1
|
Qu L, Lin Z, Liu F, Kong F, Zhang Y, Ni X, Zhang X, Zhao Y, Lu Q, Zou B. Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food. Polymers (Basel) 2025; 17:789. [PMID: 40292616 PMCID: PMC11944326 DOI: 10.3390/polym17060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
This paper reviews the application of metal porphyrin electrochemical sensors in the detection of phenolic antioxidants in food, focusing on the latest progress and innovative applications in this field. Phenolic antioxidants are widely used in food and can effectively prolong the shelf life of food, but their excessive use may cause potential harm to human health, so the detection of their content is very important. In recent years, electrochemical analysis technology has gradually become an emerging method for quantitative detection of phenolic antioxidants due to its advantages of sensitivity, simplicity and high selectivity. As a new type of sensor, metal porphyrin electrochemical sensors have been widely used in the detection of phenolic antioxidants in food due to their excellent electrochemical performance and high selectivity. By modifying metal nanomaterials, the detection performance of these sensors has been significantly improved. This paper first introduces the basic concepts and physicochemical properties of phenolic antioxidants, analyzes their potential hazards and discusses relevant regulations and limit requirements. Then, the existing analysis methods of phenolic antioxidants are compared, and the development trend of traditional detection methods and new detection technologies is reviewed. Subsequently, the application progress of electrochemical sensors in the detection of phenolic antioxidants is discussed in depth, its working principle is expounded and the research results are summarized. Finally, the innovative applications of metalloporphyrins and their nanocomposites in electrochemical sensors are introduced in detail. The unique advantages of metalloporphyrins in the detection of phenolic antioxidants in food are highlighted, and the future development direction is laid out.
Collapse
Affiliation(s)
- Liang Qu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Zhiyuan Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Feng Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Fanzhuo Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Xing Ni
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Xue Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Yani Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Qiongya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (F.L.); (F.K.); (Y.Z.); (X.N.); (X.Z.); (Y.Z.); (Q.L.)
| |
Collapse
|
2
|
Xu Y, Jia X, Yang S, Cao M, He B, Ren W, Suo Z. Simultaneous Determination of Aflatoxin B1 and Ochratoxin A in Cereals by a Novel Electrochemical Aptasensor Using Metal-Organic Framework as Signal Carrier. Foods 2024; 13:2177. [PMID: 39063260 PMCID: PMC11276064 DOI: 10.3390/foods13142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.
Collapse
Affiliation(s)
- Yiwei Xu
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Xupeng Jia
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Sennan Yang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Mengrui Cao
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Baoshan He
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Wenjie Ren
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Zhiguang Suo
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| |
Collapse
|
3
|
Rahim AMA, Mahmoud EMM. Recent development of eco-friendly nanocomposite carbon paste electrode for voltammetric determination of Cd(II) in real samples. ANAL SCI 2023; 39:179-190. [PMID: 36402886 PMCID: PMC10082124 DOI: 10.1007/s44211-022-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022]
Abstract
Using eco-friendly, cheap, and available adsorbents is promising for the determination of metal ions. So, this study focuses on the modification of graphite reinforcement carbon paste electrode (GRCPE) with mango seed kernel (MSK) for voltammetric determination of Cd(II). Moreover, to increase the surface area of this adsorbent, it was prepared in nanosized that formed nanoparticles of mango seed kernel (MSK-NPs). The developed nanocomposite electrode of carbon paste electrode modified with nanoparticles of mango seed kernel (MSK-NPs@GRCPE) was characterized using Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The effect of pH, buffer solution, and supporting electrolyte as experimental conditions were optimized through differential pulse adsorptive anodic stripping voltammetric method (DPAdASV). Britton-Robinson buffer pH = 3.9 at Eacc = - 1400 mV, tacc = 30 s, pulse width = 10 ms and sampling time = 8 ms were the optimum conditions for determination of Cd(II). The LOD and LOQ of MSK-NPs@GRCPE were calculated at 5.44 × 10-9 and 1.65 × 10-8 M, respectively. Compared with bare graphite reinforcement carbon paste electrode (BGRCPE), the nanocomposite MSK-NPs@GRCPE has a lower detection limit, indicating that the presence of MSK-NPs could greatly improve the response to Cd(II). The practical applicability of the electrode was verified by the determination of Cd(II) in chocolate and white rice samples. The results show high selectivity and sensitivity for Cd(II) in real samples.
