1
|
Galla R, Mulè S, Ferrari S, Parini F, Givonetti A, Cavaletto M, Miletto I, Paul G, Giovenzana GB, Marchese L, Molinari C, Uberti F. Non-Animal Hyaluronic Acid from Tremella fuciformis: A New Source with a Structure and Chemical Profile Comparable to Hyaluronic Acid. Foods 2025; 14:1362. [PMID: 40282763 PMCID: PMC12027390 DOI: 10.3390/foods14081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Tremella fuciformis is high in polysaccharides, which have a structure made up of a straight chain of (1→3) α-D-mannan and side chains of glucuronic acid, xylose, and fucose. This study aimed to evaluate whether the non-animal hyaluronic acid extracted from Tremella fuciformis can maintain the chemical and physical characteristics of hyaluronic acid that ensure its biological functionality. Chemical and physical analyses such as hyaluronic content, screening of metals, purity, pH, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (ATR/FTIR), and MALDI-TOF were performed. Chemical characterisation revealed that the most abundant polysaccharide in the extract was hyaluronic acid, accounting for ca. 87.76%, with a molecular weight above 2000 kDa. In addition, ATR/FTIR and NMR spectroscopy and MALDI-TOF analysis confirmed that Tremella fuciformis extract is a source of non-animal hyaluronic acid. In summary, every molecular attribute examined played a significant role in determining the functional qualities of the extract, indicating that a thoughtful choice of extraction technique can enhance its advantages.
Collapse
Affiliation(s)
- Rebecca Galla
- Noivita S.r.l.s., Spin Off of University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Simone Mulè
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Sara Ferrari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Francesca Parini
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Annalisa Givonetti
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
| | - Geo Paul
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15100 Alessandria, Italy
| | - Giovanni Battista Giovenzana
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
| | - Leonardo Marchese
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15100 Alessandria, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Francesca Uberti
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
2
|
Roberto T AD, Virginia CA, Ángeles AAM, Casimiro CG, Claudia PM, Eduardo U, Félix ÁG, Nathalie K, Félix L F, Sergey D. Antitumor and antioxidant activities of polysaccharides from the seaweed Durvillaea antarctica. Chem Biol Drug Des 2024; 103:e14392. [PMID: 37945521 DOI: 10.1111/cbdd.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The present study was carried out to determine the antitumor and antioxidant activities of the seaweed Durvillaea antarctica. Extraction and purification of polysaccharides from D. antarctica were performed. They were characterized by FT-IR and GC-MS, identifying isomers of arabinose, fucose, mannose, and galactose. The antioxidant capacity of polysaccharides was analyzed using the ABTS method (14.3 ± 0.5 μmol TE g-1 PS) and the DPPH method (21.82 ± 0.32 μmol TE g-1 PS). The antitumor capacity of polysaccharides was studied by MTT colorimetric assays in human leukemia, colon, breast, and lung cancer cell lines, obtaining the lowest IC50 in colon cancer (19.99 μg mL-1 ). In the line of healthy human gingival fibroblasts (HGF-1), an IC50 of 444.39 μg mL-1 was obtained. Flow cytometry in the HL60 cell line showed that polysaccharides at concentrations higher than IC50 inhibited cell proliferation, demonstrating a possible antitumor capacity in vitro. In the proteomic analysis with HGF-1, nine proteins involved in different biological processes were identified. In conclusion, polysaccharides from D. antarctica could be considered powerful nutraceuticals, mainly against colon cancer.
