1
|
Pan Y, Dong S, Zhu Q, Tao L, Wu X, Lu M, Liao C, Jiang G. Unveiling Human Exposure to Plasticizers through Drinking Tea: A Nationwide Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8210-8220. [PMID: 40231705 DOI: 10.1021/acs.est.5c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Dietary intake represents a significant exposure pathway for phthalates (PAEs) and nonphthalate plasticizers (NPPs). However, the associated exposure risk linked to tea consumption remains unclear. This study analyzed 10 PAEs and 10 NPPs in six types of tea collected from 18 provinces in China. Both PAEs and NPPs were detected in all samples, with concentrations ranging from 309 to 8150 ng/g for PAEs and 42.2 to 899 ng/g for NPPs, respectively. Source apportionment analysis indicates that packaging materials are important sources of plasticizer contamination in tea. The concentrations of di-isobutyl phthalate (DiBP), benzyl-butyl phthalate (BzBP), and trioctyl trimellitate (TOTM) in tea exhibited a significant correlation with those found in packaging materials (r: 0.414-0.465, p < 0.01). Five transformation products (TPs) of plasticizers were identified in brewed tea samples through suspect screening analysis, raising concerns about their potential health effects. Comparisons suggest that cold brewing may result in higher plasticizer exposure than hot brewing after a single brew. However, as the brewing times for hot brewed tea increased, the risk of human exposure rose, ultimately exceeded that of cold brewed tea. This study provides national-scale data on plasticizer contamination in Chinese tea and valuable insights into tea consumption practices.
Collapse
Affiliation(s)
- Yitong Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Meichen Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Wang S, Wang S, Chen T, Yu J, Shi Y, Chen G, Xu J, Qiu J, Zhu F, Ouyang G. Detection and health implications of phthalates in tea beverages in market: Application of novel solid-phase microextraction fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176031. [PMID: 39236820 DOI: 10.1016/j.scitotenv.2024.176031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Assessment and control of emerging organic pollutants in food have become critical for global food safety and health. The European Union has set standards for certain emerging organic pollutants, such as phthalic acid esters (PAEs) in food. Because of being endocrine disruptors, PAEs are toxic and carcinogenic to humans. Release of PAEs from packaging materials poses a potential risk to human health and causes environmental pollution. In this study, a highly sensitive analytical method for the detection of PAE contents in tea beverages was established using hydroxyl-functionalized covalent organic frameworks (COFs) as solid-phase microextraction (SPME) coating. Results indicate that functionalization with hydroxyl groups enhances the adsorption of PAEs. The proposed method exhibits a wide linear range (1-20,000 ng L-1), low limits of detection (> 0.048 ng L-1), and satisfactory recovery (72.8 %-127.3 %). To investigate the PAE contamination in beverages, contamination levels of six typical PAEs and their health impacts were surveyed across various brands/types/packaging materials of tea beverages sold in China. Results of the hazard quotient and hazard index approaches suggest no or extremely low health concerns regarding PAE levels. We observe that hydroxyl groups functionalized on COFs enhance the adsorption of PAEs. Moreover, an important outcome of this study is development of an efficient and sensitive direct detection method for PAEs in complex tea matrices, providing a reliable approach for the assessment of PAEs in other complex matrices.
Collapse
Affiliation(s)
- Shaohan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhuang Wang
- College of Economics and Management, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Tianning Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueru Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
4
|
Göksu Sürücü C, Tolun A, Halisçelik O, Artık N. Brewing method-dependent changes of volatile aroma constituents of green tea ( Camellia sinensis L.). Food Sci Nutr 2024; 12:7186-7201. [PMID: 39479672 PMCID: PMC11521698 DOI: 10.1002/fsn3.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 11/02/2024] Open
Abstract
The determination of optimal levels of green tea amount and brewing time would have a crucial role in the accumulation of desired aromatic volatile compounds to meet worldwide market demand. Aroma is the most important factor influencing tea consumers' choices along with taste, price, and brand. This study aims to determine how the brewing time and amount of green tea affect the aroma profile of green tea infusion. The effect of the amount of Turkish green tea (5-10 g) and brewing time (5-60 min) on aromatic volatile compounds was evaluated using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) technique. The SPME/GC-MS analysis identified 57 components in the aroma profile of green tea infusions including 13 esters, 12 alkanes, 7 unknowns, 6 ketones, 3 alcohols, 2 terpenes, 2 terpenoids, 1 alkaloid, 1 phenolic compound, 1 lactone, 1 pyrazine, and 1 norisoprenoid. The green tea amount and brewing time had significant effects on the number of chemical compounds. A total of 42, 47, and 36 aromatic volatile compounds were determined by brewing 5, 7.5, and 10 g of green tea. The most abundant constituents in green tea infusions were phytone, 2-decenal, lauric acid, unknown 1, methoxy-1-methylethyl pyrazine, α-ionone, β-ionone, and diethyl phthalate (DEP). With this study, the aroma structures of green tea infusion have been revealed for the first time depending on the brewing time and quantity.