Collapse
Affiliation(s)
- Asmaa M Abdel Rahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61511, Egypt.
| | - Esraa M M Mahmoud
- Chemistry Department, Faculty of Science, Minia University, Minia, 61511, Egypt
| |
Collapse
|
4
|
Wang C, Niu Q, Liu D, Dong X, You T. Electrochemical sensor based on Bi/Bi 2O 3 doped porous carbon composite derived from Bi-MOFs for Pb 2+ sensitive detection. Talanta 2023; 258:124281. [PMID: 36940577 DOI: 10.1016/j.talanta.2023.124281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
It is of great significance to develop electrochemical sensors based on novel functional nanomaterials for heavy metal ions detection. In this work, a novel Bi/Bi2O3 co-doped porous carbon composite (Bi/Bi2O3@C) was prepared by simple carbonization of bismuth-based metal-organic frameworks (Bi-MOFs). The micromorphology, internal structure, crystal and elemental composition, specific surface area and porous structure of the composite were characterized by SEM, TEM, XRD, XPS, and BET. Further, a sensitive electrochemical sensor for Pb2+ detection was constructed by modifying Bi/Bi2O3@C on the surface of the glassy carbon electrode (GCE) based on the square wave anodic stripping voltammetric (SWASV). The different factors affecting the analytical performance were optimized systematically, such as material modification concentration, deposition time, deposition potential, and pH value. Under optimized conditions, the proposed sensor exhibited a wide linear range from 37.5 nM to 2.0 μM with a low detection limit of 6.3 nM. Meanwhile, the proposed sensor showed good stability, acceptable reproducibility, and satisfactory selectivity. The reliability of the as-proposed sensor was confirmed by the ICP-MS method for Pb2+ detection in different samples.
Collapse
Affiliation(s)
- Chengjian Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Liu C, Li Y, Chen T, Meng S, Liu D, Dong D, You T. Electric Field-Induced Specific Preconcentration to Enhance DNA-Based Electrochemical Sensing of Hg 2+ via the Synergy of Enrichment and Self-Cleaning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7412-7419. [PMID: 35671382 DOI: 10.1021/acs.jafc.2c02416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient preconcentration is critical for sensitive and selective electrochemical detection of metal ions, but rapid specific enrichment with depressed absorption of interfering ions at the electrode is challenging. Here, we proposed an electric field-induced specific preconcentration to boost the analytical performance of DNA-based electrochemical sensors for Hg2+ detection. As for such preconcentration, a positive external electric field was first used to enrich Hg2+ at an electrode assembled with T-rich DNA, thus boosting T-Hg2+-T recognitions. The following applied inverse electric field strips the nonspecifically absorbed Hg2+ and other interfering ions, thus depressing matrix interferences via self-cleaning. Based on this principle, we designed a portable device to realize programmable control of electric fields; a T-Hg2+-T recognition-based electrochemical sensor was thus fabricated as a model platform to assess the feasibility of electric field-induced preconcentration. The experimental results revealed that such a strategy decreased the time of T-Hg2+-T-based recognition from 60 to 20 min and led to detection with better reproducibility by depressing the influence of free Hg2+ as well as interfering ions. This strategy offered Hg2+ detection limits of 0.01 pM─three-fold better than that without preconcentration─within 22 min. The proposed preconcentration strategy offers a new way to enhance the analytical performance of sensing at the solid-liquid interface.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daming Dong
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Song ZY, Xiao XY, Chen SH, Li YY, Yang YF, Huang CC, Duan W, Yang M, Li PH, Huang XJ. Sensing Material-Dependent Interference of Multiple Heavy Metal Ions: Experimental and Simulated Thermodynamics Study on Cu(II), Cd(II), and As(III) Electroanalysis. Anal Chem 2022; 94:6225-6233. [PMID: 35404584 DOI: 10.1021/acs.analchem.1c05617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference among multiple heavy metal ions (HMIs) is a significant problem that must be solved in electroanalysis, which extremely restricts the practical popularization of electrochemical sensors. However, due to the limited exploration of the intrinsic mechanism, it is still difficult to confirm the influencing factors. In this work, a series of experimental and theoretical electroanalysis models have been established to investigate the electroanalysis results of Cu(II), Cd(II), As(III), and their mixtures, which were based on the simple structure and stable coordination of nickel single-atom catalysts. X-ray absorption spectroscopy and density functional theory calculations were used to reveal the underlying detection mechanism of the 50-fold boosting effect of Cu(II) on As(III) while Cd(II) inhibits As(III). Combining the application of the thermodynamic model and Fourier transform infrared reflection, the specific interaction of the nanomaterials and HMIs on the interface is considered to be the fundamental source of the interference. This work opens up a new way of thinking about utilizing the unique modes of interplay between nanomaterials and HMIs to achieve anti-interference intelligent electrodes in stripping analysis.