Collapse
Affiliation(s)
- Abdala Díaz Roberto T
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Casas-Arrojo Virginia
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | | | | | - Pérez Manríquez Claudia
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Uribe Eduardo
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Álvarez-Gómez Félix
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Korbee Nathalie
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Figueroa Félix L
- Universidad de Málaga, Instituto de Biotecnologia y Desarrollo Azul (IBYDA), Experimental Center Grice Hutchinson, Malaga, Spain
| | - Dobretsov Sergey
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Wu CC, Qu JJ, Zhang HT, Gao MJ, Zhu L, Zhan XB. New two-stage pH combined with dissolved oxygen control strategy for cyclic β-1,2 glucans synthesis. Appl Microbiol Biotechnol 2023; 107:2235-2247. [PMID: 36894714 DOI: 10.1007/s00253-023-12463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
On the basis of a novel two-stage pH combined with dissolved oxygen (DO) control strategy in fed-batch fermentation, this research addresses the influence of pH on cyclic β-1,2-glucans (CβGs) biosynthesis and melanin accumulation during the production of CβGs by Rhizobium radiobacter ATCC 13,333. Under these optimal fermentation conditions, the maximum cell concentration and CβGs concentration in a 7-L stirred-tank fermenter were 7.94 g L-1 and 3.12 g L-1, which were the maximum production reported for R. radiobacter. The melanin concentration of the fermentation broth was maintained at a low level, which was beneficial to the subsequent separation and purification of the CβGs. In addition, a neutral extracellular oligosaccharide (COGs-1) purified by the two-stage pH combined with DO control strategy fermentation medium was structurally characterized. Structural analyses indicated that COGs-1 was a family of unbranched cyclic oligosaccharides composed of only β-1,2-linked D-glucopyranose residues with degree of polymerization between 17 and 23, namely CβGs. This research provides a reliable source of CβGs and structural basis for further studies of biological activity and function. KEY POINTS: • A two-stage pH combined with DO control strategy was proposed for CβGs production and melanin biosynthesis by Rhizobium radiobacter. • The final extracellular CβGs production reached 3.12 g L-1, which was the highest achieved by Rhizobium radiobacter. • The existence of CβGs could be detected by TLC quickly and accurately.
Collapse
Affiliation(s)
- Chuan-Chao Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Juan-Juan Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hong-Tao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Min-Jie Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- L & F Biotech. Ltd., Burnaby, BC, V5A3P6, Canada
| | - Xiao-Bei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Wang H, Gao Y, He Q, Liao J, Zhou S, Liu Y, Guo C, Li X, Zhao X, Pan Y. 2-Hydrazinoterephthalic Acid as a Novel Negative-Ion Matrix-Assisted Laser Desorption/Ionization Matrix for Qualitative and Quantitative Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Analysis of N-Glycans in Peach Allergy Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:952-962. [PMID: 36541565 DOI: 10.1021/acs.jafc.2c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycans recently attracted considerable attention as the proposal of cross-reactive carbohydrate determinants for food allergy. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is powerful in analyzing biomolecules, while its applications in glycans are still challenging. Herein, a novel reactive matrix-assisted laser desorption/ionization (MALDI) matrix, 2-hydrazinoterephthalic acid, was rationally designed and synthesized. It provides uniform co-crystallization with glycans and only produces deprotonated ions with high intensities in the negative-ion mode. In combination with sinapic acid, a rapid and high-throughput method was established for on-target analysis of glycans with a superior limit of detection at the femtomole level and a good linearity (R2 > 0.999). Furthermore, the established method was successfully applied to quantify N-glycans in different cultivars and tissues of peach [Prunus persica (L.) Batsch]. Our work suggests the potential role of N-glycans as biomarkers for food-borne allergy and lays a methodological foundation for the elucidation of the possible relationship between carbohydrate epitopes and food allergy.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yuexia Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jiancong Liao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
5
|
Wang J, Zhao J, Nie S, Xie M, Li S. MALDI mass spectrometry in food carbohydrates analysis: A review of recent researches. Food Chem 2023; 399:133968. [DOI: 10.1016/j.foodchem.2022.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
|
6
|
Jiang Y, Xiao Y, Wang Y, Yu H, Hu K, Wang Z, Zhang TA, Hu J, Gao MT. Effect of the ratio of phenolic compounds to saccharides in soluble polysaccharides on ethanol fermentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Detailed Structural Analysis of the Immunoregulatory Polysaccharides from the Mycobacterium Bovis BCG. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175691. [PMID: 36080458 PMCID: PMC9458083 DOI: 10.3390/molecules27175691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN), extracted from Mycobacterium bovis, is an immunoregulatory medicine commonly used in clinic. However, the structural characteristics and potential pharmacological efficacy of the polysaccharides from BCG-PSN remain unclear. Herein, two polysaccharides (BCG-1 and BCG-2) were purified and their structures were characterized. Monosaccharide composition analysis combined with methylation analysis and NMR data indicated that BCG-1 and BCG-2 were an α-D-(1→4)-mannan with (1→2)-linked branches, and an α-D-(1→4)-glucan with (1→6)-linked branches, respectively. Herein, the mannan from BCG-PSN was first reported. Bioactivity assays showed that BCG-1 and BCG-2 dose-dependently and potently increased the production of inflammatory mediators (NO, TNF-α, IL-6, IL-1β, and IL-10), as well as their mRNA expressions in RAW264.7 cells; both have similar or stronger effects compared with BCG-PSN injection. These data suggest that BCG-1 and BCG-2 are very likely the active ingredients of BCG-PSN.
