1
|
Chai X, Pan F, Wang Q, Wang X, Li X, Qi D, Yi Z, Liu H, Zhang J, Zhang Y, Pan Y, Liu Y, Wang G. Identification, screening, and comprehensive evaluation of novel thrombin inhibitory peptides from the hirudo produced using pepsin. Front Pharmacol 2024; 15:1460053. [PMID: 39640485 PMCID: PMC11617586 DOI: 10.3389/fphar.2024.1460053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose The inhibition of thrombin has proven to be an efficacious therapeutic approach for managing cardiovascular disease (CVD), with widespread implementation in clinical settings. Oral ingestion of peptides and protein drugs is influenced by gastrointestinal digestive enzymes. We aimed to evaluate the thrombin inhibitory properties of hirudo hydrolysates (HHS) produced by pepsin and propose a comprehensive approach to screen and evaluate thrombin inhibitors. Methods We evaluated the in vitro inhibitory properties of the hirudo extract, both before and after hydrolysis with pepsin, toward thrombin. We screened for the most potent thrombin inhibitory peptide (TIP) using nano liquid chromatography-tandem mass spectrometry (Nano LC-MS/MS) coupled with in silico analysis. Next, we employed the thrombin inhibition activity IC50 to investigate the interaction between TIP and thrombin, and conducted in vitro evaluations of its anticoagulant effects (APTT, TT, PT), as well as its ability to inhibit platelet aggregation. Furthermore, we utilized UV-Vis spectroscopy to explore structural changes in thrombin upon binding with TIP and employed molecular dynamics simulations to delve deeper into the potential atomic-level interaction modes between thrombin and TIP. Results The retention rate of thrombin inhibition for HHS was found to be between 60% and 75%. A total of 90 peptides from the HHS were identified using LC-MS/MS combined with de novo sequencing. Asn-Asp-Leu-Trp-Asp-Gln-Gly-Leu-Val-Ser-Gln-Asp-Leu (NDLWDQGLVSQDL, P1) was identified as the most potent thrombin inhibitory peptide after in silico screening (molecular docking and ADMET). Then, the in vitro study revealed that P1 had a high inhibitory effect on thrombin (IC50: 2,425.5 ± 109.7 μM). P1 exhibited a dose-dependent prolongation of the thrombin time (TT) and a reduction in platelet aggregation rate. Both UV-Vis spectroscopy and molecular dynamics simulations demonstrated that P1 binds effectively to thrombin. Conclusion Overall, the results suggested that HHS provides new insights for searching and evaluating potential antithrombotic compounds. The obtained P1 can be structurally optimized for in-depth evaluation in animal and cellular experiments.
Collapse
Affiliation(s)
- Xiaoyu Chai
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fulu Pan
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Wang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zirong Yi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, China
| |
Collapse
|
2
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
4
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Hariharan S, Patti A, Arora A. Functional Proteins from Biovalorization of Peanut Meal: Advances in Process Technology and Applications. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:13-24. [PMID: 36650319 DOI: 10.1007/s11130-022-01040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.
Collapse
Affiliation(s)
- Subramoni Hariharan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Antonio Patti
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amit Arora
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
6
|
Huang Y, Dong Y, Ding X, Ning Z, Shen J, Chen H, Su Z. Effect of Nano-TiO 2 Composite on the Fertilization and Fruit-Setting of Litchi. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4287. [PMID: 36500909 PMCID: PMC9739952 DOI: 10.3390/nano12234287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (nTiO2) are widely used as fertilizers in agricultural production because they promote photosynthesis and strong adhesion. Low pollination and fertilization due to rainy weather during the litchi plant's flowering phase result in poor fruit quality and output. nTiO2 would affect litchi during the flowering and fruiting stages. This study considers how nTiO2 affects litchi's fruit quality and pollen viability during the flowering stage. The effects of nTiO2 treatment on pollen vigor, yield, and fruit quality were investigated. nTiO2 effectively improved the pollen germination rate and pollen tube length of litchi male flowers. The germination rate reached 22.31 ± 1.70%, and the pollen tube reached 237.66 μm in the 450 mg/L reagent-treated group. Spraying with 150 mg/L of nTiO2 increased the germination rate of pollen by 2.67% and 3.67% for two types of male flowers (M1 and M2) of anthesis, respectively. After nTiO2 spraying, the fruit set rates of 'Guiwei' and 'Nomici' were 46.68% and 30.33%, respectively, higher than those of the boric acid treatment group and the control group. The edibility rate, titration calculation, and vitamin C of nTiO2 treatment were significantly higher than those of the control. The nTiO2-treated litchi fruit was more vividly colored. Meanwhile, the adhesion of nTiO2 to leaves was effectively optimized by using ATP and BCS to form nTiO2 carriers and configuring nTiO2 complex reagents. These results set the foundation for future applications of titanium dioxide nanoparticles as fertilizers for agriculture and guide their application to flowers and fruits.