Collapse
Affiliation(s)
- Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Yu Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Cong-Cong Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wanchun Duan
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
A novel miniaturized electroanalytical device integrated with gas extraction for the voltammetric determination of sulfite in beverages. Anal Chim Acta 2021; 1185:339067. [PMID: 34711313 DOI: 10.1016/j.aca.2021.339067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Voltammetry and amperometry are inexpensive and high-performance analytical techniques. However, their lack of selectivity limits their use in complex matrices such as biological, environmental, and food samples. Therefore, voltammetric and amperometric analyses of these samples usually require time-consuming and laborious sample pretreatments. In this study, we present a simple and cost-effective approach to fabricate a miniaturized electrochemical cell that can be easily coupled to a head space-like gas extraction procedure in such a way the sample pretreatment and voltammetric detection are performed in a single step. As a proof of concept, we have used the proposed system to quantify sulfite in beverage samples after its conversion to SO2(g). Despite the simplicity and low cost of the proposed system, it provided good analytical performance and a limit of detection of 4.0 μmol L-1 was achieved after only 10 min of extraction. The proposed system is quite versatile since it can be applied to quantify any volatile electroactive species. Also, the proposed system provides a unique way to assess real-time extraction curves, which are essential to study and optimize new gas extraction procedures. Therefore, the approach described in this study could contribute to both applied and fundamental Analytical Chemistry.
Collapse
|
8
|
Ding Q, Li C, Wang H, Xu C, Kuang H. Electrochemical detection of heavy metal ions in water. Chem Commun (Camb) 2021; 57:7215-7231. [PMID: 34223844 DOI: 10.1039/d1cc00983d] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heavy metal ions are one of the main sources of water pollution. Most heavy metal ions are carcinogens that pose a threat to both ecological balance and human health. With the increasing demand for heavy metal detection, electrochemical detection is favorable due to its high sensitivity and efficiency. Here, after discussing the pollution sources and toxicities of Hg(ii), Cd(ii), As(iii), Pb(ii), UO2(ii), Tl(i), Cr(vi), Ag(i), and Cu(ii), we review a variety of recent electrochemical methods for detecting heavy metal ions. Compared with traditional methods, electrochemical methods are portable, fast, and cost-effective, and they can be adapted to various on-site inspection sites. Our review shows that the electrochemical detection of heavy metal ions is a very promising strategy that has attracted widespread attention and can be applied in agriculture, life science, clinical diagnosis, and analysis.