Collapse
Affiliation(s)
- Canan Göksu Sürücü
- Plant‐Based Food Research Center, Field Crops Central Research Institute, Directorate General of Agricultural Research and PoliciesAnkaraTürkiye
| | - Aysu Tolun
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| | - Ozan Halisçelik
- Core Unit Metabolomics, Berlin Institute of HealthCharité UniversityBerlinGermany
| | - Nevzat Artık
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| |
Collapse
|
5
|
Alak G, Köktürk M, Atamanalp M. Phthalate migration potential in vacuum-packed fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50942-50951. [PMID: 39107639 DOI: 10.1007/s11356-024-34419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Phthalates or phthalate esters (PAEs) have become a serious concern due to their toxicity and risks of migration from contact materials to food matrices and the environment. The aim of this study is to monitor the possible migration potential of PAEs in pelagic fish stored in vacuum packaging depending on the storage time and to determine the polyethylene polymers. In order to achieve this goal, sea bass (Dicentrarchus labrax) and anchovy fish (Engraulis encrasicolus) were randomly packaged in vacuum bags and then stored for 90 days. Phthalate content was determined by GC/MS technique in the muscle tissue of each fish species at certain periods (0, 30, and 90 days) of storage, and on the first day in the packaging material and fish meat. As a result of the analysis performed in µ-Raman spectroscopy, no microplastics were detected in both fish species' meats. FTIR spectroscopy results of the packaging material determined nylon in the chemical content of the packaging material before processing. It has been determined that the chemical composition of the packaging used in the vacuum packaging process is affected by the temperature, depending on the storage period, and different polymer types are formed in the processed package material. It was determined that the dominant PAE homologues were Di-n-pentyl phthalate (DPENP) in both fish meat and Di-(2-ethylhexyl)-phthalate (DEHP) in the package. However, during storage, Dibutylphthalate (DBP) became dominant in anchovies and DPENP became dominant in sea bass, differing according to fish species and storage time.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, TR-25030, Turkey.
| | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, Igdir, TR-76000, Türkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, TR-25030, Turkey
| |
Collapse
|
6
|
Kashfi FS, Mohammadi A, Rostami F, Savari A, De-la-Torre GE, Spitz J, Saeedi R, Kalantarhormozi M, Farhadi A, Dobaradaran S. Microplastics and phthalate esters release from teabags into tea drink: occurrence, human exposure, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104209-104222. [PMID: 37697202 DOI: 10.1007/s11356-023-29726-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Tea, the most common infusion worldwide, is usually sold in teabags due to the ease of usage. The increase in the use of plastic materials in the food packaging industry has led to an increase in released contaminants, such as microplastics (MPs) and phthalates (PAEs), in various food products including teabags. In this research, the abundance and features of MPs as well as PAEs concentration were investigated in 45 teabag samples of different Persian and German brands. The abundance of MPs in the Persian and German teabag samples was averagely 412.32 and 147.28 items/single teabag, respectively. Also, average PAEs levels in the Persian and German teabag samples were 2.87 and 2.37 mg/g, respectively. The predominant size category of MPs was related to 100-250 μm. Fibers and transparent were the dominant shape and color of detected MPs in teabags, respectively. Polyethylene (PE) and nylon were the most common MP polymer types. The most prominent PAEs congeners in teabag samples were diethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP). Furthermore, MP exposure hazard through tea ingestion was analyzed for children and adults. DEHP showed the cancer risk (CR) for children and adults. The findings of this research indicated that high MPs and PAEs levels are released from teabags into tea drinks. Considering a daily drinking of a volume of 150 and 250 mL tea by children and adults, 486 and 810 MPs may enter their bodies, respectively. Thus, tea prepared with teabag-packed herbs may pose a significant health risk for consumers.
Collapse
Affiliation(s)
- Fatemeh Sadat Kashfi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Rostami
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezou Savari
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gabriel E De-la-Torre
- Biodiversity, Environment, and Society Research Group, San Ignacio de Loyola University, Lima, Peru
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kalantarhormozi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, 7514763448, Bushehr, Iran.
| |
Collapse
|
7
|
Li X, Li L, Wang Y, Hao X, Wang C, Yang Z, Li H. Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122877. [PMID: 37209479 DOI: 10.1016/j.saa.2023.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
The large-area fabrication of flexible and transparent surface-enhanced Raman scattering (SERS) substrates with high performance by a facile and efficient method is still challenging. Here, we demonstrated a large-scale, flexible and transparent SERS substrate composed of PDMS nanoripple array film decorated with silver nanoparticles (Ag NPs@PDMS-NR array film) prepared by a combination of plasma treatment and magnetron sputtering. The performances of SERS substrates were characterized by rhodamine 6G (R6G) using a handheld Raman spectrometer. The optimal Ag NPs@PDMS-NR array film exhibited high SERS sensitivity, with a detection limitation of R6G reaching 8.20 × 10-8 M as well as excellent uniformity (RSD = 6.8%) and batch-to-batch reproducibility (RSD = 2.3%). In addition, the substrate showed outstanding mechanical stability and good SERS enhancement by backside illumination, thus it was suitable for in situ SERS detection on curved surfaces. The detection limit of malachite green on apple and tomato peels was 1.19 × 10-7 and 1.16 × 10-7 M, respectively, and quantitative analysis of pesticide residues could be realized. These results demonstrate that the Ag NPs@PDMS-NR array film has great practical potential in rapid in situ detection of pollutants.
Collapse
Affiliation(s)
- Xiaojian Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Lijun Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Yangzhi Wang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China.
| |
Collapse
|
8
|
Wang M, Han S, Wu Y, Tang Y, Li J, Pan C, Han B. Spatiotemporal Dynamics of Phthalate Esters in Tea Plants Growing Different Geographical Environments and an Attempt on Their Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6434-6444. [PMID: 37058117 DOI: 10.1021/acs.jafc.2c08919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phthalate esters (PAEs) have become ubiquitous pollutants. In the present work, we investigated their pollution on teas. Dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DBP), and di-(2-ethyl) hexyl phthalate (DEHP) were detected in all fresh tea leaves with DBP being the major congener of PAEs in teas followed by DiBP and DEHP. Seasonal variation, spatial distribution difference, correlationship of environmental factors, and potential health risks of PAEs were analyzed. The PAEs content in one bud and two leaves was lower than that in upper mature leaves in tea plants. The PAEs content in fresh tea leaves was the lowest in spring, while it was high in autumn and winter. The correlation analysis results showed that PAEs had significantly negative correlation with ambient air temperature, while it was positively correlated with the air quality index. PAEs analysis of spring tea in Anhui and Zhejiang provinces further indicated that the factor of provincial regions had little impact on the PAEs pollution level in tea. By contrast, the different environmental areas significantly affected PAE pollution, especially the agricultural areas. The human daily intake-based (13 g/day) risk assessment indicated that both the carcinogenic and non-carcinogenic risks (1.76 × 10-7-6.12 × 10-7) of PAEs via tea consumption were acceptable, with the estrogen equivalence (1.60-6.29 ng E2/kg) being at a medium level. This study provides significant information for pollution control and risk assessment of PAEs in Chinese tea production.