Collapse
|
8
|
Wang J, Zhao J, Nie S, Xie M, Li S. Mass spectrometry for structural elucidation and sequencing of carbohydrates. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
10
|
Zhang J, Chen H, Luo L, Zhou Z, Wang Y, Gao T, Yang L, Peng T, Wu M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohydr Polym 2021; 267:118219. [PMID: 34119173 DOI: 10.1016/j.carbpol.2021.118219] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
Polygonatum cyrtonema is a known tonic herb in Chinese Materia Medica, extensively consumed in China, but the structure and activity of its polysaccharide components remain to be clarified. Herein, two new polysaccharides (a fructan and a galactan) were purified from the dried and the processed P. cyrtonema rhizome, respectively. Structural analysis suggested that the fructan consisted of a (2 → 6) linked β-d-Fruf residues backbone with an internal α-d-Glcp residue and two (2 → 1) linked β-d-Fruf residues branches, and that the galactan was a (1 → 4)-β-d-galactan branched with a single β-d-galactose at C-6 at about every nine residues in its main chain. The bioactive assay showed that the fructan and the galactan remarkably promoted growth of Bifidobacterium and Lactobacillus strains, indicating that they possess prebiotic activity. These findings may help expand the application of the polysaccharides from the tonic herb P. cyrtonema as functional ingredients in food products.
Collapse
Affiliation(s)
- Junyin Zhang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingxiang Wang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Tianyu Gao
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Teng Peng
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
11
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
12
|
Silica Particles Trigger the Exopolysaccharide Production of Harsh Environment Isolates of Growth-Promoting Rhizobacteria and Increase Their Ability to Enhance Wheat Biomass in Drought-Stressed Soils. Int J Mol Sci 2021; 22:ijms22126201. [PMID: 34201354 PMCID: PMC8229586 DOI: 10.3390/ijms22126201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural laboratory, ‘The Evolution Canyon’, Israel, (EC), from the wild progenitors of cereals, where they have been co-habituating with their hosts for long periods of time. The study revealed that commercial TM50 silica particles (SN) triggered the PGPR production of exopolysaccharides (EPS) containing D-glucuronate (D-GA). The increased EPS content increased the PGPR water-holding capacity (WHC) and osmotic pressure of the biofilm matrix, which led to enhanced plant biomass in drought-stressed growth environments. Light- and cryo-electron- microscopic studies showed that, in the presence of silica (SN) particles, bacterial morphology is changed, indicating that SNs are associated with significant reprogramming in bacteria. The findings encourage the development of large-scale methods for isolate formulation with natural silicas that ensure higher WHC and hyperosmolarity under field conditions. Osmotic pressure involvement of holobiont cohabitation is also discussed.
