1
|
Chang Y, Zhang B, Jia Y, Shi X, Lu Y, Wei F, Zhang Y, Lv H, Dong L, Zhang Y, Tang X, Wang S. Effects of dietary polyphenols addition and oxygen concentration on digestion and absorption of fat in roast beef patties. Food Chem 2025; 483:144280. [PMID: 40222130 DOI: 10.1016/j.foodchem.2025.144280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Reducing excessive fat intake through novel food processing methods is significant for human health. This study explored the effects of dietary polyphenol addition and oxygen concentration regulation on fat digestion and absorption in roast beef patties. Among the tested polyphenols, oligomeric proanthocyanidins from grape seeds (OPC) showed the strongest lipase inhibition. During the in vitro digestion simulation, OPC increased the particle size of oil-in-water emulsions and decreased the zeta potential, thus inhibiting the formation of fat emulsions. Spraying OPC before grilling reduced the fat digestion in beef patties. Reducing the oxygen concentration in the oven to 0 % enhanced this effect by increasing the stability of OPC. In mice, the combination of OPC addition and oxygen regulation decreased postprandial fatty acid and triglyceride levels without changing meat fat content. This study provides an important basis for reducing the risk of obesity through food processing methods.
Collapse
Affiliation(s)
- Yu Chang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuze Jia
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Xiaolu Shi
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Fan Wei
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiangwei Tang
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Du W, Jiang S, Lei Y, Wang J, Cui Z, Xiang P, Chang Z, Duan W, Shen G, Qin Y, Pan B, Yu Y. Occurrence, formation mechanism, and health risk of polycyclic aromatic hydrocarbons in barbecued food. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118046. [PMID: 40086033 DOI: 10.1016/j.ecoenv.2025.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) show negative impacts on human health. Dietary intake is the predominant way for PAH exposure, of which barbecued food is a crucial contributor. This review aims to provide a comprehensive insight into the formation mechanism, influencing factors, mitigation strategies, and health risks of PAHs in barbecued food. PAHs in barbecued food are formed by Hydrogen abstraction and acetylene addition (HACA) mechanism, Diels-Alder reaction and Maillard reaction, which was influenced by heat source, temperature, cooking time, and the meat type. There are significant differences in PAH concentrations in different barbecued foods, where chrysene dominates among the selected PAH species. To reduce PAHs formation, adding marinades and adopting alternative cooking methods are suggested, which effectively reduce PAH levels by 53 -89 %. In addition, it is estimated that people in countries such as Pakistan has an incremental lifetime cancer risk (ILCR) over 10-5 via barbecued food consumption, indicating potential health risk. This work highlighted that regular monitoring of PAH levels in barbecued food and dynamic modification of relevant safety limits are recommended to ensure food safety.
Collapse
Affiliation(s)
- Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Su Jiang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Yali Lei
- Shanghai Environmental Monitoring Center, Shanghai 200232, China
| | - Jinze Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhanpeng Cui
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China.
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China.
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Yunjiang Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
4
|
Abdulai PM, Ossai C, Ezejiofor AN, Frazzoli C, Rovira J, Ekhator OC, Firempong CK, Orisakwe OE. Polycyclic Aromatic Hydrocarbons Burden of Meats Singed with Different Fuel Sources from Abattoirs in Ghana and Associated Cancer Risk Assessment. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302241310842. [PMID: 39759478 PMCID: PMC11700419 DOI: 10.1177/11786302241310842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
This study evaluated the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the carcinogenic risks of cattle and goat meats singed with either firewood, Liquefied Petroleum Gas (LPG) or tyres from five cities in Ghana. The meat samples, before and after singeing, as well as after scraping and washing, were collected from abattoirs and sent to Clinical Analysis Laboratory (Can-Lab) of Kwame Nkrumah University of Science and Technology (KNUST) for PAH analysis. Tyre-singed meats exhibit significantly higher PAHs concentrations (P = .01304) compared to those singed with firewood and LPG. Benzo[a]pyrene was the predominant PAH in tyre-singed cattle and goat meats, with concentrations of 23.1 mg/kg and 12.16 mg/kg, respectively. Washing singed meats reduced PAH levels, yet tyre-singed samples retained higher and dangerous concentrations than those singed with other fuels. Statistical analysis using ANOVA confirmed a significant effect of fuel type on PAH16 concentrations (P = .01304). The Tukey HSD test indicated a significant difference between LPG and tyre (P = .0105). Estimated daily intake (EDI) calculations highlighted potential health risks, particularly from tyre-singed meats, which exceeded regulatory limits set by health authorities. The findings emphasize the health hazards associated with consuming meats singed with tyres in Ghana and underscore the need for stringent regulatory measures and public awareness to mitigate PAH exposure.
Collapse
Affiliation(s)
- Prosper Manu Abdulai
- African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
- Department of Public Health Education, Faculty of Environment and Health Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Chika Ossai
- African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
| | - Anthoneth Ndidi Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Osazuwa Clinton Ekhator
- Department of Science Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Mersin, Turkey
| |
Collapse
|
5
|
Akkaya E, Colak H, Hampikyan H, Cakmak Sancar B, Akhan M, Engin AS, Cetin O, Bingol EB. Determination of 16 European Priority Polycyclic Aromatic Hydrocarbons in Doner Kebab Varieties Cooked Under Different Heating Sources. Foods 2024; 13:3725. [PMID: 39682797 DOI: 10.3390/foods13233725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Doner kebab is a traditional Turkish meat product produced from lamb, beef or poultry meat seasoned with a blend of spices such as salt, black pepper, cumin, thyme and/or sauces. The aim of this study was to determine 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in doner kebabs cooked under four different heating sources (electricity, open gas, wood and charcoal grilling). For this purpose, 200 meat doner and 200 chicken doner kebab samples were obtained randomly from various buffets and restaurants located in Istanbul and analyzed by means of GC-MS. According to the results, benzo[a]pyrene and PAH4 levels, which are important PAH compounds as biomarkers, were significantly higher in chicken doner than in meat doner (p < 0.05). The highest occurrence of benzo[a]pyrene and PAH4 in meat and chicken doner samples was in the charcoal heating source, whereas the lowest occurrence was detected in electric grilling. In terms of all PAH compounds, cooking with an electric heating source caused the formation of fewer PAH compounds in doner kebab samples. Consequently, the fat content of fatty meat products such as doner kebab should be reduced, the contact of fat with the heating source (especially flame) and dripping of fat to the source should be prevented and overcooking of meat should be avoided.
Collapse
Affiliation(s)
- Esra Akkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| | - Hilal Colak
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| | - Hamparsun Hampikyan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Beykent University, 34500 Istanbul, Türkiye
| | - Burcu Cakmak Sancar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, 34510 Istanbul, Türkiye
| | - Meryem Akhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, 34510 Istanbul, Türkiye
| | - Ayse Seray Engin
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Gelisim University, 34310 Istanbul, Türkiye
| | - Omer Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Rumeli University, 34570 Istanbul, Türkiye
| | - Enver Baris Bingol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| |
Collapse
|
6
|
Wang Y, Zhao J, Xu Y, Miao J, Pan K, Li Y, Chen Y, Liu X, Zhao A, Qin J, Xu T, Fang M. Benzo(a)anthracene Targeting SLC1A5 to Synergistically Enhance PAH Mixture Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18619-18630. [PMID: 39373333 DOI: 10.1021/acs.est.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAHs) as mutagenic and carcinogenic pollutants in the environment often occurs in the form of mixtures. Although the mixture effects of PAHs have been previously recognized, the toxicological mechanisms to explain them still remain quite unclear. This study combined metabolomics and chemical proteomics methods to comprehensively understand the mixture effects of a PAH mixture including benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), and chrysene (CHR). Among them, BaA has shown a strong synergistic effect with other PAHs. Interestingly, BaA alone is not a potent oxidative stress inducer in liver cells but dose-dependently amplifies oxidative damage caused by the PAH mixture. Global metabolomics analysis results revealed damage to the antioxidant glutathione synthesis, which was caused by the glutamine depletion caused by BaA in the mixture. Subsequently, the label-free chemical proteomics and cellular thermal shift analysis (CETSA) demonstrated that the PAH mixture altered the thermal shift of glutamine transporter SLC1A5. Furthermore, Western blotting and the isothermal titration calorimetry (ITC) interaction measurements showed nanomolar KD values between BaA and SLC1A5. Overall, this study showed that BaA synergistically contributed to PAH mixture induced oxidative damage by targeting SLC1A5 to inhibit glutamate transport into cells, resulting in the inhibition of glutathione synthesis.
