
|
Boateng ID. Application of Graphical Optimization, Desirability, and Multiple Response Functions in the Extraction of Food Bioactive Compounds. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Silva SS, Justi M, Chagnoleau JB, Papaiconomou N, Fernandez X, Santos SA, Passos H, Ferreira AM, Coutinho JA. Using biobased solvents for the extraction of phenolic compounds from kiwifruit industry waste. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Chaari M, Elhadef K, Akermi S, Hlima HB, Fourati M, Chakchouk Mtibaa A, Sarkar T, Shariati MA, Rebezov M, D’Amore T, Mellouli L, Smaoui S. Multiobjective response and chemometric approaches to enhance the phytochemicals and biological activities of beetroot leaves: an unexploited organic waste. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-15. [PMID: 36530596 PMCID: PMC9746593 DOI: 10.1007/s13399-022-03645-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on medicinal plants is developing each day due to inborn phytochemicals, which can encourage the progress of novel drugs. Most plant-based phytochemicals have valuable effects on well-being. Among them, beetroot leaves (BL) are known for their therapeutic properties. Here, three solvents, namely, acetonitrile, ethanol, and water, and their combinations were developed for BL extraction and simultaneous assessment of phytochemical compounds and antioxidant and antifoodborne pathogen bacteria activities. By using the augmented simplex-centroid mixture design, 40.40% acetonitrile diluted in water at 38.74% and ethanol at 20.86% favored the recovery of 49.28 mg GAE/mL (total phenolic content (TPC)) and 0.314 mg QE/mL (total flavonoid content (TFC)), respectively. Acetonitrile diluted in water at 50% guarantees the best antioxidant activity, whereas the optimal predicted mixture for the highest antibacterial activity matches 24.58, 50.17, and 25.25% of acetonitrile, ethanol, and water, respectively. These extraction conditions ensured inhibition of Staphylococcus aureus, Salmonella enterica, and Escherichia coli, respectively, at 0.402, 0.497, and 0.207 mg/mL. Under optimized conditions, at three concentrations of BL, minimal inhibitory concentration (MIC), 2 × MIC, and 4 × MIC, a linear model was employed to investigate the inhibition behavior against the three tested bacteria. The early logarithmic growth phase of these bacteria illustrated the bactericidal effect of optimized extracted BL with a logarithmic growth phase inferior to 6 h. Therefore, BL extract at 4 × MIC, which corresponds to 1.608, 1.988, and 0.828 mg/mL, was more efficient against S. aureus, S. enterica, and E. coli.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Tanmay Sarkar
- Department of Food Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102 West Bengal India
| | - Mohammed Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, 127550 Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, 127550 Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russia
| | - Teresa D’Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Puglia E Della, Foggia, Italy
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|
6
|
Peng L, Gao X, Wang L, Zhu A, Cai X, Li P, Li W. Design of experiment techniques for the optimization of chromatographic analysis conditions: A review. Electrophoresis 2022; 43:1882-1898. [PMID: 35848309 DOI: 10.1002/elps.202200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Design of experiment (DoE) techniques have been widely used in the field of chromatographic parameters optimization as a valuable tool. A systematic literature review of the available DoE techniques applied to the development of a chromatographic analysis method is presented in this paper. First, the most common available designs and the implementation steps of DoE are comprehensively introduced. Then the studies in recent 10 years for the application of DoE techniques in various chromatographic techniques are discussed, such as capillary electrophoresis, liquid chromatography, gas chromatography, thin-layer chromatography, and high-speed countercurrent chromatography. Current problems and future outlooks are finally given to provide a certain inspiration of research in the application of DoE techniques to the different chromatographic techniques field. This review contributes to a better understanding of the DoE techniques for the efficient optimization of chromatographic analysis conditions, especially for the analysis of complex systems, such as multicomponent drugs and natural products.