Collapse
Affiliation(s)
- Qi Ding
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
9
|
Fan Z, Zou J, Wang Q, Qiu L, Hu G, Song C, Chen J. Quantitative benefit and risk assessment of cadmium and nutrient levels in Chinese mitten crab (Eriocheir sinensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7322-7331. [PMID: 33026619 DOI: 10.1007/s11356-020-10977-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The use of Chinese mitten crabs for human consumption is controversial due to their uptake of heavy metals, such as cadmium (Cd). We developed a formula for quantification of benefit and risk assessment (hazard quotient) for the intake of a product containing essential polyunsaturated fatty acids versus heavy metals. A total of 70 samples (2100 individuals) of crabs were collected from 6 representative basins in Jiangsu province to determine Cd levels. Cd levels ranged from 0.028 to 5.015 mg kg-1, and the levels among the basin regions were similar (p > 0.05). To determine the nutritional differences between crabs fed with iced trash fish and formulated feed, we conducted a comparative aquaculture experiment. We simulated the cultivation conditions of crabs in China and found that the nutritional content in the trash fish group (28.724 ± 2.301 mg kg-1) was significantly higher than in the formulated food group (19.278 ± 3.556 mg kg-1; p < 0.05). The differences in the hazard quotient of benefit and risk balance between these two diets were not significant (p > 0.05). The average hazard quotient of iced trash fish feed culture was 0.023 ± 0.019, compared with the formulated feed culture (0.034 ± 0.028). Formulated feed and iced trash fish produce similar results as culture food for the Chinese mitten crab. In terms of cadmium exposure risk, the appropriate daily consumption of crabs is less than eight. These data can help justify culture using formulated food and the sustainable development of the Chinese mitten crab industry.
Collapse
Affiliation(s)
- Zihao Fan
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, People's Republic of China
| | - Jianmin Zou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China
| | - Qian Wang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China
| | - Chao Song
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, People's Republic of China.
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China.
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
| | - Jiazhang Chen
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, People's Republic of China.
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, People's Republic of China.
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Lin WF, Zhai WY, Yan Y, Liu YQ. Highly sensitive Pb2+ sensor based on rod-like poly-tyrosine/Bi modified glassy carbon electrode combined with electrodeposition to eliminate Cu2+ interference. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sun X, Zhang D, Zhao L, Shi B, Xiao J, Shi J, Zou X. Development of differential pulse voltammetric method for rapid quantification of total hydroxyl-sanshools in Sichuan Pepper. Lebensm Wiss Technol 2020; 130:109640. [DOI: 10.1016/j.lwt.2020.109640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Wu S, Li K, Dai X, Zhang Z, Ding F, Li S. An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Wu S, Li K, Zhang Z, Chen L. Synthesis of imprinted chitosan/AuNPs/graphene-coated MWCNTs/Nafion film for detection of lead ions. NEW J CHEM 2020. [DOI: 10.1039/d0nj02522d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An ultrasensitive electrochemical platform based on ion-imprinted nanocomposites for monitoring Pb2+ was proposed for environmental protection and food safety applications.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Kanghui Li
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Zihang Zhang
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
14
|
Lai CY, Weng JH, Shih WL, Chen LC, Chou CF, Wei PK. Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Zhihua L, Gong Y, Holmes M, Pan X, Xu Y, Zou X, Fernandes AR. Geospatial visualisation of food contaminant distributions: Polychlorinated naphthalenes (PCNs), potentially toxic elements (PTEs) and aflatoxins. CHEMOSPHERE 2019; 230:559-566. [PMID: 31125884 DOI: 10.1016/j.chemosphere.2019.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Large volume of multidimensional data can be summarised, both in terms of tabulated statistics, and as graphic geospatial visualisations. The latter approach allows rapid interpretation and communication of complex information to stake-holders such as regulators, risk assessors and policy makers. In the main study on polychlorinated naphthalene (PCN), individual samples representing different edible fish species were analysed from around the UK. PCNs were observed in all samples with nearly all of the twelve measured congeners being detected. Summed congener concentrations ranged from 0.7 ng/kg ww (turbot) to 265 ng/kg ww (sprats). The highest contamination levels were recorded for sprats and mackerel with mean summed concentrations of 67 ng/kg ww and 68 ng/kg ww respectively. Two ancillary studies, on potentially toxic elements (PTEs) in crabs from China and aflatoxin in children's blood from Tanzania, demonstrate the wide applicability of this approach. The PTE contents in crab showed strong dependence on the tested tissues and elements, and crabs from Tai and Yangcheng Lakes showed obviously higher PTE levels than the other lakes. Geospatial distribution of the aflatoxin biomarker AF-alb in children's serum from 3 locations showed how individual anthropometric or socio-economic data reveals the relationship between family size, socio-economic score and magnitude of serum aflatoxin levels. In addition to facilitating the flow of interpreted data to stakeholders, these techniques can direct the formulation of risk mitigation activities and help with the identification of data gaps. When combined with hierarchical cluster analyses, correlations within the data can also be predicted.