Collapse
Affiliation(s)
- Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yiqi Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanyan Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Cheng Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Li W, Gu Y, Liu Z, Hua R, Wu X, Xue J. Development of a polyurethane-coated thin film solid phase microextraction device for multi-residue monitoring of pesticides in fruit and tea beverages. J Sep Sci 2023; 46:e2200661. [PMID: 36373185 DOI: 10.1002/jssc.202200661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 μg/L), wide linear ranges (1.0-500.0 μg/L, r2 > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.
Collapse
Affiliation(s)
- Wenhui Li
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Gu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Zikun Liu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Jiaying Xue
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
10
|
Talib Hamzah H, Sridevi V, Seereddi M, Suriapparao DV, Ramesh P, Sankar Rao C, Gautam R, Kaka F, Pritam K. The role of solvent soaking and pretreatment temperature in microwave-assisted pyrolysis of waste tea powder: Analysis of products, synergy, pyrolysis index, and reaction mechanism. BIORESOURCE TECHNOLOGY 2022; 363:127913. [PMID: 36089130 DOI: 10.1016/j.biortech.2022.127913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on microwave-assisted pyrolysis (MAP) of fresh waste tea powder and torrefied waste tea powder as feedstocks. Solvents including benzene, acetone, and ethanol were used for soaking feedstocks. The feedstock torrefaction temperature (at 150 °C) and solvents soaking enhanced the yields of char (44.2-59.8 wt%) and the oil (39.8-45.3 wt%) in MAP. Co-pyrolysis synergy induced an increase in the yield of gaseous products (4.7-20.1 wt%). The average heating rate varied in the range of 5-25 °C/min. The energy consumption in MAP of torrefied feedstock (1386 KJ) significantly decreased compared to fresh (3114 KJ). The pyrolysis index dramatically varied with the solvent soaking in the following order: ethanol (26.7) > benzene (25.6) > no solvent (10) > acetone (6). It shows that solvent soaking plays an important role in the pyrolysis process. The obtained bio-oil was composed of mono-aromatics, poly-aromatics, and oxygenated compounds.
Collapse
Affiliation(s)
- Husam Talib Hamzah
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Veluru Sridevi
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Meghana Seereddi
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Dadi V Suriapparao
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India.
| | - Potnuri Ramesh
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Chinta Sankar Rao
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Ribhu Gautam
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fiyanshu Kaka
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune 411025, India
| | - Kocherlakota Pritam
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar 382007, India
| |
Collapse
|
11
|
Hou F, Chang Q, Wan N, Li J, Zang X, Zhang S, Wang C, Wang Z. A novel porphyrin-based conjugated microporous nanomaterial for solid-phase microextraction of phthalate esters residues in children's food. Food Chem 2022; 388:133015. [PMID: 35468464 DOI: 10.1016/j.foodchem.2022.133015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
A novel porphyrin-based conjugated microporous polymer (PCMP) with microporous structure and nitrogen-rich pyrrole building blocks was synthesized. The PCMP was used as a coating material to prepare solid-phase microextraction (SPME) fibers by sol-gel technique. Due to the toxicity of the phthalate esters (PAEs) and the necessity for their sensitive determinations in some food samples, the SPME fiber was investigated for the extraction of eleven PAEs from six different children's milk beverages prior to their detection by gas chromatography-mass spectrometry. Under the optimal conditions, the linear response range for the PAEs was in the range from 0.03 to 200 µg L-1 and the limits of detection (S/N = 3) for the analytes were 0.01-3.00 μg L-1. The method recoveries for the PAEs were between 80% and 120%, with the relative standard deviations varying from 1.3% to 9.8%. The method was successfully applied for the determination of PAEs in children's milk beverages.