Collapse
|
13
|
Nicolardi S, Joseph AA, Zhu Q, Shen Z, Pardo-Vargas A, Chiodo F, Molinaro A, Silipo A, van der Burgt YEM, Yu B, Seeberger PH, Wuhrer M. Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Anal Chem 2021; 93:4666-4675. [PMID: 33667082 PMCID: PMC8034773 DOI: 10.1021/acs.analchem.1c00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Carbohydrates, such as oligo- and polysaccharides, are highly abundant biopolymers that are involved in numerous processes. The study of their structure and functions is commonly based on a material that is isolated from complex natural sources. However, a more precise analysis requires pure compounds with well-defined structures that can be obtained from chemical or enzymatic syntheses. Novel synthetic strategies have increased the accessibility of larger monodisperse polysaccharides, posing a challenge to the analytical methods used for their molecular characterization. Here, we present wide mass range ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) as a powerful platform for the analysis of synthetic oligo- and polysaccharides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers were mass analyzed and characterized by MALDI in-source decay FT-ICR MS. Detection of fragment ions generated from glycosidic bond cleavage (or cross-ring cleavage) provided information of the monosaccharide content and the linkage type, allowing for the corroboration of the carbohydrate compositions and structures.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - A. Abragam Joseph
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Qian Zhu
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhengnan Shen
- School
of Physical Science and Technology, ShanghaiTech
University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Alonso Pardo-Vargas
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Fabrizio Chiodo
- Institute
of Biomolecular Chemistry (ICB), Italian
National Research Council (CNR), Via Campi Flegrei, 34, Pozzuoli, Napoli 80078, Italy
- Amsterdam
UMC-Locatie VUMC, Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia 4, Napoli 80126, Italy
| | - Alba Silipo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia 4, Napoli 80126, Italy
| | - Yuri E. M. van der Burgt
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Biao Yu
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Center
for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
14
|
Wang H, Zhao X, Huang Y, Liao J, Liu Y, Pan Y. Rapid quality control of medicine and food dual purpose plant polysaccharides by matrix assisted laser desorption/ionization mass spectrometry. Analyst 2020; 145:2168-2175. [PMID: 32104793 DOI: 10.1039/c9an02440a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With their multiple biological activities and health benefit effects, polysaccharides from medicine and food dual purpose plants (MFDPPPs) have been extensively applied in many fields, including in medical treatments, stock farming, and cosmetics. However, to date, quality issues of MFDPPPs and technologies for the analysis of polysaccharides have posed challenges to chemists. Reported herein is a rapid and high-throughput quality control method for analyzing MFDPPPs, based on matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). For the analysis of illegally added and doped substances, ferroferric oxide nanoparticles were employed as the MALDI matrix to avoid small molecule interference. Qualitatively, high sensitivity was obtained for both illegal drugs and glucose. Quantitatively, the best linear response (R2 > 0.99) was attained in the concentration range from 0.005 to 1 mg mL-1 for glucose. For the analysis of polysaccharides, 2,5-dihydroxybenzoic acid/N-methylaniline was employed as the MALDI matrix to increase the detection sensitivity and mass range coverage. Furthermore, the established method was successfully applied to the analysis of supplements from Astragalus polysaccharides and Lentinan real samples, showing its potential in quality control for MFDPPPs.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yu Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Jiancong Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
15
|
Deng Y, Chen C, Chen L, Han B, Li S, Zhao J. Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China. J Pharm Anal 2020; 11:284-291. [PMID: 34277116 PMCID: PMC8264382 DOI: 10.1016/j.jpha.2020.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Due to the extensive use of xylooligosaccharides (XOS) as functional food ingredients, many inferior goods and even adulterants are generally found in the market, which may pose a health hazard to certain populations. Chromatography method such as high-performance liquid chromatography (HPLC) and high-performance thin-layer chromatography (HPTLC) is traditionally applied for the quality analysis of XOS. However, it is time consuming due to the prolonged separation and pre- or post- derivatization procedure. In this study, a fast saccharide mapping method based on matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF-MS) was developed for the quality consistency analysis of 22 batches of XOS collected from different manufacturers in China. The time needed for saccharides analysis using MALDI-MS was less than 30 min for one plate, at least 6 times faster than that by the traditional HPTLC chromatography method. In addition, MALDI-MS possessed higher resolution for XOS with DP4-DP7 based on the difference of m/z, which is hardly separated using HPTLC. The results showed that XOS were present only in samples XY01-XY11, samples XY12-XY14 only consisted of hex oligosaccharides, and samples XY15-XY22 were free of oligosaccharides. These indicate that the quality consistency of XOS products in the China market was poor, which should be carefully investigated. Fast saccharide mapping method was developed based on MADLI-TOF-MS. Quality consistency of commercial xylooligosaccharides collected in China was evaluated. Glycosidic linkage analysis was also used for identification of xylooligosaccharides. Fifty percent of commercial xylooligosaccharides are mislabeled.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cunwu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, Anhui, China
| | - Lingxiao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bangxing Han
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, Anhui, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Corresponding author.