Collapse
Affiliation(s)
- Yanwei Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Jiahui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yipeng Xu
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jing Miao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Keyu Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yihan Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang 314400, P.R. China
| | - Yong Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuesong Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ailin Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jingyu Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tengfei Xu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
8
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
9
|
Beriain MJ, Gómez I, García S, Urroz JC, Diéguez PM, Ibañez FC. Hydrogen Gas-Grilling in Meat: Impact on Odor Profile and Contents of Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. Foods 2024; 13:2443. [PMID: 39123634 PMCID: PMC11311495 DOI: 10.3390/foods13152443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An electronic nose was used to evaluate the odor profile. Total high-molecular-weight PAHs ranged from 19.59 to 28.65 µg/kg with butane and from 1.83 to 1.61 µg/kg with hydrogen. Conversely, total low-molecular-weight PAHs went from 184.41 to 286.03 µg/kg with butane and from 36.88 to 41.63 µg/kg with hydrogen. Aldehydes and alkanes were the predominant family in a total of 59 VOCs. Hydrogen gas-grilling reduced significantly (p < 0.05) the generation of VOCs related to lipid oxidation. The odor profile was not modified significantly despite the change of PAHs and VOCs. The findings indicate that hydrogen is a viable alternative to butane for grilling horse meat. Hydrogen gas-grilling may be regarded as a safe cooking procedure of meat from a PAH contamination point and perhaps sustainable environmentally compared to a conventional technique. The present study provides the basis for the use of hydrogen gas in grilled meat.
Collapse
Affiliation(s)
- María José Beriain
- ISFOOD Research Institute, Public University of Navarre, 31006 Pamplona, Spain;
| | - Inmaculada Gómez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Susana García
- Department of Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - José Carlos Urroz
- School of Industrial & ICT Engineering, Public University of Navarre, Campus de Arrosadía, E-31006 Pamplona, Spain; (J.C.U.); (P.M.D.)
| | - Pedro María Diéguez
- School of Industrial & ICT Engineering, Public University of Navarre, Campus de Arrosadía, E-31006 Pamplona, Spain; (J.C.U.); (P.M.D.)
| | - Francisco C. Ibañez
- ISFOOD Research Institute, Public University of Navarre, 31006 Pamplona, Spain;
| |
Collapse
|
10
|
Lu J, Zhang Y, Zhou H, Cai K, Xu B. A review of hazards in meat products: Multiple pathways, hazards and mitigation of polycyclic aromatic hydrocarbons. Food Chem 2024; 445:138718. [PMID: 38364501 DOI: 10.1016/j.foodchem.2024.138718] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are stable carcinogens that are widely distributed in the environment and food, and humans are exposed to PAHs primarily through the respiratory tracts, dermal contact, and dietary intake. Meat products are an essential part of the human diet, and the formation of PAHs during meat processing is unavoidable. Therefore, a comprehensive understanding of PAHs in meat products can be a contribution to the minimization of human exposure dose. The aim of this review is to provide a comprehensive description of the toxicological analysis of PAHs intake and the various production pathways. The distribution of different PAHs in various meat products, including poultry and aquatic products, is analyzed. The discussion focuses on controlling PAHs through the use of endogenous marinades and antioxidants as well as reducing exogenous particulate matter-PAHs attachment. In addition, potential strategies for PAHs reduction and possible directions for future research are proposed.
Collapse
Affiliation(s)
- Jingnan Lu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yunkai Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Kezhou Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Savin RL, Ladoși D, Ladoși I, Păpuc T, Becze A, Cadar O, Torök I, Simedru D, Mariș ȘC, Coroian A. Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat. Foods 2024; 13:1790. [PMID: 38928732 PMCID: PMC11202992 DOI: 10.3390/foods13121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the numerous sensory, organoleptic and nutritional qualities, fish meat may also contain some toxic compounds with negative effects on human health. Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals resulting from incomplete combustion, found at high levels in thermally processed foods, especially in smoked fish. This research studied the influence of wood type (beech, plum and oak) and fish species (rainbow trout, carp and Siberian sturgeon) on PAH contamination in hot smoked fish. Benzo(a)Piren, Σ4PAHs and Σ15PAHs were considered as main indicators of PAH contamination. All-PAHs was quantified in all samples, indicating a specific dynamic of values due to the influence of variables. Generally, BaP (benzo(a)pyrene) content in the samples ranged from 0.11 µg/kg to 8.63 µg/kg, Σ4PAHs from 0.70 µg/kg to 45.24 µg/kg and Σ15PAHs from 17.54 µg/kg to 450.47 µg/kg. Thus, plum wood promoted the highest levels of PAHs, followed by oak and beech. Carp and Siberian sturgeon presented the highest concentrations of PAHs. Some of these parameters had levels that exceeded the limits allowed by legislation via Commission Regulation (EU) No 835/2011. Results revealed BaP levels > 2 µg/kg when plum wood was used in rainbow trout (4.04 µg/kg), carp (4.47 µg/kg) and Siberian sturgeon (8.63 µg/kg). Moreover, the same trend was found for Σ4PAHs, which exceeded 12 µg/kg in rainbow trout (17.57 µg/kg), carp (45.24 µg/kg) and Siberian sturgeon (44.97 µg/kg).
Collapse
Affiliation(s)
- Raul-Lucian Savin
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (R.-L.S.)
| | - Daniela Ladoși
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (R.-L.S.)
| | - Ioan Ladoși
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (R.-L.S.)
| | - Tudor Păpuc
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (R.-L.S.)
| | - Anca Becze
- INCDO-INOE2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania (O.C.); (I.T.)
| | - Oana Cadar
- INCDO-INOE2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania (O.C.); (I.T.)
| | - Iulia Torök
- INCDO-INOE2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania (O.C.); (I.T.)
| | - Dorina Simedru
- INCDO-INOE2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania (O.C.); (I.T.)
| | - Ștefania Codruța Mariș
- Department of Environment and Soil Sciences, University of Lleida, UDL, Av. Rovira Roure, 191, 25198 Leida, Spain
| | - Aurelia Coroian
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (R.-L.S.)
| |
Collapse
|
12
|
Chen X, Liao Y, Lin B, He X, Li S, Zhong C, Li S, Zhou Y, Fan L. The Concentration of Benzo[a]pyrene in Food Cooked by Air Fryer and Oven: A Comparison Study. TOXICS 2024; 12:416. [PMID: 38922096 PMCID: PMC11209421 DOI: 10.3390/toxics12060416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The air fryer utilizes heated air rather than hot oil to achieve frying, eliminating the need for cooking oil, rendering it a healthier cooking method than traditional frying and baking. However, there is limited evidence supporting that the air fryer could effectively reduce the level of food-derived carcinogen. In this study, we compared the concentration of Benzo[a]pyrene (BaP), a typical carcinogen, in beef patties cooked using an air fryer and an oven, under different cooking conditions, including temperatures (140 °C, 160 °C, 180 °C, and 200 °C), times (9, 14, and 19 min), and oil added or not. The adjusted linear regression analysis revealed that the BaP concentration in beef cooked in the air fryer was 22.667 (95% CI: 15.984, 29.349) ng/kg lower than that in beef cooked in the oven. Regarding the air fryer, the BaP concentration in beef cooked without oil brushing was below the detection limit, and it was significantly lower than in beef cooked with oil brushing (p < 0.001). Therefore, cooking beef in the air fryer can effectively reduce BaP concentration, particularly due to the advantage of oil-free cooking, suggesting that the air fryer represents a superior option for individuals preparing meat at high temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (X.C.); (Y.L.); (B.L.); (X.H.); (S.L.); (C.Z.); (S.L.)