Collapse
Affiliation(s)
- Le Peng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xin Gao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Aiqiang Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiang Cai
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Pian Li
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
7
|
Fadil M, Lebrazi S, Aboulghazi A, Guaouguaou FE, Rais C, Slimani C, Es-safi NE. Multi-response optimization of extraction yield, total phenols-flavonoids contents, and antioxidant activity of extracts from moroccan Lavandula stoechas leaves: Predictive modeling using simplex-centroid design. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Nile SH, Venkidasamy B, Samynathan R, Nile A, Shao K, Chen T, Sun M, Khan MU, Dutta N, Thiruvengadam M, Shariati MA, Rebezov M, Kai G. Soybean Processing Wastes: Novel Insights on Their Production, Extraction of Isoflavones, and Their Therapeutic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6849-6863. [PMID: 34645264 DOI: 10.1021/acs.jafc.1c04927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soybean processing waste (SPW) has potential as a sustainable source of phytochemicals and functional foods. A variety of phytochemicals, nutrients, and minerals have been characterized from SPW using various analytical methods. SPW utilization strategies may provide a new way to increase production of bioactive compounds, nutritional supplements, and cosmetic ingredients. SPW has the potential for value-added processing, to improve commercial use, and to lower environmental pollution through proper use. Okara, a byproduct generated during soybean processing of tofu and soy milk, is rich in dietary fiber, isoflavones, and saponins. Isoflavones, an important class of biologically active compounds owing to their multifunctional and therapeutic effects, are extracted from SPW. Further, studies have shown that okara has potential prebiotic and therapeutic value in lowering the risk of noncommunicable diseases. Therefore, in this review, we focus on several extraction methods and pharmacotherapeutic effects of different SPWs. Their effective uses in functional foods, nutraceuticals, and health applications, as biocatalysts, and as value-added resources have been discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641062, India
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu India
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Keding Shao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Tingting Chen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nalok Dutta
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Tri-Cities Campus, Richland, Washington 99354, United States
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow 109004, Russian Federation
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| |
Collapse
|
9
|
Tjandra L, Setiawan B, Ishartadiati K, Utami SL, Widjaja JH. The Effects Of Tempe Extract On The Oxidative Stress Marker And Lung Pathology In Tuberculosis Wistar Rat. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and Objective — Tempe (fermented soybean) has the potential as an affordable nutritional support alternative during tuberculosis (TB) infection. The purpose of the study was to assess the efficacy of supplementation with the ethanolic extract of Tempe on the oxidative stress markers alleviation and histological changes in male Wistar rats infected with Mycobacterium tuberculosis. Material and Methods — Thirty-five male Wistar rats were divided randomly into five groups and infected by Mycobacterium tuberculosis strain H37RV intratracheally. Total antioxidant capacity (TAC) and Thiobarbituric Acid Reaction (TBARS) levels were assessed using a colorimetric method while C-reactive protein (CRP) was measured by Elisa method. The lung damage was scored using histopathological parameters. Results — There were no significant differences in the TBARS levels and CRP concentrations compared to control. Tempe extract increased the TAC level at 200 (p=0.011), 400 (p=0.027), and 800 (p=0.029) kg/body weight concentrations compared to control. Perivasculitis and alveolitis mean scores were lower (p<0.05) than control in all supplement groups. Additionally, the mean scores of peribronchiolitis among supplementation groups were decreased (p<0.05) in the 200 and 800 mg/kg body weight, while the granuloma mean score was lower in the 800 mg/kg body weight compared to control. Conclusions — Tempe extract may have a weak efficacy in improving the antioxidant capacity and lung histological condition in TB rat models.