Collapse
Affiliation(s)
- Fangyuan Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Nana Wan
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Jie Li
- Testing Center of the Geophysical Exploration Academy of China Metallurgical Bureau, Baoding 071051, China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
12
|
Lan C, Meng L, Xu N. Dual-Channel Ratiometric Colorimetric Sensor Array for Quantification and Discrimination of o-, m-, and p-Phenols. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zang X, Wang M, Chang Q, Wang C, Wang Z, Xu J. Determination of phthalate esters in bottled beverages by direct immersion solid phase microextraction with a porous boron nitride coated fiber followed by gas chromatography-mass spectrometry. J Sep Sci 2022; 45:2987-2995. [PMID: 35642725 DOI: 10.1002/jssc.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/09/2022]
Abstract
A porous boron nitride with a large surface area was synthesized by one step grinding method with melamine, urea and boric acid as the precursors. The prepared porous boron nitride was used as the fiber coating material for the solid-phase microextraction of seven phthalate esters (diethylphthalate, diallyl phthalate, diisobutyl phthalate, dibutyl phthalat, butylbenzyl phthalate, dicyclohexyl phthalate and di-2-ethylhexylphthalate) prior to their gas chromatography-mass spectrometric detection. The important experimental parameters including the extraction time, extraction temperature, salt concentration, and stirring rate were optimized by both single factor and central composite design methods. Under the optimized experimental conditions, the linear response range for the analytes was from 0.030 to 30.0 μg L-1 , and the limits of detection were from 0.010 to 0.040 μg L-1 , respectively. The relative recoveries of the analytes for spiked samples at two concentration levels were 83.0%-109% with the relative standard deviations less than 12%. The established method was successfully applied for the determination of the phthalate esters in bottled juice beverage samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaohuan Zang
- College of Chemistry and Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, PR China.,Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Mengting Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, PR China
| |
Collapse
|
14
|
A CRITICAL REVIEW ON EXTRACTION AND ANALYTICAL METHODS OF PHTHALATES IN WATER AND BEVERAGES. J Chromatogr A 2022; 1675:463175. [DOI: 10.1016/j.chroma.2022.463175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
|
15
|
Determination of Five Phthalate Esters in Tea and Their Dynamic Characteristics during Black Tea Processing. Foods 2022; 11:foods11091266. [PMID: 35563987 PMCID: PMC9103538 DOI: 10.3390/foods11091266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
A highly specific and high extraction-rate method for the analysis of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), diisobutyl phthalate (DiBP), and di-(2-ethyl) hexyl phthalate (DEHP) in tea samples was developed. Based on three-factor Box-Behnken response surface design, solid-phase extraction (SPE) of five phthalate ester (PAE) residues in tea was optimized. Optimal extraction conditions were found for extraction temperature (40 °C), extraction time (12 h), and ratio of tea to n-hexane (1:20). The dynamic distribution of PAEs at each stage of black tea processing was also analyzed, and it was found that the baking process was the main stage of PAE emission, indicating that traditional processing of black tea significantly degrades PAEs. Further, principal component analysis of the physicochemical properties and processing factors of the five PAEs identified the main processing stages affecting the release of PAEs, and it was found that the degradation of PAEs during black tea processing is also related to its own physicochemical properties, especially the octanol-water partition coefficient. These results can provide important references for the detection, determination of processing losses, and control of maximum residue limits (MRLs) of PAEs to ensure the quality and safety of black tea.
Collapse
|
16
|
Aroma characterization and their changes during the processing of black teas from the cultivar, Camellia sinensis (L.) O. Kuntze cv. Jinmudan. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Yan Y, Qu Y, Du R, Zhou W, Gao H, Lu R. Colorimetric assay based on arginine-functionalized gold nanoparticles for the detection of dibutyl phthalate in Baijiu samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5179-5186. [PMID: 34672311 DOI: 10.1039/d1ay01464a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a simple and innovative colorimetric method is established, which is based on DBP-induced aggregation of arginine functionalized gold nanoparticles (ARG-AuNPs), and can be used for the sensitive determination of dibutyl phthalate (DBP) in Baijiu samples. The morphological characteristics and the color changes of ARG-AuNPs caused by aggregation show good sensitivity, and can be observed through ultraviolet-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential technology. The color change of ARG-AuNPs from red to blue is due to the strong non-covalent interactions between DBP and ARG-AuNPs (electrostatic, van der Waals force and hydrogen bonding), which leads to the reduction of the electrostatic repulsion between the nanoparticles and aggregation. A two-stage linear equation was established between the absorption ratio (A690/A530) and the DBP concentration (0.0-2.8 mg L-1); the correlation coefficient (R2) was 0.9914-0.9940, and the detection limit (LOD) was estimated at 0.05 mg L-1. The designed ARG-AuNPs acting as a dependable sensor for the detection of Baijiu samples equally acquired satisfactory recoveries. When the concentration of DBP in the solution is more than 1.0 mg L-1, the color change can be clearly observed by the naked eye; so there is no need for sample preparation techniques and tedious operations to quickly and semi-quantitatively detect DBP. The successful application of the proposed method in Baijiu samples indicates its potential to detect DBP in more complex environment samples.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Yuan Qu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Rui Du
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
18
|
Zhang J, Dang X, Dai J, Hu Y, Chen H. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Anal Chim Acta 2021; 1183:338981. [PMID: 34627510 DOI: 10.1016/j.aca.2021.338981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
An electrochemical assistance solid-phase microextraction (EA-SPME) was developed based on amino functionalized multi-walled carbon nanotube/polypyrrole (MWCNTs-NH2/PPy) composite coating. It was applied for the extraction of eight phenols in food contact material, including 2-chlorophenol, o-cresol, m-cresol, 2,4-dichlorophenol, 4-tert-butylphenol, 4-chlorophenol, 4-tertoctylphenol and alpha-naphthol. MWCNTs-NH2/PPy coating was characterized by scanning electron microscopy, transmission electron microscope, X-ray energy spectrometer, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis. The adsorption mechanism of phenols on the composite coatings was investigated. The coating modified steel-wire as an extraction fiber has good electroconductibility, reproducibility and long service life. A determination method for the eight phenols was established by EA-SPME coupled with gas chromatography-flame ionization detection. Under the optimal experimental conditions (extraction temperature: 40 °C; extraction time: 30 min; stirring rate: 600 rpm; NaCl concentration: 0.15 g mL-1; desorption temperature: 250 °C and desorption time: 4 min), the detection linear range was 0.005-50 μg L-1 (R2>0.99), and the detection limit was 0.001-0.1 μg L-1 (S/N = 3). For the quintuple analysis of 50 μg L-1 phenols, the single fiber RSDs were 2.2-12.4%, and the fiber-to-fiber RSDs were 1.9-10.5%. The method was used to detect the migration quantity of the eight phenols from five canned packaging materials, which showed satisfactory recovery 87.3-118.9%.