| | - Lieyang Fan
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (X.C.); (Y.L.); (B.L.); (X.H.); (S.L.); (C.Z.); (S.L.)
| |
Collapse
|
13
|
Muhammad Yunus F, Alias Y, Yahya N, Mohamad Zain NN, Raoov M. Poly-(ionic liquid) coated with magnetic nanoparticles for micro solid phase extraction of polycyclic aromatic hydrocarbons in food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:495-512. [PMID: 38466777 DOI: 10.1080/19440049.2024.2326426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (μ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 μg L-1-500 μg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.
Collapse
Affiliation(s)
- Faizah Muhammad Yunus
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorfatimah Yahya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Wang DD, Li Y, Nguyen XM, Ho YL, Hu FB, Willett WC, Wilson PW, Cho K, Gaziano JM, Djoussé L. Red Meat Intake and the Risk of Cardiovascular Diseases: A Prospective Cohort Study in the Million Veteran Program. J Nutr 2024; 154:886-895. [PMID: 38163586 DOI: 10.1016/j.tjnut.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Red meat consumption was associated with an increased risk of cardiovascular disease (CVD) in prospective cohort studies and a profile of biomarkers favoring high CVD risk in short-term controlled trials. However, several recent systematic reviews and meta-analyses concluded with no or weak evidence for limiting red meat intake. OBJECTIVES To prospectively examine the associations between red meat intake and incident CVD in an ongoing cohort study with diverse socioeconomic and racial or ethnic backgrounds. METHODS Our study included 148,506 participants [17,804 female (12.0%)] who were free of cancer, diabetes, and CVD at baseline from the Million Veteran Program. A food frequency questionnaire measured red meat intakes at baseline. Nonfatal myocardial infarction and acute ischemic stroke were identified through a high-throughput phenotyping algorithm, and fatal CVD events were identified by searching the National Death Index. RESULTS Comparing the extreme categories of intake, the multivariate-adjusted relative risks of CVD was 1.18 (95% CI: 1.01, 1.38; P-trend < 0.0001) for total red meat, 1.14 (95% CI: 0.96, 1.36; P-trend = 0.01) for unprocessed red meat, and 1.29 (95% CI: 1.04, 1.60; P-trend = 0.003) for processed red meat. We observed a more pronounced positive association between red meat intake and CVD in African American participants than in White participants (P-interaction = 0.01). Replacing 0.5 servings/d of red meat with 0.5 servings/d of nuts, whole grains, and skimmed milk was associated with 14% (RR: 0.86; 95% CI: 0.83, 0.90), 7% (RR: 0.93; 95% CI: 0.89, 0.96), and 4% (RR: 0.96; 95% CI: 0.94, 0.99) lower risks of CVD, respectively. CONCLUSIONS Red meat consumption is associated with an increased risk of CVD. Our findings support lowering red meat intake and replacing red meat with plant-based protein sources or low-fat dairy foods as a key dietary recommendation for the prevention of CVD.
Collapse
Affiliation(s)
- Dong D Wang
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| | - Yanping Li
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Xuan-Mai Nguyen
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States
| | - Frank B Hu
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Walter C Willett
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Peter Wf Wilson
- Atlanta VA Medical Center, Atlanta, GA, United States; Emory Clinical Cardiovascular Research Institute, Atlanta, GA, United States
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Luc Djoussé
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, United States; Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Ostadgholami M, Zeeb M, Amirahmadi M, Daraei B. Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods 2023; 13:143. [PMID: 38201171 PMCID: PMC10779142 DOI: 10.3390/foods13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 01/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are recognized as carcinogens and mutagenic food contaminants that threaten public health. As for food safety aspects, control of these contaminants in processed and fatty food is necessary. In this study, eleven factors were screened by the Plackett-Burman design, and four variables were chosen to optimize with the central composite design (CCD) for the improvement of extraction and cleanup procedures of these food contaminants. The optimized variables include 5 g of sample, 2 mL mixture of 2/2/1 ethyl acetate/acetone/isooctane, 1.6 g of ammonium formate, 0.9 g of sodium chloride, and 0.25 g of sorbent Z-Sep+. A 5 min cleanup vortex time with the spike calibration curve strategy, analyzed by gas chromatography-mass spectrometry (GC-MS), led to the validated limits of quantification (LOQs) for 16 PAHs and 36 PCBs of 0.5-2 and 0.5-1 ng/g, respectively, and recoveries of 72-120%, with an average relative standard deviation (%RSD) of 17, for PAHs, and 80-120%, with an %RSD of 3, for PCBs. The method introduces excellent accuracy, precision, and efficiency, and minimizes matrix effects, and ensures a control procedure, adopted with international standards, for food authorities to determine the contaminants of interest in processed meat, and consequently, prevent food-borne disease to improve public health indices.
Collapse
Affiliation(s)
- Mahsa Ostadgholami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran; (M.O.); (M.Z.)
| | - Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran; (M.O.); (M.Z.)
| | - Maryam Amirahmadi
- Food and Drug Reference Control Laboratory (FDRCL), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education, Tehran 1113615911, Iran
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), Ministry of Health and Medical Education, Tehran 1113615911, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| |
Collapse
|
16
|
Mortezazadeh F, Babanezhad E, Niknejad H, Gholami-Borujeni F. Global review, meta-analysis and health risk assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in chicken kebab using Monte Carlo simulation method. Food Chem Toxicol 2023; 181:114063. [PMID: 37777082 DOI: 10.1016/j.fct.2023.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The primary concern with Polycyclic Aromatic Hydrocarbons (PAHs) is their harmful effects on health, including the risk of causing cancer. This study aimed to investigate the occurrence and concentration of 16 priority PAHs (PAH16) in chicken kebabs using a systematic review approach with meta-analysis. Additionally, the study estimated the possible risk assessment of the potential carcinogenic and non-carcinogenic effects of PAHs on consumers of chicken kebabs using the Monte Carlo simulation (MCS) method. The researchers collected data on the concentration of PAHs in chicken kebabs (grilled, smoked, roasted, or barbecued) from 99 original articles searched in the Web of Science, PubMed, Scopus, Science Direct, and Google Scholar databases from 2012 to April 2022. The concentration of PAHs was then analyzed using meta-analysis, and the Monte Carlo simulation (MCS) was used to evaluate the associated human health risks. The analysis showed that 68.6%, 21.1%, 7.1%, and 3.2% of chicken kebabs were prepared by grilling, smoking, barbecuing, and roasting, respectively. The meta-analysis and health risk assessment indicated that the mean values of HQ (hazard quotient) in Bap, Ace, Acy, Pyr, Flt, Flr, Nap, and Ant PAHs were 1.64, 1.38 × 10^-2, 1.10 × 10^-1, 1.09 × 10^-1, 2.55 × 10^-2, 1.60 × 10^-1, 8.13 × 10^-1, and 6.20 × 10^-3, respectively. Additionally, the mean values of LTCR (Incremental Lifetime Cancer Risk) in Bap, Ace, Acy, Pyr, Flt, Flr, Nap, and Ant were 4.85 × 10^-10, 8.06 × 10^-13, 6.65 × 10^-12, 3.23 × 10^-12, 1.01 × 10^-12, 6.38 × 10^-12, 1.62 × 10^-11, and 6.20 × 10^-3, respectively. The consumption of chicken kebabs prepared by barbecuing was found to be associated with an increased risk of cancer due to the formation of carcinogenic compounds, including benzo[a]pyrene (BaP). However, the non-cancer risk ratio of consuming grilled chicken other than BaP was found to be less than 1 (HQ < 1), indicating that there is no risk of carcinogenesis caused by PAHs from the consumption of chicken kebabs worldwide. The calculated values of the LTCR caused by PAHs in the consumption of chicken kebab throughout life were compared to the maximum acceptable risk value suggested by the EPA, which in the strictest case equals one cancer case per 10,000 people. The results indicate that there is no risk of carcinogenesis caused by PAHs due to the consumption of chicken kebab worldwide.