Collapse
Affiliation(s)
| | - Budhi Setiawan
- Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | | | | | | |
Collapse
|
10
|
Stoffel F, Santana WDO, Fontana RC, Camassola M. Use of Pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
de Camargo AC, de Souza Silva AP, Soares JC, de Alencar SM, Handa CL, Cordeiro KS, Figueira MS, Sampaio GR, Torres EAFS, Shahidi F, Schwember AR. Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules 2021; 26:molecules26020463. [PMID: 33477281 PMCID: PMC7830396 DOI: 10.3390/molecules26020463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| | - Anna Paula de Souza Silva
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Jackeline Cintra Soares
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Severino Matias de Alencar
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Cíntia Ladeira Handa
- Minas Gerais State University, R. Ver. Geraldo Moisés da Silva 308-434, Ituiutaba, MG CEP 38302-182, Brazil;
| | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Marcela Souza Figueira
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Geni R. Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| |
Collapse
|
12
|
Analytical and preparative chromatographic approaches for extraction of spilanthol from Acmella oleracea flowers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Grutzmann Arcari S, Arena K, Kolling J, Rocha P, Dugo P, Mondello L, Cacciola F. Polyphenolic compounds with biological activity in guabiroba fruits (
Campomanesia xanthocarpa
Berg.) by comprehensive two‐dimensional liquid chromatography. Electrophoresis 2020; 41:1784-1792. [DOI: 10.1002/elps.202000170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Stefany Grutzmann Arcari
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Katia Arena
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Jeferson Kolling
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Paloma Rocha
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Paola Dugo
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Luigi Mondello
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Department of Sciences and Technologies for Human and Environment University Campus Bio‐Medico of Rome Rome Italy
- BeSep s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Francesco Cacciola
- Department of Biomedical Dental, Morphological and Functional Imaging Sciences University of Messina Messina Italy
| |
Collapse
|
14
|
Ding H, Li B, Boiarkina I, Wilson DI, Yu W, Young BR. Effects of Morphology on the Bulk Density of Instant Whole Milk Powder. Foods 2020; 9:E1024. [PMID: 32751793 PMCID: PMC7466220 DOI: 10.3390/foods9081024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
The chemical and physical properties of instant whole milk powder (IWMP), such as morphology, protein content, and particle size, can affect its functionality and performance. Bulk density, which directly determines the packing cost and transportation cost of milk powder, is one of the most important functional properties of IWMP, and it is mainly affected by physical properties, e.g., morphology and particle size. This work quantified the relationship between morphology and bulk density of IWMP and developed a predictive model of bulk density for IWMP. To obtain milk powder samples with different particle size fractions, IWMP samples of four different brands were sieved into three different particle size range groups, before using the simplex-centroid design (SCD) method to remix the milk powder samples. The bulk densities of these remixed milk powder samples were then measured by tap testing, and the particles' shape factors were extracted by light microscopy and image processing. The number of variables was decreased by principal component analysis and partial least squares models and artificial neural network models were built to predict the bulk density of IWMP. It was found that different brands of IWMP have different morphology, and the bulk density trends versus the shape factor changes were similar for the different particle size range groups. Finally, prediction models for bulk density were developed by using the shape factors and particle size range fractions of the IWMP samples. The good results of these models proved that predicting the bulk density of IWMP by using shape factors and particle size range fractions is achievable and could be used as a model for online model-based process monitoring.
Collapse
Affiliation(s)
- Haohan Ding
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand; (H.D.); (B.L.); (B.R.Y.)
| | - Bing Li
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand; (H.D.); (B.L.); (B.R.Y.)
| | - Irina Boiarkina
- Fonterra Co-Operative Group Limited, Auckland 1010, New Zealand;
| | - David I. Wilson
- Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand; (H.D.); (B.L.); (B.R.Y.)
| | - Brent R. Young
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand; (H.D.); (B.L.); (B.R.Y.)