Collapse
Affiliation(s)
- Jiayang Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Jiahuan Dai
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
19
|
Kazemi M, Niazi A, Yazdanipour A. Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC–FID. Chromatographia 2021. [DOI: 10.1007/s10337-021-04032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Ortega-Zamora C, Jiménez-Skrzypek G, González-Sálamo J, Hernández-Borges J. Extraction of phthalic acid esters from soft drinks and infusions by dispersive liquid-liquid microextraction based on the solidification of the floating organic drop using a menthol-based natural deep eutectic solvent. J Chromatogr A 2021; 1646:462132. [PMID: 33894455 DOI: 10.1016/j.chroma.2021.462132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023]
Abstract
In this work, a natural deep eutectic solvent (NADES) consisting of L-menthol and acetic acid in a 1:1 molar ratio has been applied as extraction solvent for the dispersive liquid-liquid microextraction based on the solidification of the floating organic drop (DLLME-SFO) of a group of nine phthalic acid esters (dipropyl phthalate, DPP; butyl benzyl phthalate, BBP; dibutyl phthalate, DBP; dicyclohexyl phthalate, DCHP; diisopentyl phthalate, DIPP; di-n-pentyl phthalate, DNPP; di(2-ethylhexyl) phthalate, DEHP; diisononyl phthalate, DINP; and diisodecyl phthalate, DIDP) from three common infusions (camomile, pennyroyal mint, and linden teas) and three soft drinks (green tea, tonic, and lime and lemon drink), using dihexyl phthalate (DHP) and di-n-octyl phthalate (DNOP) as internal standards. After the DLLME-SFO procedure, analyses were carried out by high-performance liquid chromatography with UV detection. Method calibration showed good linearity for all the analytes and matrices, with determination coefficients (R2) higher than 0.9910. Relative recovery values were between 71 and 125 %, with relative standard deviation values in the range 1-22 % for the six types of samples, while the limits of quantification of the method were in the range 4.3-51.1 µg/L for infusions and in the range 3.5-33.3 µg/L for soft drinks. Several samples purchased in different local supermarkets were analysed, finding DPP, DBP, DIPP, DEHP and DINP, although only DPP, DBP and DEHP could be quantified in some of them.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
21
|
Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phthalates are multifunctional synthetic chemicals found in a wide array of consumer and industrial products, mainly used to improve the mechanical properties of plastics, giving them flexibility and softness. In the European Union, phthalates are prohibited at levels greater than 0.1% by weight in most food packaging. In the current study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was optimized, through the multivariate optimization process, and validated to evaluate the occurrence of four common phthalates, di-iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP), and 2,2,4,4-tetrabromodiphenyl (BDE), in different food packaging. The best extraction efficiency was achieved using the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber at 80 °C for 30 min. The validated method showed good linearity, precision (RSD < 13%), and recoveries (90.2 to 111%). The limit of detection (LOD) and of quantification (LOQ) ranged from 0.03 to 0.08 µg/L and from 0.10 to 0.24 µg/L, respectively. On average, the phthalates concentration varied largely among the assayed food packaging. DIBP was the most predominant phthalate in terms of occurrence (71.4% of analyzed simples) and concentration (from 3.61 to 10.7 μg/L). BBP was quantified in only one sample and BDE was detected in trace amounts (<LOQ) in only two samples.
Collapse
|
22
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Persistent organic pollutants (PCBs and PCDD/Fs), PAHs, and plasticizers in spices, herbs, and tea - A review of chromatographic methods from the last decade (2010-2020). Crit Rev Food Sci Nutr 2021; 62:5224-5244. [PMID: 33563047 DOI: 10.1080/10408398.2021.1883546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Edible and highly demanded plant-derived products such as herbs, spices, and tea may be subjected to exogenous contamination of well-known chemical hazards such as persistent organic pollutants (POPs), and emerging ones such as plasticizers, affecting negatively the safety of these food commodities. This fact has led to the increasing analysis of exogenous compounds including priority POPs such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs), as well as highly persistent polycyclic aromatic hydrocarbons (PAHs). Currently, plasticizer residues are also considered an emerging issue because of the extensive use in food packaging and potential migration into foodstuffs. In this review, the studies published from 2010 to 2020 were discussed, including the main extraction methods applied for these contaminants from herbs, spices, and tea, and it was revealed the trend toward the use of less solvent-consuming and time-effective methods. Chromatographic methods were also described, which were mainly combined with detection techniques such as classical or mass spectrometry (MS) detection. Finally, a comprehensive overview of the occurrence of these selected exogenous compounds was presented in the studied matrices, showing that their monitoring should be further investigated to ensure food safety of highly consumed condiments and tea.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, Almeria, Spain
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, Almeria, Spain
| |
Collapse
|
23
|
A carbon dots-based coating for the determination of phthalate esters by solid-phase microextraction coupled gas chromatography in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
García-Fabila MM, Chávez AA, Meza JCS, Montes LPB, García AR. Phthalates in the diet of Mexican children of school age. Risk analysis. Toxicol Rep 2020; 7:1487-1494. [PMID: 33204649 PMCID: PMC7652773 DOI: 10.1016/j.toxrep.2020.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Phthalates are widely used as plasticizers, additives, or solvents. Its extensive use has generated environmental and food contamination, which implies continuous population exposure. The aim of this work was to determine the probability of health risk of Mexican children exposed to phthalates through the consumption of contaminated food. A survey was applied to 384 Mexican school-age children (between 6 and 12 years old), to find out the type of food they eat most frequently, based on this, a research was made to know the concentration of phthalates contained in these foods. The daily intake had been calculated with the concentration of phthalates reported in food, obtaining: DEHP (19.50 μg/kg body weight/day), DnBP (5.52 μg/kg body weight/day) y for DEP (1.12 μg/kg body weight/day). The hazard index (HI) for DEP y DEHP was 0.49 to 42.5 for internal organs damage reported. HI for reproductive health damage due to exposure to DnBT and DEHP was of 0.04 to 5.58, so that there is a high probability that children's health is at risk. Therefore, it is necessary to a quantitative analysis of phthalates in food consumed in Latin American countries and establish the TDI of phthalates especially, to DEHP, which was obtained the higher HI.