Collapse
Affiliation(s)
- Fatemeh Mortezazadeh
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Babanezhad
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Niknejad
- Department of Environmental Health Engineering, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fathollah Gholami-Borujeni
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Singh L, Agarwal T. Polycyclic aromatic hydrocarbons in cooked (tandoori) chicken and associated health risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2380-2397. [PMID: 36802078 DOI: 10.1111/risa.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Tandoori cooking is a popular food preparation method in India involving a unique combination of grilling, baking, barbecuing, and roasting processes. This study determined the levels of 16 polycyclic aromatic hydrocarbons (PAHs) in tandoori chicken and assessed the associated health risk. The sum of 16 PAHs concentration ranged from 25.4 to 3733 μg/kg with an average of 440 ± 853 μg/kg. Analyzed samples demonstrated major contribution of 2, 3, and 4 ring PAHs. Diagnostic ratios identified combustion and high-temperature processes as the main source favoring PAHs generation in these samples. Benzo(a)pyrene equivalents and incremental lifetime cancer risk (ILCR) estimates for different population groups (boys, girls, adult males, adult females, elderly males, elderly females) associated with dietary intake of these products ranged from 6.88E-05 to 4.13E-03 and 1.63E-08 to 1.72E-06, respectively. Since the ILCR values fell within the safe limits (1E-06, i.e., nonsignificant), the consumption of tandoori chicken may be considered as safe. The study emphasizes the need for extensive studies on PAHs formation in tandoori food products.
Collapse
Affiliation(s)
- Lochan Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
18
|
Inhibitory effect of coriander (Coriandrum sativum L.) extract marinades on the formation of polycyclic aromatic hydrocarbons in roasted duck wings. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Cheng YQ, Leible M, Weiss J, Gibis M. The impact of temperature-controlled smoldering smoking on polycyclic aromatic hydrocarbons and heterocyclic amines contents in Frankfurter-type sausages. Food Chem 2023; 423:136258. [PMID: 37172502 DOI: 10.1016/j.foodchem.2023.136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The impact of temperature-controlled smoldering smoking conditions on the accumulations of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HAs) in Frankfurter-type sausages was investigated. Depending on the temperature, smoking can be divided into two phases: an unstable pyrolysis stage (≈ 200 s) and a stable pyrolysis stage (>200 s), which had different effects on hazardous substances contents. The unstable pyrolysis stage, which contributed 66.9 ∼ 89.6% of PAH accumulations by comparing with sausages smoked for 15 min, has significant impact on high PAH residues. By contrast, the contents of HAs showed steady increase trends with smoking time. Few types of free-HAs with low concentrations (3.05 ∼ 22.9 ng/g DW), but more types of bound-HAs with much higher levels (10.8 ∼ 396 ng/g DW) were found. In addition, the formation of some HAs followed the first-order reaction model. However, the detailed formation mechanisms of PAHs and HAs under temperature-controlled smoldering smoking conditions remain to be studied.
Collapse
Affiliation(s)
- Yi-Qun Cheng
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
| | - Malte Leible
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany.
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany.
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany.
| |
Collapse
|
20
|
Zhang X, Hu G, Xu C, Nie W, Cai K, Fang H, Xu B. Inhibition of benzo[a]pyrene formation in charcoal-grilled pork sausages by ginger and its key compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2838-2847. [PMID: 36700254 DOI: 10.1002/jsfa.12470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginger and its extracts have been frequently used in food processing and pharmaceuticals. However, the influence of ginger and its key compounds on benzo[a]pyrene (BaP) production in meat processing has not been investigated. The purpose of this study was to explore the effect of application of ginger and its important active ingredients on BaP formation and the mechanism of inhibiting BaP formation in charcoal-grilled pork sausages. RESULTS The DPPH scavenging (23.59-59.67%) activity and the inhibition rate of BaP (42.1-68.9%) were significantly increased (P < 0.05) with increasing ginger addition. The active components extracted by supercritical carbon dioxide from ginger were identified by gas chromatography-mass spectrometry and 14 representative compounds (four terpenes, two alcohols, two aldehydes, four phenols and two other compounds, totaling 77.57% of the detected compounds) were selected. The phenolic compounds (eugenol, 6-gingerol, 6-paradol and 6-shogaol, accounting for 29.73% of the total composition) in ginger played a key role and had the strongest inhibitory effect on BaP (61.2-68.2%), whereas four other kinds of compound showed obviously feeble inhibitory activity (6.47-17.9%). Charcoal-grilled sausages with phenolic substances had lower values of thiobarbituric acid-reactive substances, carbonyl and diene (three classic indicators of lipid oxidation) (P < 0.05). CONCLUSION Ginger and its key compounds could effectively inhibit the formation of BaP in charcoal-grilled pork sausages. Phenolic compounds make the strongest contribution to the inhibition of Bap formation, and the inhibitory mechanism was related to the inhibition of lipid oxidation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Gaofeng Hu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Chaoyang Xu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Wen Nie
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Kezhou Cai
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hongmei Fang
- Institute of Yeji Mutton Industry Development and Research, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
21
|
Bulanda S, Janoszka B. Polycyclic Aromatic Hydrocarbons (PAHs) in Roasted Pork Meat and the Effect of Dried Fruits on PAH Content. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4922. [PMID: 36981831 PMCID: PMC10049194 DOI: 10.3390/ijerph20064922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Diet is one of the main factors affecting human health. The frequent consumption of heat-treated meat has been classified as both directly carcinogenic to humans and as a risk factor, especially in the case of cancers of the gastrointestinal tract. Thermally processed meat may contain harmful muta- and carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAHs). However, there are natural ways to reduce the risk of diet-related cancers by reducing the formation of PAHs in meat. The purpose of this study was to determine changes in PAH levels in pork loin dishes prepared by stuffing the meat with dried fruits (prunes, apricots and cranberries) and baking it in a roasting bag. High-performance liquid chromatography with fluorescence detection (HPLC-FLD) was used to conduct a quantitative analysis of seven PAHs. Recovery results ranged from 61 to 96%. The limit of detection (LOD) was 0.003 to 0.006 ng/g, and the limit of quantification (LOQ) was 0.01 to 0.02 ng/g. Gas chromatography-mass spectrometry (GC-MS/MS) was used to confirm the presence of PAHs in food. The total PAH content of the roasted pork loin was 7.4 ng/g. This concentration decreased by 35%, 48% and 58% when the meat was roasted with apricots, prunes and cranberries, respectively. The cranberries also inhibited the formation of benzo(a)pyrene to the greatest extent. Thermally treating meat stuffed with dry fruits may be a simple and effective way to prepare foods with reduced levels of mutagens and carcinogens belonging to PAHs, and thus reduce the risk of cancer.