| |
Collapse
|
15
|
Miranda LCR, Gomes RJ, Mandarino JMG, Ida EI, Spinosa WA. Acetic Acid Fermentation of Soybean Molasses and Characterisation of the Produced Vinegar. Food Technol Biotechnol 2020; 58:84-90. [PMID: 32684792 PMCID: PMC7365339 DOI: 10.17113/ftb.58.01.20.6292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soybean molasses is a by-product from the production of protein concentrate from soybean meal that predominantly contains sugars, with sucrose as the major component. In Brazil, soybean molasses is used for animal feed or it is discarded, although some industries use it to produce ethanol. This study aims to evaluate the parameters required for the acetic acid fermentation of soybean molasses, and characterise the resultant vinegar. To study the most suitable parameters for the acetic acid fermentation, vinegar was produced from the alcohol fermentation of soybean molasses through eight fermentation cycles: five for adaptation and three for production. The average acidity of the acetic acid fermentation product was 50.60 g/L, with an acetic acid fermentation yield, total yield of acetic acid in broth and productivity 65.01%, 92.76% and 0.033 g/(L·h), respectively. The vinegar produced from soybean molasses has an acidity of 5.07% (m/V), residual ethanol content 0.17% (m/V), sugars 7.86% (m/V), dry extract 14.67% (m/V), ash 2.27% (m/V) and a density of 1.023 g/cm3. The contents of total phenolics and isoflavones decreased after the alcohol and acetic acid fermentations. Moreover, the isoflavones profile of the fermented product comprised only three forms: daidzein, glycitin and genistin. According to our results, 3460 L of vinegar can be produced for every tonne of soy molasses, with an acetic acid concentration of 40 g/L, the minimum required by the legislation on vinegar production. Thus, these findings demonstrate that soy molasses represents a useful raw material for the production of vinegar.
Collapse
Affiliation(s)
- Lucas Caldeirão Rodrigues Miranda
- Department of Food Science and Technology, Londrina State University, Celso Garcia Cid (PR 445) Road, 86057-970, Londrina, PR, Brazil
| | - Rodrigo José Gomes
- Department of Food Science and Technology, Londrina State University, Celso Garcia Cid (PR 445) Road, 86057-970, Londrina, PR, Brazil
| | | | - Elza Iouko Ida
- Department of Food Science and Technology, Londrina State University, Celso Garcia Cid (PR 445) Road, 86057-970, Londrina, PR, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, Londrina State University, Celso Garcia Cid (PR 445) Road, 86057-970, Londrina, PR, Brazil
| |
Collapse
|
16
|
Sun C, Wu X, Chen X, Li X, Zheng Z, Jiang S. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem 2020; 316:126243. [PMID: 32036177 DOI: 10.1016/j.foodchem.2020.126243] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Okara dietary fiber was prepared by liquid fermentation with Monascus anka (M. anka). Infrared spectra results indicated that there were more oligosaccharides because of the hydrogen bond cleavage of the polysaccharides in okara Monascus dietary fiber (OMDF). Scanning electron microscopy and X-ray analyses showed that the structures of OMDF were altered as compared to that of the control. The UV-visible spectrum of the M. anka seed broth (MSB) contained three absorption peaks corresponding to red, orange, and yellow pigments, which were present in equal quantities. The concentration of citrinin in MSB and Monascus okara fermentation broth was 0.980 ppm and 0.940 ppm, respectively. After fermentation, the soluble OMDF content in OMDF was 7.7 g/100 g, which was 1.79 times of that in the control. Further, the water holding capacity, oil holding capacity, and swelling capacity of OMDF increased significantly, while the water retaining capacity decreased slightly. HYPOTHESIS: This study was aimed at investigating the effect of liquid fermentation of M. anka on okara. After fermentation, the dietary fiber structure may change and the functional properties may be improved.
Collapse
Affiliation(s)
- Congcong Sun
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Suwei Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| |
Collapse
|
17
|
Viell FLG, Madeira TB, Nixdorf SL, Gomes STM, Bona E, Matsushita M. Comparison between ultra‐homogenisation and ultrasound for extraction of phenolic compounds from teff (
Eragrostis tef
(Zucc
.
)). Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Franciele Leila Giopato Viell
- Postgraduate Program in Food Science Department of Food Science State University of Maringá (UEM) Maringa Brazil
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Campo Mourão Brazil
| | - Tiago Bervelieri Madeira
- Development of Instrumentation and Analytical Automation Laboratory Department of Chemistry State University of Londrina (UEL) Londrina Brazil
| | - Suzana Lucy Nixdorf
- Development of Instrumentation and Analytical Automation Laboratory Department of Chemistry State University of Londrina (UEL) Londrina Brazil
| | | | - Evandro Bona
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Campo Mourão Brazil
| | - Makoto Matsushita
- Postgraduate Program in Food Science Department of Food Science State University of Maringá (UEM) Maringa Brazil
| |
Collapse
|
18
|
Ferraz Bezerra IC, de Moraes Ramos RT, Assunção Ferreira MR, Lira Soares LA. Optimization Strategy for Extraction of Active Polyphenols from Leaves of Eugenia uniflora Linn. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01691-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Stoffel F, Santana WDO, Gregolon JGN, Kist TBL, Fontana RC, Camassola M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta 2019; 205:120100. [DOI: 10.1016/j.talanta.2019.06.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023]
|
21
|
Fermented soybean meal extract improves oxidative stress factors in the lung of inflammation/infection animal model. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01534-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Context
Fermented soybean products have been used in various ways, and more research is being conducted on them to reveal their benefit.
Objective
The objective of this study was to evaluate the antioxidative activity of fermented soybean meal extract by Lactobacillus plantarum in vitro and in vivo tests.
Materials and methods
A Lactobacillus plantarum strain RM10 was selected through plate and fermentation experiment, which increased the degree of protein hydrolysis (1.015 μg/mL) and antioxidant activity in soybean meal fermented by selected bacteria (FSBM). In vivo study was done on septic rats as an inflammation/infection model, and then the trial groups were treated with different concentrations of fermented soybean meal extracts (FSBM, 5, 10, and 20%).
Results
DPPH radical-scavenging and ferrozine ion-chelating activity enhanced (P < 0.05) after fermentation of soybean meal compared to control group. Reduced (P < 0.05) expression of inflammatory genes and enzymes was detected in the lungs of rats treated with fermented soybean meal extract.
Discussion and conclusions
These results demonstrated that a diet containing fermented soybean meal extract improved extreme inflammatory response in an infectious disease like sepsis by reducing inflammatory factors.
Collapse
|
22
|
Application of Deep Eutectic Solvents to Prepare Mixture Extracts of Three Long-Lived Trees with Maximized Skin-Related Bioactivities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aims to apply deep eutectic solvents (DESs) as safe and efficient extraction media that could yield maximized skin-related bioactivities from a mixture of long-lived trees. Ginkgo biloba L., Cinnamomum camphora (L.) J. Presl., and Cryptomeria japonica (L.f.) D. Don, native to Asia, were examined as potential resources of cosmeceutical products. Various DESs synthesized from cosmetics-compatible compounds were used to prepare leaf extracts. A DES containing glycerol and xylitol yielded the highest extractability for isoquercetin, and was selected as the optimal solvent. Isoquercetin has various bioactivities and was found in the extracts of the leaves of all three trees. Then, a series of mixtures of the tree leaves were prepared according to a simplex-centroid mixture design, and their DES-extracts were tested for skin-related activities, including antioxidant, anti-tyrosinase, and anti-elastase activities. The mixture design resulted in two special cubic models and one quadratic model best fitted for describing the antioxidant and anti-elastase activities, and the anti-tyrosinase activity, respectively. Based on the established models, three different optimal formulations of the three kinds of tree leaves were suggested for maximized responses. The present strategy, which is based on the simplex-centroid mixture design with a DES as the extraction solvent, could be applied to developing new materials from a mixture of natural resources, suitable for the cosmetics and related fields.