Collapse
Affiliation(s)
- María Magdalena García-Fabila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón and Paseo Tollocan SN., Colonia Ocho Cedros, Toluca, Estado de México, C.P. 50120, Mexico
| | - Araceli Amaya Chávez
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón and Paseo Tollocan SN., Colonia Ocho Cedros, Toluca, Estado de México, C.P. 50120, Mexico
- Corresponding author.
| | - Juan Carlos Sánchez Meza
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón and Paseo Tollocan SN., Colonia Ocho Cedros, Toluca, Estado de México, C.P. 50120, Mexico
| | - Lilia Patricia Bustamante Montes
- Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Montevideo esquina Avenida Acueducto, Guadalajara, Jalisco, CP 44670, Mexico
| | - Alicia Reyes García
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón and Paseo Tollocan SN., Colonia Ocho Cedros, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
25
|
Liu J, Li C, Yang F, Zhao N, Lv S, Liu J, Chen L, He Z, Zhang Y, Wang S. Assessment of migration regularity of phthalates from food packaging materials. Food Sci Nutr 2020; 8:5738-5747. [PMID: 33133575 PMCID: PMC7590312 DOI: 10.1002/fsn3.1863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
Phthalate acid esters (PAEs) are one of the essential plastic additives which may lead to plenty of harmful effects, including reproductive toxicity, teratogenicity, and carcinogenicity. Increasing attention has been paid to the migration of plasticizer. In this article, the disposable plastic lunch boxes were taken as the research object. The result showed that dibutyl phthalate (DBP) and diisobutyl phthalate (DIBP) have been mainly found, whose content was 1.5 mg/kg and 2.4 mg/kg, respectively. The LOD was 2 ng/g, and LOQ was 6.7 ng/g. We further investigated the migration of PAEs into the simulated liquid at different temperature conditions. Then, the linear fitting performing by first-order kinetic migration model revealed that the lower the polarity of the simulated liquid, the larger the rate constant K 1 and initial release rate V 0. The higher the temperature, the bigger the K 1 and V 0.
Collapse
Affiliation(s)
- Jing‐Min Liu
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Chun‐Yang Li
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Fei‐er Yang
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Shi‐Wen Lv
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Ji‐Chao Liu
- Beijing San Yuan foods co., LTD.BeijingChina
| | - Li‐Jun Chen
- Beijing San Yuan foods co., LTD.BeijingChina
| | - Ze He
- Key Laboratory of Food Nutrition and SafetyMinistry of EducationTianjin University of Science and TechnologyTianjinChina
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and HealthSchool of MedicineNankai UniversityTianjinChina
| |
Collapse
|
26
|
Alnaimat AS, Barciela-Alonso MC, Bermejo-Barrera P. Development of a sensitive method for the analysis of four phthalates in tea samples: Tea bag contribution to the total amount in tea infusion. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1719-1729. [PMID: 32706309 DOI: 10.1080/19440049.2020.1786170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sensitive, precise and selective method for the analysis of butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dimethyl phthalate (DMP) in tea samples has been applied. Molecularly Imprinted Polymer-Solid Phase Extraction (MIP-SPE) has been used for the separation and preconcentration of these compounds. Phthalates extracted by SPE were analysed by high-performance liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS). The method was sensitive (LOD < 2 µg L-1), precise (RSD <10%) and accurate with recovery percentages ranging from 84% to 97%. Finally, the developed method was applied for the analysis of these phthalates in several tea samples marketed in bags. Migration studies were also performed to evaluate the concentration of phthalates released from the bags into the infusions, and teabag filters were analysed by Fourier-transform infrared spectroscopy. The migration study shows that tea filter bags contribute to the total phthalates concentration in tea infusion, and this contribution varies between 1.8 to 93.5 % of the total phthalates' concentrations. Tea filter bags release higher DBP than BBP, DMP, and DEP.
Collapse
Affiliation(s)
- Alá S Alnaimat
- Department of Analytical Chemistry, Nutrition, and Bromatology, Faculty of Chemistry, Universidade De Santiago De Compostela , Santiago De Compostela, Spain.,Department of Chemistry, College of Science, Al-Hussein Bin Talal University , Ma'an, Jordan
| | - María Carmen Barciela-Alonso
- Department of Analytical Chemistry, Nutrition, and Bromatology, Faculty of Chemistry, Universidade De Santiago De Compostela , Santiago De Compostela, Spain
| | - Pilar Bermejo-Barrera
- Department of Analytical Chemistry, Nutrition, and Bromatology, Faculty of Chemistry, Universidade De Santiago De Compostela , Santiago De Compostela, Spain
| |
Collapse
|
27
|
Hollow fiber-solid phase microextraction of phthalate esters from bottled water followed by flash evaporation gas chromatography-flame ionization detection. J Chromatogr A 2020; 1619:460953. [DOI: 10.1016/j.chroma.2020.460953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
|
28
|
Park J, Thomasson JA, Gale CC, Sword GA, Lee KM, Herrman TJ, Suh CPC. Adsorbent-SERS Technique for Determination of Plant VOCs from Live Cotton Plants and Dried Teas. ACS OMEGA 2020; 5:2779-2790. [PMID: 32095701 PMCID: PMC7033990 DOI: 10.1021/acsomega.9b03500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/29/2020] [Indexed: 05/08/2023]
Abstract
We developed a novel substrate for the collection of volatile organic compounds (VOCs) emitted from either living or dried plant material to be analyzed by surface-enhanced Raman spectroscopy (SERS). We demonstrated that this substrate can be utilized to differentiate emissions from blends of three teas, and to differentiate emissions from healthy cotton plants versus caterpillar-infested cotton plants. The substrate we developed can adsorb VOCs in static headspace sampling environments, and VOCs naturally evaporated from three standards were successfully identified by our SERS substrate, showing its ability to differentiate three VOCs and to detect quantitative differences according to collection times. In addition, volatile profiles from plant materials that were either qualitatively different among three teas or quantitatively different in abundance between healthy and infested cotton plants were confirmed by collections on Super-Q resin for dynamic headspace and solid-phase microextraction for static headspace sampling, respectively, followed by gas chromatography to mass spectrometry. Our results indicate that both qualitative and quantitative differences can also be detected by our SERS substrate although we find that the detection of quantitative differences could be improved.