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Corresponding author.
| |
Collapse
|
16
|
Liu Y, Hu CF, Feng X, Cheng L, Ibrahim SA, Wang CT, Huang W. Isolation, characterization and antioxidant of polysaccharides from Stropharia rugosoannulata. Int J Biol Macromol 2020; 155:883-889. [DOI: 10.1016/j.ijbiomac.2019.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023]
|
17
|
Qu L, Jiang Y, Huang X, Cui M, Ning F, Liu T, Gao Y, Wu D, Nie Z, Luo L. High-Throughput Monitoring of Multiclass Syrup Adulterants in Honey Based on the Oligosaccharide and Polysaccharide Profiles by MALDI Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11256-11261. [PMID: 31545583 DOI: 10.1021/acs.jafc.9b05317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Honey is a natural product that could be easily adulterated with various cheaper sweeteners. In the present study, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was applied for the detection of honey adulteration based on oligosaccharide and polysaccharide profiles. MS-based strategy could reveal the presence of polysaccharides with higher degree of polymerization (DP ≥ 13) and abnormal trends of saccharides in adulterated honey samples, which could be used as indicators for the identification of honey adulteration with high-fructose corn syrup and corn syrup. MS/MS-based strategy was proposed to characterize the difference in the composition of oligosaccharide isomers between honey samples and adulterated ones with corn syrup or invert syrup, in which the [M+Cl]- of disaccharides, trisaccharides, and tetrasaccharides were fragmented to give diagnostic product ion pairs. The method is effective and robust for the high-throughput monitoring of honey adulteration, and provides a new perspective for the identification of other high-carbohydrate foods.
Collapse
Affiliation(s)
- Liangliang Qu
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xueyong Huang
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Meng Cui
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Fangjian Ning
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Tao Liu
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Yuanyuan Gao
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Dong Wu
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Liping Luo
- School of Life Sciences , Nanchang University , Nanchang 330031 , China
| |
Collapse
|
18
|
Sengupta D, Datta S, Biswas D. Exploring two contrasting surface‐active exopolysaccharides from a single strain of
Ochrobactrum
utilizing different hydrocarbon substrates. J Basic Microbiol 2019; 59:820-833. [DOI: 10.1002/jobm.201900080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| | - Dipa Biswas
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| |
Collapse
|
19
|
Microwave Assisted Synthesis of N-Doped Carbon Dots: an Easy, Fast and Cheap Sensor for Determination of Aspartic Acid in Sport Supplements. J Fluoresc 2019; 29:751-756. [DOI: 10.1007/s10895-019-02387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
|
20
|
Fooladi T, Soudi MR, Alimadadi N, Savedoroudi P, Heravi MM. Bioactive exopolysaccharide from Neopestalotiopsis sp. strain SKE15: Production, characterization and optimization. Int J Biol Macromol 2019; 129:127-139. [PMID: 30710587 DOI: 10.1016/j.ijbiomac.2019.01.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/26/2023]
Abstract
Fungal exopolysaccharides are powerful resources of medicinal applications. Neopestalotiopsis sp. SKE15 was isolated and identified according to phenotypical and genotypical analyses (GenBank Accession No. MG649986). The exopolysaccharide (EPS) was produced by cultivation of mycelia in broth culture and extracted. The production was optimized to 2.02 g/l after selection of agitation, temperature, FeSO4 and K2HPO4 concentrations as the most influencing factors using Placket-Burman design and then by applying response surface methodology. Analytical Tools showed that the EPS is composed of a polysaccharide (1.5-2.1 × 106 Da) and its probable low molecular weight derivatives, in a wide range of chain lengths, among them an oligosaccharide of about 1970 Da was dominant. GC-MS (Gas chromatography-mass spectrometry) analysis revealed the EPS was mainly constructed from d-glucose, sorbitol and D-galactose. The EPS showed antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633 and Pseudomonas aeruginosa ATCC 27853. DPPH (1,1-diphenyl-2-picryl-hydrazyl) and hydroxyl radical scavenging activity assays showed strong antioxidant activity of the EPS. A challenge with three different cancerous cell lines showed cytotoxic activity of the EPS at final concentration of 100 and 200 μg/ml. Further investigation on medicinal applications of the biopolymer is promising.