Collapse
|
22
|
Mallah MA, Basnet TB, Ali M, Xie F, Li X, Feng F, Wang W, Shang P, Zhang Q. Association between urinary polycyclic aromatic hydrocarbon metabolites and diabetes mellitus among the US population: a cross-sectional study. Int Health 2023; 15:161-170. [PMID: 35751578 PMCID: PMC9977221 DOI: 10.1093/inthealth/ihac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The primary aim of this study is to examine the association between urinary polycyclic aromatic hydrocarbons (PAHs) and diabetes mellitus (DM) among the US population. METHODS We used data from the National Health and Nutritional Examination Survey 2003-16, which is a nationally representative population-based survey of the US non-institutionalized population. Logistic regression analysis was performed to evaluate the association between urinary PAHs and the prevalence of DM using odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The study sample including 13 792 individuals ≥18 y of age. The average ages of the three PAH tertiles were 42.56±19.67, 42.21±19.51 and 43.39±17.99 y. An increased risk of DM was found with increased odds for the second (OR 1.56 [95% CI 1.36 to 1.79]) and third tertile (OR 1.79 [95% CI 1.55 to 2.06)] of urinary PAH as compared with the first tertile. Similarly, higher chances of DM were observed in the second (men: OR 1.42 [95% CI 1.18 to 1.71]; women: OR 1.76 [95% CI 1.44 to 2.14]) and third tertile (men: OR 1.69 [95% CI 1.38 to 2.08]; women: OR 1.79 [95% CI 1.46 to 2.19]) of urinary PAHs as compared with the first tertile in both men and women. CONCLUSIONS A population-based cross-sectional study found a positive association between urinary PAHs and DM in the US population.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Til Bahadur Basnet
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350122, China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah 67480, Sindh, Pakistan
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Wang
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Effect of Different Cooking Treatments on the Residual Level of Nitrite and Nitrate in Processed Meat Products and Margin of Safety (MoS) Assessment. Foods 2023; 12:foods12040869. [PMID: 36832944 PMCID: PMC9956292 DOI: 10.3390/foods12040869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nitrite and nitrate are well-known food additives used in cured meats and linked to different food safety concerns. However, no study about the possible effect of cooking treatment on the residual level of these compounds before consumption is available. In this work, 60 samples of meat products were analyzed in order to evaluate the variation in residual nitrite and nitrate level after baking, grilling and boiling. The analyses by ion chromatography demonstrated that meat cooking leads to a decrease in nitrite and an increase in nitrate residual levels in the final products. Meat boiling caused an overall decrease in two additives' concentration, while baking and particularly grilling caused an increase in nitrate and, in some cases, nitrite as well. Some regulatory aspects were also considered, such as the possibility of revising the legal limit of nitrate from the actual 150 mg kg-1 to a more cautious 100 mg kg-1. Indeed, several meat samples (bacon and swine fresh sausage) resulted in a higher nitrate concentration than the legal limit after cooking by grilling (eleven samples) or baking (five samples). Finally, the Margin of Safety evaluation demonstrated a good level of food safety, all values being higher than the protective threshold of 100.
Collapse
|
24
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
25
|
Dutta K, Shityakov S, Zhu W, Khalifa I. High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Fallah Z, Darand M, Salehi-Abargouei A, Mirzaei M, Ferns GA, Khayyatzadeh SS. The association between dietary habits and metabolic syndrome: findings from the Shahedieh-cohort study. BMC Nutr 2022; 8:117. [PMID: 36274164 PMCID: PMC9590195 DOI: 10.1186/s40795-022-00609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Metabolic syndrome (MetS) is a complex disorder with an increasing prevalence globally. Limited data are available about the association between dietary habits and the prevalence of MetS. The present cross-sectional study aimed to investigate the association between dietary habits and MetS in a large population sample from Iranians. Methods The study was conducted on 9261 adults aged 35–70 years who attended the baseline phase of Shahedieh cohort study, Yazd, Iran. Dietary habits including meal frequency, fried food consumption, adding salt to prepared meal, barbecued food consumption, used oil type and reuse oil number were assessed by a standard questionnaire. MetS was defined using the National Cholesterol Education Program Adult Treatment Panel III criteria. Logistic regression was used in different adjusted models to investigate the relationship between dietary habits and MetS: (Model I: adjusted for age, sex and energy. Model II: Model I + adjusted for wealth score index and physical activity. Model III: Model II + adjusted for cardiovascular diseases and liver diseases). Results The subjects who ate barbecued-food more than 3 times/ month had 1.18 times greater odds for MetS than individual who ate this less than once/ month (OR: 1.18, 95% CI: 1.01–1.38). After further adjustment for other confounding variables, the association remained significant. No significant association was found between other dietary habits and odds of MetS. Conclusion Higher intakes of barbecued-food consumption were related to the prevalence of MetS. Larger longitudinal studies in other population groups are needed to confirm these associations.
Collapse
|
28
|
Badyda AJ, Rogula-Kozłowska W, Majewski G, Bralewska K, Widziewicz-Rzońca K, Piekarska B, Rogulski M, Bihałowicz JS. Inhalation risk to PAHs and BTEX during barbecuing: The role of fuel/food type and route of exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129635. [PMID: 36027742 DOI: 10.1016/j.jhazmat.2022.129635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The manuscript presents an innovative and holistic approach to quantifying PAHs and BTEX emissions from the grilling process and indicates a novel driven-toxicity-based solution to recognize health effects related to BBQ emissions. The exposure scenario includes the type of grilling device, food type, and individual attitudes, but also a keen understanding of the broad health implications related to the gaseous/particulate PAHs emission, or age-related effects. The calculated incremental lifetime cancer risk (ILCR) associated with the exposure to PAH congeners and BTEX indicates an unacceptable level in the case of charcoal and briquette grilling with the highest values for professional cooks. The sum of 15 PAH concentrations in grilled foods was highest for meat grilling over charcoal briquettes - 382,020.39 ng/m3 and lowest for meat grilling on a gas grill - 1442.16 ng/m3. The emissions of BTEX from lump charcoal grilling were 130 times higher compared to the gaseous grill. In all considered scenarios lump-charcoal and charcoal briquettes grilling derive the ILCR above the 10-4, indicating negative effects of traditional grills on human health. The paper completes knowledge of wide-ranging health implications associated with BBQs, a topic that is almost completely unaddressed among the scientific community and policymakers.
Collapse
Affiliation(s)
- Artur Jerzy Badyda
- Warsaw University of Technology, Faculty of Building Services, Hydro- and Environmental Engineering, 20 Nowowiejska St., PL00-653 Warsaw, Poland.