Collapse
Affiliation(s)
- Jinhyuk Park
- Department
of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
- E-mail: . Tel: +1-979-224-7055
| | - J. Alex Thomasson
- Department
of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Cody C. Gale
- Department
of Entomology, Texas A&M University, College Station, Texas 77843-2475, United States
| | - Gregory A. Sword
- Department
of Entomology, Texas A&M University, College Station, Texas 77843-2475, United States
| | - Kyung-Min Lee
- Office
of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, Texas 77841, United States
| | - Timothy J. Herrman
- Office
of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, Texas 77841, United States
| | - Charles P.-C. Suh
- Insect
Control and Cotton Disease Research Unit, USDA, ARS, 2771 F&B
Road, College Station, Texas 77845, United States
| |
Collapse
|
29
|
Zhang WJ, Liu C, Yang RJ, Zheng TT, Zhao MM, Ma L, Yan L. Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC. J Zhejiang Univ Sci B 2020; 20:563-575. [PMID: 31168970 DOI: 10.1631/jzus.b1800183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explore the volatile profiles and the contents of ten bioactive components (polyphenols and caffeine) of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain, 17 samples of three tea varieties were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and high-performance liquid chromatography (HPLC). A total of 75 volatile components were tentatively identified. Laomaner (LME), Laobanzhang (LBZ), and other teas on Bulang Mountain (BL) contained 70, 53, and 71 volatile compounds, respectively. Among the volatile compounds, alcohols (30.2%-45.8%), hydrocarbons (13.7%-17.5%), and ketones (12.4%-23.4%) were qualitatively the most dominant volatile compounds in the different tea varieties. The average content of polyphenol was highest in LME (102.1 mg/g), followed by BL (98.7 mg/g) and LBZ (88.0 mg/g), while caffeine showed the opposite trend, 27.3 mg/g in LME, 33.5 mg/g in BL, and 38.1 mg/g in LBZ. Principal component analysis applied to both the volatile compounds and ten bioactive components showed a poor separation of samples according to varieties, while partial least squares-discriminant analysis (PLS-DA) showed satisfactory discrimination. Thirty-four volatile components and five bioactive compounds were selected as major discriminators (variable importance in projection (VIP) >1) among the tea varieties. These results suggest that chromatographic data combined with multivariate analysis could provide a useful technique to characterize and distinguish the sun-dried Pu-erh tea leaves from ancient tea varieties on Bulang Mountain.
Collapse
Affiliation(s)
- Wen-Jie Zhang
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Cong Liu
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Rui-Juan Yang
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Ting-Ting Zheng
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Miao-Miao Zhao
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Li Ma
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China.,Pu'er Institute of Pu-erh Tea, Pu'er 665000, China
| |
Collapse
|
30
|
Liao PH, Yang HH, Wu PC, Abu Bakar NH, Urban PL. On-Line Coupling of Simultaneous Distillation-Extraction Using the Likens-Nickerson Apparatus with Gas Chromatography. Anal Chem 2019; 92:1228-1235. [PMID: 31814383 DOI: 10.1021/acs.analchem.9b04380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Simultaneous distillation-extraction (SDE) using the Likens-Nickerson apparatus is a convenient technique used to isolate volatile organic compounds (VOCs) from complex liquid matrices. The technique combines steam distillation with solvent extraction. While analytical extractions are normally followed by off-line separation/detection, it is advantageous to couple extractions on-line with separation and detection systems that are employed in the same analytical workflow. Here, we have coupled the Likens-Nickerson apparatus on-line with a gas chromatograph hyphenated with a mass spectrometer. For that purpose, we have devised an automated liquid transfer setup comprising a peristaltic pump, control unit, customized transfer vial with a drain port, and an autosampler arm to deliver liquid extract aliquots at defined time points. The on-line SDE-GC/MS system enables one to record real-time extraction profiles. These profiles reveal extraction kinetics of various VOCs present in the extracted samples. The data sets were fitted with the first order kinetic equation to obtain numeric values characterizing the extraction process (rate constants ranging from 0.21 to 0.01 min-1 for the ethyl esters from C6 to C19). A comparison of on-line and off-line results reveals that the on-line system is more dependable, while the off-line analysis leads to artifacts. To demonstrate the operation of the on-line SDE-GC/MS system, we performed analyses of selected real samples (beer). The real-time data sets revealed extraction kinetics for VOCs present in these samples. The devised extraction-analysis system allows the analysts to make an evidence-based decision on the extraction time for different groups of analytes in order to maximize extraction yield and minimize analyte losses.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Hui-Hsien Yang
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Pei-Chi Wu
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Noor Hidayat Abu Bakar
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Pawel L Urban
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
31
|
Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the Diisobutyl phthalate in Yoghurt. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Qiu C, Gong Y, Guo Y, Zhang C, Wang P, Zhao J, Che Y. Sensitive Fluorescence Detection of Phthalates by Suppressing the Intramolecular Motion of Nitrophenyl Groups in Porous Crystalline Ribbons. Anal Chem 2019; 91:13355-13359. [DOI: 10.1021/acs.analchem.9b04277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Changkun Qiu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxian Guo
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
A comparative assessment of metals and phthalates in commercial tea infusions: A starting point to evaluate their tolerance limits. Food Chem 2019; 288:193-200. [DOI: 10.1016/j.foodchem.2019.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/21/2023]
|
34
|
HS-β-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Anal Bioanal Chem 2019; 411:5691-5701. [DOI: 10.1007/s00216-019-01947-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022]
|
35
|
Du L, Wang C, Zhang C, Ma L, Xu Y, Xiao D. Characterization of the volatile and sensory profile of instant Pu-erh tea using GC × GC-TOFMS and descriptive sensory analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Tang Z, Han Q, Xie L, Chu L, Wang Y, Sun Y, Kang X. Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2019; 42:851-861. [DOI: 10.1002/jssc.201800811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Zigang Tang