Collapse
Affiliation(s)
- Tayebeh Fooladi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993893973, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993893973, Tehran, Iran.
| | - Nayyereh Alimadadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993893973, Tehran, Iran
| | - Parisa Savedoroudi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, District 1, Daneshjou Boulevard, 1983969411, Tehran, Iran
| | - Majid Momhed Heravi
- Department of Chemistry, School of Science, Alzahra University, 1993893973, Tehran, Iran
| |
Collapse
|
21
|
Hauser-Kawaguchi A, Milne M, Li F, Lee T, Luyt L. The development of a near infrared inulin optical probe for measuring glomerular filtration rate. Int J Biol Macromol 2019; 123:255-260. [DOI: 10.1016/j.ijbiomac.2018.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023]
|
22
|
Mitić Ž, Nikolić GM, Cakić M, Nikolić GS, Živanović S, Mitić S, Najman S. Synthesis, spectroscopic and structural characterization of Co(II)-pullulan complexes by UV-Vis, ATR-FTIR, MALDI-TOF/TOF MS and XRD. Carbohydr Polym 2018; 200:25-34. [DOI: 10.1016/j.carbpol.2018.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
|
23
|
Iram F, Massey S, Iqbal MS, Ward DG. Structural investigation of hemicelluloses from Plantago ovata, Mimosa pudica and Lallemantia royleana by MALDI-ToF mass spectrometry. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1487973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fozia Iram
- Department of Chemistry, LCW University, Lahore, Pakistan
| | - Shazma Massey
- Department of Chemistry, Forman Christian College, Lahore, Pakistan
| | - Mohammad S Iqbal
- Department of Chemistry, Forman Christian College, Lahore, Pakistan
| | - Douglas G. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Yao S, Li T, Liu H, Li J, Wang Y. Traceability of Boletaceae mushrooms using data fusion of UV-visible and FTIR combined with chemometrics methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2215-2222. [PMID: 28963727 DOI: 10.1002/jsfa.8707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Boletaceae mushrooms are wild-grown edible mushrooms that have high nutrition, delicious flavor and large economic value distributing in Yunnan Province, China. Traceability is important for the authentication and quality assessment of Boletaceae mushrooms. In this study, UV-visible and Fourier transform infrared (FTIR) spectroscopies were applied for traceability of 247 Boletaceae mushroom samples in combination with chemometrics. RESULTS Compared with a single spectroscopy technique, data fusion strategy can obviously improve the classification performance in partial least square discriminant analysis (PLS-DA) and grid-search support vector machine (GS-SVM) models, for both species and geographical origin traceability. In addition, PLS-DA and GS-SVM models can provide 100.00% accuracy for species traceability and have reliable evaluation parameters. For geographical origin traceability, the accuracy of prediction in the PLS-DA model by data fusion was just 64.63%, but the GS-SVM model based on data fusion was 100.00%. CONCLUSION The results demonstrated that the data fusion strategy of UV-visible and FTIR combined with GS-SVM could provide a higher synergic effect for traceability of Boletaceae mushrooms and have a good generalization ability for the comprehensive quality control and evaluation of similar foods. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Tao Li
- College of Resources and Environment, Yuxi Normal University, Yuxi, China
| | - HongGao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - JieQing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - YuanZhong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
25
|
Mello RV, Meccheri FS, Bagatini IL, Rodrigues-Filho E, Vieira AA. MALDI-TOF MS based discrimination of coccoid green microalgae (Selenastraceae, Chlorophyta). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhao X, Li J, Liu Y, Wu D, Cai P, Pan Y. Structural characterization and immunomodulatory activity of a water soluble polysaccharide isolated from Botrychium ternatum. Carbohydr Polym 2017; 171:136-142. [DOI: 10.1016/j.carbpol.2017.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