| | - Wioletta Rogula-Kozłowska
- The Main School of Fire Service, Safety Engineering Institute, 52/54 Słowackiego St., PL01-629, Warsaw, Poland
| | - Grzegorz Majewski
- Warsaw University of Life Sciences, Institute of Environmental Engineering, 159 Nowoursynowska St., PL02-776 Warsaw, Poland
| | - Karolina Bralewska
- The Main School of Fire Service, Safety Engineering Institute, 52/54 Słowackiego St., PL01-629, Warsaw, Poland
| | - Kamila Widziewicz-Rzońca
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., PL41-819 Zabrze, Poland
| | - Barbara Piekarska
- Medical University of Warsaw, Department of Prevention of Environmental Hazards, Allergology and Immunology, 1 Banacha St., PL00-097 Warsaw, Poland
| | - Mariusz Rogulski
- Warsaw University of Technology, Faculty of Building Services, Hydro- and Environmental Engineering, 20 Nowowiejska St., PL00-653 Warsaw, Poland
| | - Jan Stefan Bihałowicz
- The Main School of Fire Service, Safety Engineering Institute, 52/54 Słowackiego St., PL01-629, Warsaw, Poland
| |
Collapse
|
29
|
Cao J, Yang L, Ye B, Chai Y, Liu L. Effect of Apple Polyphenol and Three Antioxidants on the Formation of Polycyclic Aromatic Hydrocarbon in Barbecued Pork. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Jiarong Cao
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Liu Yang
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Modern Agricultural Engineering Center, Shenyang, China
| | - Yingfei Chai
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
30
|
Pogorzelska-Nowicka E, Kurek M, Hanula M, Wierzbicka A, Półtorak A. Formation of Carcinogens in Processed Meat and Its Measurement with the Usage of Artificial Digestion—A Review. Molecules 2022; 27:molecules27144665. [PMID: 35889534 PMCID: PMC9322758 DOI: 10.3390/molecules27144665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Meat is a rich source of various nutrients. However, it needs processing before consumption, what in turn generates formation of carcinogenic compounds, i.a., polycyclic aromatic hydrocarbons (PAH), nitrosamines (NOCs), and the most mutagenic heterocyclic aromatic amines (HAAs). It was widely found that many factors affect the content of carcinogens in processed meat. However, it has recently been discovered that after digestion free HAAs are released, which are not detectable before enzymatic treatment. It was established that the highest percentage of carcinogens is released in the small intestine and that its amount can be increased up to 6.6-fold. The change in free HAAs content in analyzed samples was dependent on many factors such as meat type, doneness, particle size of meat, and the enzyme concentration used for digestion. In turn, introduction of bacteria naturally occurring in the human digestive tract into the model significantly decreases total amount of HAAs. Contrary, the addition of food ingredients rich in polyphenols, fiber, and water (pepper powder, onions, apples) increases free HAAs’ release up to 56.06%. Results suggests that in vitro digestion should be an integral step of sample preparation. Artificial digestion introduced before chromatographic analysis will allow to estimate accurately the content of carcinogens in processed meat.
Collapse
|
31
|
Shen X, Huang X, Tang X, Zhan J, Liu S. The Effects of Different Natural Plant Extracts on the Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roast Duck. Foods 2022; 11:foods11142104. [PMID: 35885346 PMCID: PMC9321227 DOI: 10.3390/foods11142104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with high carcinogenicity and mutagenicity may be generated in roast duck during high-temperature roasting. Natural extracts with antioxidant effects may inhibit the formation of PAHs. The objective of this study was to compare the effects of green tea extract (GTE); extract of bamboo leaves (EBL); grape seed extract (GSE) and rosemary extract (RE) on PAHs in roast duck to obtain the optimum extract and present a guidance for reducing PAHs in roast duck. The total phenol content and antioxidant capacity of the four extracts were measured, and the PAH changes in the roast duck caused by the four extracts were detected. The total phenol content of GTE was the highest, 277 mg gallic acid equivalent (GAE)/g, while RE was the lowest at 85 mg GAE/g. The antioxidant capacity of RE was 1.9 mmol Trolox/g, which was significantly lower than that of the other three. The four extracts inhibited PAHs formation in roast duck to varying degrees: When the concentration was 25 g/kg, the best inhibitory effects on Benzo [a] pyrene (BaP) and PAH4 (BaP, BaA, BbF and CHR) were obtained from GTE, with inhibition rates of 75.8% and 79.7%, respectively, while the weakest inhibition rates, 32.7% and 43.6%, respectively, were from RE.
Collapse
Affiliation(s)
- Xixi Shen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Huang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
- Correspondence: ; Tel./Fax: +86-10-82106563
| | - Junliang Zhan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
| | - Suke Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (X.H.); (J.Z.); (S.L.)
| |
Collapse
|
32
|
Bai S, You L, Wang Y, Luo R. Effect of Traditional Stir-Frying on the Characteristics and Quality of Mutton Sao Zi. Front Nutr 2022; 9:925208. [PMID: 35811981 PMCID: PMC9260384 DOI: 10.3389/fnut.2022.925208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
The effects of stir-frying stage and time on the formation of Maillard reaction products (MRP) and potentially hazardous substances with time in stir-fried mutton sao zi were investigated. Furosine, fluorescence intensity, Nε-(1-carboxymethyl)-L-lysine (CML), Nε-(1-carboxyethyl)-L-lysine (CEL), polyaromatic hydrocarbons PAHs), heterocyclic aromatic amines (HAAs), and acrylamides (AA) mainly presented were of stir-fried mutton sao zi. The furosine decreased after mixed stir-frying (MSF) 160 s due to its degradation as the Maillard reaction (MR) progressed. The fluorescent compound gradually increased with time during the stir-frying process. The CML and CEL peaked in MSF at 200 s. AA reached its maximum at MSF 120 s and then decreased. All the 5 HAAs were detected after MSF 200 s, suggesting that stir-frying mutton sao zi was at its best before MSF for 200 s. When stir-frying exceeded the optimal processing time of (MSF 160 s) 200 s, the benzo[a]pyrene peaked at 0.82 μg/kg, far lower than the maximum permissible value specified by the Commission of the European Communities. Extended stir-frying promoted MRP and some hazardous substances, but the content of potentially hazardous substances was still within the safety range for food.
Collapse
Affiliation(s)
- Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yongrui Wang
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Ruiming Luo
- School of Food and Wine, Ningxia University, Yinchuan, China
- *Correspondence: Ruiming Luo,
| |
Collapse
|
33
|
Bai S, You L, Ji C, Zhang T, Wang Y, Geng D, Gao S, Bi Y, Luo R. Formation of volatile flavor compounds, maillard reaction products and potentially hazard substance in China stir-frying beef sao zi. Food Res Int 2022; 159:111545. [DOI: 10.1016/j.foodres.2022.111545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
|
34
|
Zastrow L, Judas M, Speer K, Schwind KH, Jira W. Barbecue conditions affect contents of oxygenated and non-oxygenated polycyclic aromatic hydrocarbons in meat and non-meat patties. Food Chem X 2022; 14:100351. [PMID: 36118985 PMCID: PMC9475699 DOI: 10.1016/j.fochx.2022.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
The contents of eight oxygenated polycyclic aromatic hydrocarbons (OPAHs; anthracene-9,10-dione, benzo[a]anthracene-7,12-dione, 11H-benzo[b]fluorene-11-one, 6H-benzo[cd]pyren-6-one, 7H-benzo[de]anthracene-7-one, 9,10-dihydro-8H-benzo[a]pyren-7-one, fluoren-9-one, and naphthacene-5,12-dione) and six PAHs (anthracene, fluorene, and PAH4) were investigated in barbecued meat and non-meat patties. The patties were prepared with ten setups (six replicates, each) of barbecue conditions defined by grill type, grate height, heating medium, and barbecue time. The highest median contents were observed with a disposable grill (OPAHs: 46.3 µg/kg; PAHs: 40.7 µg/kg) and a charcoal grill (OPAHs: 29.6 µg/kg; PAHs: 23.3 µg/kg). Fluoren-9-one and anthracene-9,10-dione were the dominant compounds within OPAHs, but also the four toxicologically most relevant OPAHs were detected with a total up to 11.8 µg/kg. Pairs of OPAHs and corresponding PAHs did not show strong correlations, as individual OPAHs and PAHs were affected differently by the barbecue conditions. No suitable markers for OPAH prediction could be found. We recommend to include OPAHs in future PAH investigations.