Collapse
|
23
|
Marcheafave GG, Tormena CD, Pauli ED, Rakocevic M, Bruns RE, Scarminio IS. Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Azcarate SM, Langhoff LP, Camiña JM, Savio M. A green single-tube sample preparation method for wear metal determination in lubricating oil by microwave induced plasma with optical emission spectrometry. Talanta 2019; 195:573-579. [DOI: 10.1016/j.talanta.2018.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022]
|
25
|
Ferreira SL, Silva Junior MM, Felix CS, da Silva DL, Santos AS, Santos Neto JH, de Souza CT, Cruz Junior RA, Souza AS. Multivariate optimization techniques in food analysis – A review. Food Chem 2019; 273:3-8. [DOI: 10.1016/j.foodchem.2017.11.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
|
26
|
Zhu L, Fang L, Li Z, Xie X, Zhang L. A HPLC fingerprint study on Chaenomelis Fructus. BMC Chem 2019; 13:7. [PMID: 31384756 PMCID: PMC6661768 DOI: 10.1186/s13065-019-0527-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 11/15/2022] Open
Abstract
Background Chaenomelis Fructus is a type of traditional medicine used in China. At present, the quality standard of Chaenomelis Fructus is mainly based on the content of each component as a control index, lacking overall control. To improve the rapid identification of chemical ingredients for Chaenomelis Fructus, a new approach to the construction for Chaenomelis Fructus is presented in this paper. Methods The precision, repeatability and stability of the proposed HPLC method were validated in the study. Twenty batches of Chaenomelis Fructus samples from their geographical origin were analyzed by the HPLC method. Common peaks in the chromatograms were adopted to calculate their relative retention time and relative peak area. The chromatographic data were processed by the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine software (Version 2004 A) for similarity analysis. Results The HPLC method demonstrated satisfactory precision, repeatability and stability. The similarities of the 20 Chaenomelis Fructus samples were 0.967, 0.979, 0.965, 0.992, 0.994, 0.988, 0.974, 0.909, 0.993, 0.894, 0.983, 0.976, 0.992, 0.960, 0.990, 0.992, 0.901, 0.815, 0.947, and 0.504, indicating that the similarities of 19 samples showed a similar pattern with the exception of sample 20. Sample S20 could be considered adulterated. This was further confirmed by principal component analysis and hierarchical clustering analysis. The HPLC fingerprints of different Chaenomelis Fructus had obvious differences in area of common peaks, but less differences in the number of common peaks. Conclusions The chromatographic fingerprint of Chaenomelis Fructus with high characteristics and specificity can be used as a reference to control its quality, providing a fast quality evaluation tool for distinguishing between the authentic Chaenomelis Fructus and the adulterated products.
Collapse
Affiliation(s)
- Lili Zhu
- 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Lexia Fang
- 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Zongjin Li
- 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Xiaomei Xie
- 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China.,Institute of Pharmaceutical Analysis, Anhui Academy of Chinese Medicine, Hefei, 230012 Anhui China
| | - Ling Zhang
- 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China.,Institute of Pharmaceutical Analysis, Anhui Academy of Chinese Medicine, Hefei, 230012 Anhui China
| |
Collapse
|
27
|
Handa CL, de Lima FS, Guelfi MFG, Fernandes MDS, Georgetti SR, Ida EI. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Food Chem 2019; 271:274-283. [PMID: 30236677 DOI: 10.1016/j.foodchem.2018.07.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/22/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
Abstract
The objective of this work was to evaluate the effects the solid-state fermentation parameters of defatted soybean flour (DSF) by Monascus purpureus or Aspergillus oryzae on the bioactive compounds. Central composite rotatable design, multi-response optimization, and Pearson's correlation were used. The fermentation parameters as initial pH (X1), DSF-to-water ratio (X2), and incubation temperature (X3) were taken as independent variables. The function responses were isoflavone content, total phenolic content (TPC), and antioxidant activity. All fermentation parameters affected the isoflavone content when fermented by Monascus purpureus, whereas the TPC or antioxidant activities remained almost unchanged. For the fermentation by Aspergillus oryzae, all the function responses were influenced by X2 and X3 and were independent of the X1. Estimated optimum conditions were found as x1 = 6.0, x2 = 1:1, and x3 = 30 °C for both fungi. Achieving suitable fermentation parameters is essential to increase bioactive compounds in the DSF that makes it promising for food industrial applications.