|
28
|
Zhao X, Shen S, Wu D, Cai P, Pan Y. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 985:114-120. [PMID: 28864181 DOI: 10.1016/j.aca.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/25/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Abstract
Quality control is always the critical issue for Chinese medicines (CMs) with their worldwide increasing use. Different from western medicine, CMs are usually considered that multiple constituents are responsible for the therapeutic effects. Therefore, quality control of CMs is a challenge. In 2011, the strategies for quantification, related to the markers, reference compounds and approaches, in quality control of CMs were reviewed (Li, et al., J. Pharm. Biomed. Anal., 2011, 55, 802-809). Since then, some new strategies have been proposed in these fields. Therefore, the review on the strategies for quality control of CMs should be updated to improve the safety and efficacy of CMs. Herein, novel strategies related to quality marker discovery, reference compound development and advanced approaches (focused on glyco-analysis) for quality control, during 2011-2016, were summarized and discussed.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory for Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Tiantan Xili 2, Beijing 100050, China.
| | - Shao-Ping Li
- State Key Laboratory for Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| |
Collapse
|
30
|
Chen F, Ren CG, Zhou T, Wei YJ, Dai CC. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep 2016; 6:34735. [PMID: 27703209 PMCID: PMC5050437 DOI: 10.1038/srep34735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/15/2016] [Indexed: 02/01/2023] Open
Abstract
Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26–42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Cheng-Gang Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Jia Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Barrientos RC, Clerigo MM, Paano AMC. Extraction, isolation and MALDI-QTOF MS/MS analysis of β-d-Glucan from the fruiting bodies of Daedalea quercina. Int J Biol Macromol 2016; 93:226-234. [PMID: 27543344 DOI: 10.1016/j.ijbiomac.2016.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/07/2016] [Accepted: 08/14/2016] [Indexed: 12/01/2022]
Abstract
We report for the first time the extraction, isolation, and the proposed structure of a polysaccharide from the fruiting bodies of Daedalea quercina. The monosaccharide composition of D. quercina isolate (DQW1Pa1) was mainly glucose as identified using GC-MS. FTIR-ATR spectroscopy and absolute configuration studies showed that this polysaccharide is a β-d-glucan. Its average molecular weight obtained using size exclusion chromatography was 1.6×104Da, consistent with glucans derived from the order Polyporaceae. MALDI-QTOF MS/MS was carried out to identify the linkage and connectivity of the glucose units. Collision Induced Dissociation (CID) of selected parent ions of different oligosaccharide lengths showed the presence of characteristic glycosidic bond cleavages Bn/Cn, the linear backbone by 1-6 linkage, and the cross-ring fragment, 0,3An. Presence of branching unit was identified from high intensity 0,3A4 fragment and verified from diagnostic ion of [D] and [D-H2O] types. To confirm the linkage assignment obtained using MALDI-QTOF MS/MS, DQW1Pa1 was subjected to methylation analysis. Results showed the presence of 1-3, 1-6, 1- and 1-3-6 linked glucose in the order of decreasing abundance, respectively. The repeating unit of isolate DQW1Pa1 was deduced as 1-3 linked linear glucose backbone with branches composed of three 1-3 linked glucose units connected to backbone by 1-6 linkage.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, Manila, 1004, Philippines.
| | - Melody M Clerigo
- Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, Manila, 1004, Philippines
| | - Anamy Ma C Paano
- Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, Manila, 1004, Philippines
| |
Collapse
|