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Qing Han
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Li Xie
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Lanling Chu
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Yu Wang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Ying Sun
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| |
Collapse
|
37
|
Gong CB, Wei YB, Chen MJ, Liu LT, Chow CF, Tang Q. Double imprinted photoresponsive polymer for simultaneous detection of phthalate esters in plastics. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Zhang S, Yang Q, Li Z, Wang W, Zang X, Wang C, Wang Z. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chem 2018; 263:258-264. [DOI: 10.1016/j.foodchem.2018.04.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/29/2022]
|
39
|
Magnetic frame work composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds. J Chromatogr A 2018; 1570:38-46. [DOI: 10.1016/j.chroma.2018.07.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
|
40
|
A novel acrylamide modified primary-secondary amine analogue as impurities remover for determination of carbendazim and dimethyl phthalate in apples. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0077-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Molecularly imprinted polymers combined with membrane-protected solid-phase extraction to detect triazines in tea samples. Anal Bioanal Chem 2018; 410:5173-5181. [DOI: 10.1007/s00216-018-1171-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
|
42
|
Evaluation of Phthalic Acid Esters in Fish Samples Using Gas Chromatography Tandem Mass Spectrometry with Simplified QuEChERS Technique. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1313-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Lou C, Guo D, Zhang K, Wu C, Zhang P, Zhu Y. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography. Anal Chim Acta 2018; 1007:71-79. [DOI: 10.1016/j.aca.2017.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
|
44
|
Xia EQ, Chen Y, Lu Q, Li Y, Hang Y, Su J, Liu Y, Li HB. Optimization and Application of Ultrasound Assisted QuEChERS and Ionic Liquid Dispersive Liquid–liquid Microextraction Followed by HPLC for Determination of BBP and DBP in Packaging Food. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- En-Qin Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | | | - Qin Lu
- Guangdong International Travel Healthcare Center
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
| | - Ying Hang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Jiewen Su
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Yuting Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University
| |
Collapse
|
45
|
Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A polypyrrole-chitosan cryogel stir-bead micro-solid phase extractor for the determination of phthalate esters in contact lenses storage solutions and in artificial saliva in contact with baby teethers. Anal Chim Acta 2017; 985:69-78. [DOI: 10.1016/j.aca.2017.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022]
|
46
|
Yang M, Gu Y, Wu X, Xi X, Yang X, Zhou W, Zeng H, Zhang S, Lu R, Gao H, Li J. Rapid analysis of fungicides in tea infusions using ionic liquid immobilized fabric phase sorptive extraction with the assistance of surfactant fungicides analysis using IL-FPSE assisted with surfactant. Food Chem 2017; 239:797-805. [PMID: 28873637 DOI: 10.1016/j.foodchem.2017.06.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023]
Abstract
A green, simple, inexpensive, and sensitive ionic liquid immobilized fabric phase sorptive extraction method coupled with high performance liquid chromatography was developed for rapid screening and simultaneous determination of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) residues in tea infusions. This IL modified extraction fiber is capable of extracting target analytes directly from complicated tea water matrices with the addition of surfactant. A series of extraction conditions were investigated by one-factor-at-a-time approach and orthogonal test. After a series experiments, the optimum conditions were found to be 10% [HIMIM]NTf2 as coating solution, 2min vortex time, 500μL acetonitrile as dispersive solvent and 2min desorption time. Under the above conditions, the proposed technique was applied to detect fungicides from real tea water samples with satisfactory results.
Collapse
Affiliation(s)
- Miyi Yang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Yihan Gu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Xiaoling Wu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Xuefei Xi
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Xiaoling Yang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Haozhe Zeng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Sanbing Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
47
|
|
48
|
An Efficient Assay for Simultaneous Quantification of Ethyl Carbamate and Phthalate Esters in Chinese Liquor by Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Jiao C, Ma R, Li M, Hao L, Wang C, Wu Q, Wang Z. Magnetic cobalt-nitrogen-doped carbon microspheres for the preconcentration of phthalate esters from beverage and milk samples. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2251-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Liu P, Chen H, Gao G, Hao Z, Wang C, Ma G, Chai Y, Zhang L, Liu X. Occurrence and Residue Pattern of Phthalate Esters in Fresh Tea Leaves and during Tea Manufacturing and Brewing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8909-8917. [PMID: 27784159 DOI: 10.1021/acs.jafc.6b03864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The residues of 16 phthalate esters (PAEs) in fresh tea leaves and made tea were determined via gas chromatography-tandem mass spectrometry to study their distribution and degradation characteristics during tea planting and processing. Five PAEs were detected in all fresh tea leaves, and higher concentrations were detected in mature leaves. The distribution of PAEs in fresh tea leaves ranged from 69.7 to 2244.0 μg/kg. The degradative percentages of ∑5PAEs during green tea manufacturing ranged from 61 to 63% and were significantly influenced by the drying process. The transfer rates of PAEs-D4 ranged from 5.2 to 100.6%. PAEs with a high water solubility showed the highest transfer coefficient in the range of 91.8-100.6%, whereas PAEs with a high log Kow showed a low leaching efficiency below 11.9%. These results benefit the risk evaluation and establishment of a maximum residue limit for PAEs in tea.
Collapse
Affiliation(s)
- Pingxiang Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| | - Guanwei Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Zhenxia Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| | - Guicen Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| | - Lin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture , Hangzhou 310008, China
| |
Collapse
|