Collapse
Affiliation(s)
- Cíntia Ladeira Handa
- Universidade Estadual de Londrina, Departamento de Ciência e Tecnologia de Alimentos, 86051-990 Londrina, PR, Brazil
| | - Fernando Sanches de Lima
- Universidade Estadual de Londrina, Departamento de Ciência e Tecnologia de Alimentos, 86051-990 Londrina, PR, Brazil
| | - Marcela Fernanda Geton Guelfi
- Universidade Estadual de Londrina, Departamento de Ciência e Tecnologia de Alimentos, 86051-990 Londrina, PR, Brazil
| | - Meg da Silva Fernandes
- Universidade Estadual de Londrina, Departamento de Ciência e Tecnologia de Alimentos, 86051-990 Londrina, PR, Brazil
| | | | - Elza Iouko Ida
- Universidade Estadual de Londrina, Departamento de Ciência e Tecnologia de Alimentos, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
28
|
Calori-Domingues MA, Iwahashi PMR, Ponce GH, Gloria EMD, Dias CTDS, Button DC, De Camargo AC. Aflatoxin B 1 and zearalenone in soybeans: occurrence and distribution in whole and defective kernels. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2018; 11:273-280. [PMID: 30035664 DOI: 10.1080/19393210.2018.1502818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Few studies have addressed the distribution of mycotoxins in soybean and/or their processing fractions. In this study, samples from commercial lots were collected in four Brazilian states. The distribution of mycotoxins in soybean fractions, according to their commercial grading system, namely whole kernels (WK), split, broken and crushed kernels (SBCK), damaged kernels (DK), heat damaged and burned kernels (HDBK), moldy kernels (MK), greenish kernels (GK), foreign material + impurities (FMI), were analyzed using HPLC-FLD. AFB1 and ZEN tested positive in 43.3 and 80%, respectively. The incidence of AFB1 was higher in MK (50%), followed by HDBK (30.4%) and FMI (26.0%). ZEA incidence ranged from 69% (SBCK) to 100% (HDBK). Co-occurrence (53.3%) in at least one fraction was also detected. Brazil is the second world producer of soybeans, which places the country in a very important position. Therefore, the information provided is crucial and timely relevant for the industry and policymakers.
Collapse
Affiliation(s)
- Maria Antonia Calori-Domingues
- a Department of Agroindustry, Food and Nutrition , "Luiz de Queiroz" College of Agriculture, University of São Paulo , Piracicaba , SP , Brazil
| | - Paula Municelli Rodrigues Iwahashi
- a Department of Agroindustry, Food and Nutrition , "Luiz de Queiroz" College of Agriculture, University of São Paulo , Piracicaba , SP , Brazil
| | - Giancarlo Hercoton Ponce
- a Department of Agroindustry, Food and Nutrition , "Luiz de Queiroz" College of Agriculture, University of São Paulo , Piracicaba , SP , Brazil
| | - Eduardo Micotti da Gloria
- a Department of Agroindustry, Food and Nutrition , "Luiz de Queiroz" College of Agriculture, University of São Paulo , Piracicaba , SP , Brazil
| | - Carlos Tadeu Dos Santos Dias
- b Department of Exact Sciences , "Luiz de Queiroz" College of Agriculture, University of São Paulo - Av. Pádua Dias , Piracicaba , SP , Brazil
| | | | - Adriano Costa De Camargo
- a Department of Agroindustry, Food and Nutrition , "Luiz de Queiroz" College of Agriculture, University of São Paulo , Piracicaba , SP , Brazil
- d Department of Food Science and Technology, State University of Londrina , Londrina , PR , Brazil
| |
Collapse
|
29
|
Xie H, Wang X, Zhang L, Wang T, Zhang W, Jiang J, Chang PK, Chen ZY, Bhatnagar D, Zhang Q, Li P. Monitoring Metabolite Production of Aflatoxin Biosynthesis by Orbitrap Fusion Mass Spectrometry and a D-Optimal Mixture Design Method. Anal Chem 2018; 90:14331-14338. [DOI: 10.1021/acs.analchem.8b03703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huali Xie
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Tong Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Deepak Bhatnagar
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| |
Collapse
|
30
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
31
|