Collapse
|
35
|
Mallah MA, Changxing L, Mallah MA, Naveed M, Liu Y, Noreen S, Xi H, Wang W, Feng F, Zhang Q. Association of urinary polycyclic aromatic hydrocarbon metabolites and cardiovascular disease among US population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 209:112775. [PMID: 35065070 DOI: 10.1016/j.envres.2022.112775] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The main aim of the study was to illustrate the association between urinary polycyclic aromatic hydrocarbons (PAHs) and their metabolites with cardiovascular diseases (CVDs), including congestive heart failure (CHF), coronary heart disease (CHD), angina, heart attack, and stroke among the US population. METHODS The National Health and Nutritional Examination Survey (NHANES) 2003-16, nationally representative data were utilized for this study. A cross-sectional observational study was designed to assess the strength of the association between urinary PAH and CVDs. The NHANES survey used a stratified multistage probability sample strategy for obtaining representative samples. Logistic regression analysis was performed to evaluate the association between PAH and the prevalence of CVDs. RESULTS In our study, the average ages of the three different PAHs tertiles were 42.56 ± 19.68, 42.21 ± 19.51, and 43.39 ± 17.99 years, respectively. A positive association was found between the second and third tertile of urinary PAH and increased prevalence of coronary heart disease (tertile-2: OR = 1.24, 95% CI = 1.09-1.42; tertile-3: OR = 1.97, 95% CI = 1.69-2.28), angina (tertile-2: OR = 1.3, 95% CI = 1.13-1.49; tertile-3: OR = 2.07, 95% CI = 1.76-2.42), heart attack (tertile-2: OR = 1.28, 95% CI = 1.12-1.47; tertile-3: OR = 1.71, 95% CI = 1.48-1.96) and stroke (tertile-2: OR = 1.17, 95% CI = 1.02-1.33; tertile-3: OR = 1.66, 95% CI = 1.43-1.93) in total participants, respectively, with p-values less than 0.05. CONCLUSION In conclusion, this study found a positive association between urinary PAHs and the prevalence of various CVDs among the US population.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou, 450001, China.
| |
Collapse
|
36
|
Inventory of Commercial Cooking Activities and Emissions in a Typical Urban Area in Greece. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pollutants emitted during meal preparation in restaurants deteriorate the air quality. Thus, it is an environmental issue that needs to be addressed, especially in areas where these activities are densely located. The purpose of this study is to examine the impact on air quality from commercial cooking activities by performing a qualitative and quantitative analysis of the related parameters. The area of interest is located in the southeastern Mediterranean (Greater Athens area in Greece). Due to the lack of the necessary activity information, a survey was conducted. Emissions from the fuel burnt during the cooking procedures were calculated and it was found that, overall, 940.1 tonnes are attributed to commercial cooking activities annually (generated by classical pollutants, heavy metals, particulates and polycyclic aromatic hydrocarbon emissions). Comparing the contribution of different sources to the pollutants emitted, it was found that commercial cooking is responsible for about 0.6%, 0.8% and 1.0% of the total CO, NOx and PM10 values. Cooking organic aerosol (COA) and volatile organic compound (VOC) emissions from grilled meat were also calculated, accounting for 724.9 tonnes and 37.1 tonnes, respectively. Monthly, daily and hourly profiles of the cooking activities were developed and emissions were spatially disaggregated, indicating the city center as the area with higher values. Numerical simulations were performed with the WRF/CAMx modeling system and the results revealed a contribution of about 6% to the total PM10 concentrations in the urban center, where the majority of restaurants are located.
Collapse
|
37
|
Bomfeh K, Jacxsens L, Amoa-Awua WK, Gamarro EG, Ouadi YD, De Meulenaer B. Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Smoked Sardinella sp. in Ghana: Impact of an Improved Oven on Public Health Protection. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:1007-1022. [PMID: 34658047 DOI: 10.1111/risa.13836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/21/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
An improved fish smoking oven called FAO-Thiaroye Technique (FTT) has been introduced in Ghana and other countries in the Global South as a technical intervention for the high levels of polycyclic aromatic hydrocarbons (PAHs) in traditionally smoked fish produced in those regions. This study evaluated the extent to which the intervention reduces consumer exposure to PAHs (considering benzo(a)pyrene [BaP] as a marker) in smoked fish, using Ghana as a case. Smoked Sardinella sp. were sampled from two traditional ovens (Chorkor smoker and metal drum oven) and the FTT and their PAH levels were determined by gas chromatography-mass spectrometry. Samples of the product were also purchased from informal markets in three selected regions of Ghana and analyzed for their PAH levels. Cross-sectional consumer surveys were conducted in the selected regions to determine intakes of the commodity. A probabilistic risk assessment of PAH was then done by the margin of exposure (MoE) approach. BaP MoE as low as 1,060 and 752 were obtained for products from the traditional ovens and the informal markets, respectively, whereas the lowest value for FTT products was approximately 161,000. MoE values less than 10,000 were considered to denote a serious public health concern requiring risk management action. Therefore, the findings suggest that there is a potential health concern of high consumer exposure to PAHs in traditionally smoked fish in Ghana, and that the FTT is a technically viable intervention for the problem.
Collapse
Affiliation(s)
- Kennedy Bomfeh
- nutriFOODchem Research Group (partner in Food2Know), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Liesbeth Jacxsens
- nutriFOODchem Research Group (partner in Food2Know), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Esther Garrido Gamarro
- Food and Agriculture Organization of the United Nations, Viale delle Teme di Caracalla, Rome, Italy
| | - Yvette Diei Ouadi
- Food and Agriculture Organization of the United Nations, Viale delle Teme di Caracalla, Rome, Italy
| | - Bruno De Meulenaer
- nutriFOODchem Research Group (partner in Food2Know), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
38
|
Onopiuk A, Kołodziejczak K, Marcinkowska-Lesiak M, Poltorak A. Determination of polycyclic aromatic hydrocarbons using different extraction methods and HPLC-FLD detection in smoked and grilled meat products. Food Chem 2022; 373:131506. [PMID: 34758433 DOI: 10.1016/j.foodchem.2021.131506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in meat products are formed, among others, as a by-product of thermal processing such as smoking or grilling. Due their highly toxic effects on the human organism, it is necessary to monitor PAH content in food products and develop appropriate analytical methods for their determination. The aim of this study was to compare PAH content in meat products subjected to smoking or grilling process. PAH content was determined using three different analytical methods, verified for efficiency using the external standard method. The results showed that smoking led to higher PAH contamination compared to grilling. Extraction by saponification and SPE method was the most effective for the detection and quantification of PAHs. The samples analyzed using this method showed the highest PAH content and recoveries. The results of the study showed a significant effect of the extraction method on the recovery levels and PAH content in meat.
Collapse
Affiliation(s)
- Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland.
| | - Klaudia Kołodziejczak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| | - Monika Marcinkowska-Lesiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| | - Andrzej Poltorak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, Warsaw 02-776, Poland
| |
Collapse
|
39
|
The effect of in-package cold plasma on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled beef steak with different oils or fats. Food Chem 2022; 371:131384. [PMID: 34808777 DOI: 10.1016/j.foodchem.2021.131384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 01/14/2023]
Abstract
In-package cold plasma (ICP) pretreatment is an emerging non-thermal food processing methods. In the current study, ICP on the formation of polycyclic aromatic hydrocarbons (PAHs) in grilled beef steaks with different oils and fats was evaluated, the influence of prolonged storage periods (1 d, 2 d) of raw meat after ICP pretreatment on the PAH inhibitory effect was investigated. The results showed that sunflower seed oil had an inhibitory effect on PAH formation; the groups with ICP pretreatment showed a significant decrease in PAH content (p < 0.05) according to the UHPLC results, inhibitory rates were dependent on the original contents in each group without ICP pretreatment, ranging from 35% to 96%. The optimal condition was grilling immediately after ICP pretreatment, and the results indicated that the nonpolar radical scavenging activity (RSA) of ungrilled meat was negatively correlated with PAH8 contents according the DPPH assay, while ICP pretreatment enhanced the RSAoil of raw meat.
Collapse
|
40
|
An insight on microbial degradation of benzo[a]pyrene: current status and advances in research. World J Microbiol Biotechnol 2022; 38:61. [PMID: 35199223 DOI: 10.1007/s11274-022-03250-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.