Collapse
Affiliation(s)
- Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Mel Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Xiaoxi Pan
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yiwei Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
16
|
Zhang W, Liu C, Zou X, Zhang H, Xu Y. A β-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01580-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Pizarro J, Segura R, Tapia D, Bollo S, Sierra‐Rosales P. Electroanalytical Determination of Cd(II) and Pb(II) in Bivalve Mollusks using Electrochemically Reduced Graphene Oxide‐based Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaime Pizarro
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Rodrigo Segura
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Diego Tapia
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Soledad Bollo
- Centro de Investigación de los Procesos Redox (CiPRex), Facultad de Ciencias Químicas y FarmacéuticasUniversidad de Chile, Sergio Livingstone Polhammer 1007 Independencia, Santiago Chile
| | - Paulina Sierra‐Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica Metropolitana, Ignacio Valdivieso 2409 P.O Box 8940577 San Joaquín, Santiago Chile
| |
Collapse
|
18
|
Lieu NT, Van Hoang C, Le PTT, Giang LT. Simultaneous determination of lead and cadmium in water samples using differential pulse anodic stripping voltammetry at platinum nanoflowers modified glassy electrode. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201960028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nguyen Thi Lieu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
- Department of Chemistry; Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh; Viet Nam
| | - Cao Van Hoang
- Department of Chemistry; Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh; Viet Nam
| | - Pham Thi Tuyet Le
- Department of Chemistry; Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh; Viet Nam
| | - Le Truong Giang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
- Institute of Chemistry; Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| |
Collapse
|
19
|
Wang H, Xu R, Chen H, Yuan Q. Synthesis of nitrogen and sulfur co-doped yolk-shell porous carbon microspheres and their application for Pb(II) detection in fish serum. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Bindewald EH, Schibelbain AF, Papi MA, Neiva EG, Zarbin AJ, Bergamini MF, Marcolino-Júnior LH. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Voltammetric cadmium(II) sensor based on a fluorine doped tin oxide electrode modified with polyamide 6/chitosan electrospun nanofibers and gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2082-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Khan MRR, Khalilian A, Kang SW. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. SENSORS 2016; 16:s16050668. [PMID: 27171095 PMCID: PMC4883359 DOI: 10.3390/s16050668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
Abstract
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds.
Collapse
Affiliation(s)
- Md Rajibur Rahaman Khan
- School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
| | - Alireza Khalilian
- School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
| | - Shin-Won Kang
- School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
| |
Collapse
|
23
|
Lee CY, Hsu NY, Wu MY, Lin YW. Microwave-assisted synthesis of BSA-stabilised gold nanoclusters for the sensitive and selective detection of lead(ii) and melamine in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra16043c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MW-assisted synthesis of fluorescent BSA-AuNCs for the turn-off sensing of Pb(ii) and turn-on sensing of melamine.
Collapse
Affiliation(s)
- Che-Yu Lee
- Department of Chemistry
- National Changhua University of Education
- Changhua City
- Taiwan
| | - Nai-Yueh Hsu
- Department of Chemistry
- National Changhua University of Education
- Changhua City
- Taiwan
| | - Mei-Yao Wu
- Research Center for Traditional Chinese Medicine
- Department of Medical Research
- China Medical University Hospital
- Taichung City
- Taiwan
| | - Yang-Wei Lin
- Department of Chemistry
- National Changhua University of Education
- Changhua City
- Taiwan
| |
Collapse
|