Guo H, Zhang Z, Yao Y, Liu J, Chang R, Liu Z, Hao H, Huang T, Wen J, Zhou T. A new strategy for statistical analysis-based fingerprint establishment: Application to quality assessment of Semen sojae praeparatum. Food Chem 2018; 258:189-198. [PMID: 29655722 DOI: 10.1016/j.foodchem.2018.03.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Semen sojae praeparatum with homology of medicine and food is a famous traditional Chinese medicine. A simple and effective quality fingerprint analysis, coupled with chemometrics methods, was developed for quality assessment of Semen sojae praeparatum. First, similarity analysis (SA) and hierarchical clusting analysis (HCA) were applied to select the qualitative markers, which obviously influence the quality of Semen sojae praeparatum. 21 chemicals were selected and characterized by high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS). Subsequently, principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to select the quantitative markers of Semen sojae praeparatum samples from different origins. Moreover, 11 compounds with statistical significance were determined quantitatively, which provided an accurate and informative data for quality evaluation. This study proposes a new strategy for "statistic analysis-based fingerprint establishment", which would be a valuable reference for further study.
Collapse
Affiliation(s)
- Hui Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yuan Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Zhao Liu
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | - Hongyuan Hao
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
32
|
Santos JS, Deolindo CT, Hoffmann JF, Chaves FC, do Prado-Silva L, Sant'Ana AS, Azevedo L, do Carmo MAV, Granato D. Optimized Camellia sinensis var. sinensis, Ilex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chem 2018; 254:348-358. [DOI: 10.1016/j.foodchem.2018.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
|
33
|
Ferreira SL, Lemos VA, de Carvalho VS, da Silva EG, Queiroz AF, Felix CS, da Silva DL, Dourado GB, Oliveira RV. Multivariate optimization techniques in analytical chemistry - an overview. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Hromádka R, Kejík Z, Jakubek M, Kaplánek R, Šandriková V, Urban M, Martásek P, Král V. Pigments from Filamentous Ascomycetes for Combination Therapy. Curr Med Chem 2018; 26:3812-3834. [PMID: 29600749 DOI: 10.2174/0929867325666180330091933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022]
Abstract
Filamentous ascomycetes (Neurospora and Monascus) have been studied for a long time because of their production of secondary metabolites such as microbial pigments. The ascomycetes represent an interesting group of compounds with high potential for medicinal applications. Many recent studies have shown their efficacy in the treatment of serious pathological states such as oncological diseases, neurodegenerative diseases and hyperlipidaemia. Nevertheless, the clinical usability of ascomycetes is still limited. However, this problem can be solved by the use of these compounds with combinations of other therapeutic agents. This strategy can suppress their side effects and improve their therapeutic efficacy. Moreover, their co-application can significantly enhance conventional therapies that are used. This review summarizes and discusses the general principles of this approach, introduced and supported by numerous examples. In addition, the prediction of the future potential application of this methodology is included.
Collapse
Affiliation(s)
- Róbert Hromádka
- C2P s.r.o. Jungmannova 101 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Viera Šandriková
- C2P s.r.o. Jungmannova 101 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Marian Urban
- Food Research Institute Prague, Radiova 1285/7, 1285/7, Prague 10, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
35
|
Teglia CM, Peltzer PM, Seib SN, Lajmanovich RC, Culzoni MJ, Goicoechea HC. Simultaneous multi-residue determination of twenty one veterinary drugs in poultry litter by modeling three-way liquid chromatography with fluorescence and absorption detection data. Talanta 2017; 167:442-452. [DOI: 10.1016/j.talanta.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
|