Collapse
|
41
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr Rev Food Sci Food Saf 2022; 21:1598-1626. [DOI: 10.1111/1541-4337.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| |
Collapse
|
42
|
Hamidi EN, Hajeb P, Selamat J, Lee SY, Abdull Razis AF. Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020736. [PMID: 35055557 PMCID: PMC8775937 DOI: 10.3390/ijerph19020736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/10/2022]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) through diet is gaining concern due to the risk it poses to human health. This study evaluated the bioaccessibility of PAHs contained in charcoal-grilled beef and chicken in different segments of the gastrointestinal tract (GIT) with regard to the degree of doneness and fat content of the meats. The levels of 15 PAHs in the grilled meat samples and bioaccessible fractions were determined using high-performance liquid chromatography (HPLC) equipped with PAH column, and UV and fluorescence detectors. Total PAHs were found in beef (30.73 ng/g) and chicken (70.93 ng/g) before its digestion, and different PAHs’ bioaccessibility were observed in the different segments of GIT, with the highest in the stomach followed by the small intestine, despite the relatively higher bioaccessibility of individual PAHs in grilled beef as compared to those in grilled chicken. Additionally, the PAHs’ bioaccessibility increased with the increase in the degree of doneness. Positive linear correlation was observed for the PAHs’ bioaccessibility and the fat contents of grilled meat. Overall, this study highlights the influence of meat doneness (cooking time) and fat contents on the bioaccessibility and bioaccumulation of PAHs.
Collapse
Affiliation(s)
- Elliyana Nadia Hamidi
- Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark;
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Soo Yee Lee
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
43
|
The influence of meteorological conditions during traditional smoking on polycyclic aromatic hydrocarbon content in traditional Polish pork ham. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the study was to examine the influence of meteorological conditions observed during the process of traditional smoking on polycyclic aromatic hydrocarbon content in traditional Polish pork ham. The material of the study comprised traditional Polish pork ham, one of the most frequently purchased and consumed meat products in Poland. The analysed ham was smoked with the traditional method using beech chips and pieces. Smoking time was four hours. During laboratory research the basic chemical composition of the product was examined. Using the HPLC method, the level of 15 selected Polycyclic Aromatic Hydrocarbons (PAHs). The obtained results show that the level of selected polycyclic aromatic hydrocarbons in the examined material depended on atmospheric pressure and relative air humidity. Atmospheric pressure significantly influenced the content of benzo(b)fluoranthene, benzo(a)anthracene and indeno(c,d)pyrene. Relative humidity impacted the absorption level of 5-methylchrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene and indeno(c,d)pyrene. An influence of air temperature during the smoking process on PAHs content in the product was not observed. The results indicate that traditional smoking should be conducted under conditions of high relative humidity – ideally above 75%, and high atmospheric pressure – above 1000 hPa.
Collapse
|
44
|
Halagarda M, Wójciak KM. Health and safety aspects of traditional European meat products. A review. Meat Sci 2021; 184:108623. [PMID: 34753110 DOI: 10.1016/j.meatsci.2021.108623] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
Meat products constitute one of the most important groups of traditional foods. Thanks to the unique and favorable organoleptic characteristics, and high quality, they are willingly chosen by consumers. Lately, there has been a growing concern over the health aspects of these products. Therefore, the aim of this study was to analyze the nutritional value and factors affecting quality and health safety of traditional meat products on the basis of available literature. The study findings have revealed various issues with uniformity of traditional meat products. Products of the same name may differ substantially considering nutritional value. Reports also indicate that there are some discrepancies which can be attributed to product character (traditional/conventional). They mainly concern the content of moisture, protein, salt, fat, and fatty acid profile. Research suggests that traditional meat products may also be associated with some health safety issues, such as the presence of pathogens, polycyclic aromatic hydrocarbons, nitrate and nitrite residues, N-nitrosamines, biogenic amines and heavy metals.
Collapse
Affiliation(s)
- Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, 30-033 Kraków, Sienkiewicza 5, Poland.
| | - Karolina M Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Skromna 8 Street, Poland.
| |
Collapse
|
45
|
Cheng T, Chaousis S, Kodagoda Gamage SM, Lam AKY, Gopalan V. Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. Int J Mol Sci 2021; 22:10959. [PMID: 34681617 PMCID: PMC8537007 DOI: 10.3390/ijms222010959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC.
Collapse
Affiliation(s)
- Tracie Cheng
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Stephanie Chaousis
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20404, Sri Lanka
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| |
Collapse
|
46
|
Yan XT, Zhang Y, Zhou Y, Li GH, Feng XS. Source, Sample Preparation, Analytical and Inhibition Methods of Polycyclic Aromatic Hydrocarbons in Food (Update since 2015). SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1977321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-ting Yan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
47
|
Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Li J, Li X, Xia Y, Fan H, Fan D, Xi X, Ye Q, Zhu Y, Xiao C. Subgroup analysis of the relationship between polycyclic aromatic hydrocarbons and rheumatoid arthritis: Data from the National Health and Nutrition Examination Survey, 2003-2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145841. [PMID: 33621881 DOI: 10.1016/j.scitotenv.2021.145841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The present study examined potential effect modifiers between polycyclic aromatic hydrocarbon (PAH) exposure and the development of rheumatoid arthritis (RA) and elucidated the relationship between PAHs and RA in subgroups using data from the National Health and Nutrition Examination Survey (NHANES) (2003-2014). The relatedness between eight PAH metabolites and RA in the whole population and different subgroups was tested using multivariable logistic regression analyses. This study included 6297 participants, including 400 RA patients and 5897 non-RA control participants, with full data. Compared to the lowest quartiles, risk of RA was increased in population with the highest quartiles of 1-hydroxynaphthalene (1-NAP), 2-NAP, 2-hydroxyfluorene (2-FLU), and 3-FLU in a bias factor corrected model. The associations between urinary PAH metabolites and RA were prominent in female, young and middle-aged, obese, smoking and alcohol-consuming populations in the subgroup analysis. Our results demonstrated that PAH exposure was related to RA, and the relationship between urinary PAH metabolites and RA differed between subgroups and depended on specific PAH metabolites.
Collapse
Affiliation(s)
- Jiang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ya Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - HuiZhen Fan
- Department of Gastroenterology, People's Hospital of Yichun, Jiangxi Yichun 336000, China
| | - Danping Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Xi
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qinbin Ye
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
49
|
Ge X, Zhang L, Zhong H, Gao T, Jiao Y, Liu Y. The effects of various Chinese processing methods on the nutritional and safety properties of four kinds of meats. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Polycyclic Aromatic Hydrocarbons Contamination of Flamed and Braised Chickens and Health Risk Assessment in Burkina Faso. TOXICS 2021; 9:toxics9030065. [PMID: 33803506 PMCID: PMC8002855 DOI: 10.3390/toxics9030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022]
Abstract
Charcoal- or wood-cooked chicken is a street-vended food in Burkina Faso. In this study, 15 samples of flamed chicken and 13 samples of braised chicken were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) with a high-performance liquid chromatography-fluorescence detector. A face-to-face survey was conducted to assess the consumption profiles of 300 men and 300 women. The health risk was assessed based on the margin of exposure (MOE) principle. BaP (14.95–1.75 μg/kg) and 4PAHs (BaP + Chr + BaA + BbF) (78.46–15.14 μg/kg) were eight and five times more abundant at the median level in flamed chickens than in braised ones, respectively. The contents of BaP and 4PAHs in all flamed chicken samples were above the limits set by the European Commission against 23% for both in braised chickens. Women had the highest maximum daily consumption of both braised (39.65 g/day) and flamed chickens (105.06 g/day). At the estimated maximum level of consumption, women were respectively 3.64 (flamed chicken) and 1.62 (braised chicken) times more exposed to BaP and 4PAHs than men. MOE values ranged between 8140 and 9591 for men and between 2232 and 2629 for women at the maximum level of consumption of flamed chickens, indicating a slight potential carcinogenic risk.
Collapse
|