Collapse
Affiliation(s)
- Yue Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Yusi Dong
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Xiaobo Ding
- Luzhou Academy of Agricultural Sciences, Luzhou 646000, China
| | - Zhenchen Ning
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jiyuan Shen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture and Science, Maoming 525000, China
| | - Houbin Chen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture and Science, Maoming 525000, China
| | - Zuanxian Su
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture and Science, Maoming 525000, China
| |
Collapse
|
7
|
Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Toxins (Basel) 2022; 14:toxins14100722. [PMID: 36287990 PMCID: PMC9607450 DOI: 10.3390/toxins14100722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
The skin of amphibians is a tissue with biological functions, such as defense, respiration, and excretion. In recent years, researchers have discovered a large number of peptides in the skin secretions of amphibians, including antimicrobial peptides, antioxidant peptides, bradykinins, insulin-releasing peptides, and other peptides. This review focuses on the origin, primary structure, secondary structure, length, and functions of peptides secreted from amphibians' skin. We hope that this review will provide further information and promote the further study of amphibian skin secretions, in order to provide reference for expanding the research and application of amphibian bioactive peptides.
Collapse
|
8
|
Salekeen R, Haider AN, Akhter F, Billah MM, Islam ME, Didarul Islam KM. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200143. [PMID: 36060286 PMCID: PMC9434419 DOI: 10.1016/j.ijcrp.2022.200143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
A marked increase in the global prevalence of ischemic heart disease demands focused research for novel and more effective therapeutic strategies. At present, atherosclerotic cardiovascular disease (ACVD) is the leading cause of the global incidence of heart attacks and a major contributor to many peripheral cardiac diseases. Decades of research have unearthed the complex and multidimensional pathophysiology of ACVD encompassing oxidative stress, redox imbalance, lipid peroxidation, pro-inflammatory signaling, hyperglycemic stress and diabetes mellitus, chronic low-grade inflammation and aging, immune dysregulation, vascular dysfunction, loss of hemostasis, thrombosis, and fluid shear stress. However, the scientific basis of therapeutic interventions using conventional understandings of the disease mechanisms has been subject to renewed scrutiny with novel findings in recent years. This critical review attempts to revise the pathophysiological mechanisms of atherosclerosis using a recent body of literature, with a focus on lipid metabolism and associated cellular and biochemical processes. The comprehensive study encompasses different molecular perspectives in the development and progression of coronary atherosclerosis. The review also summarizes currently prescribed small molecule therapeutics in inflammation and ACVD, and overviews prospective management measures under development including peptides and microRNA therapeutics. The study provides updated insights into the current knowledge of coronary atherosclerosis, and highlights the need for effective prevention, management and development of novel intervention approaches to overcome this chronic epidemic.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Abu Nasim Haider
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Fouzia Akhter
- Khulna Medical College Hospital, Khulna, 9000, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
9
|
Huang X, Zheng C, Ding K, Li M, Zhang S, Wu B, Wei Q, Lei Y, Wang Y. Hyaluronic Acid-Grafted Bioprosthetic Heart Valves Achieved by Copolymerization Exhibited Improved Anticalcification and Antithrombogenicity. ACS Biomater Sci Eng 2022; 8:3399-3410. [PMID: 35839344 DOI: 10.1021/acsbiomaterials.2c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioprosthetic heart valves (BHVs) are widely used in clinic, but they still have problems of calcification, thrombogenicity, and cytotoxicity. The reported techniques based on glutaraldehyde (Glut) crosslinking have difficulty in solving these problems simultaneously. In this study, we grafted Glut-crosslinked porcine pericardium (GA) with hyaluronic acid (HA) by radical copolymerization to improve its anticalcification and antithrombotic properties. Partially methacrylated poly-ε-lysine was used to introduce methacryl groups into GA. Then, HA-grafted porcine pericardium (GA-HA) was obtained by radical copolymerization. Rat's subcutaneous implantation results showed that the calcium content of GA-HA was significantly lower than that of GA (37 ± 29 μg/mg vs 188 ± 7 μg/mg), and the platelets adhering to the surface of GA-HA decreased by approximately 41% compared with GA. In conclusion, grafting porcine pericardium with HA by copolymerization might be feasible to improve the anticalcification and antithrombotic properties of BHVs.
Collapse
Affiliation(s)
- Xueyu Huang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Shumang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Binggang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.,Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041 P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022; 13:3133-3158. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.
Collapse
Affiliation(s)
- Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, USA
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Rendón-Rosales MÁ, Torres-Llanez MJ, Mazorra-Manzano MA, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Jiang YS, Zhang SB, Zhang SY, Peng YX. Comparative study of high‐intensity ultrasound and high‐pressure homogenization on physicochemical properties of peanut protein‐stabilized emulsions and emulsion gels. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Shan Jiang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shao Bing Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shu Yan Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Yun Xuan Peng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| |
Collapse
|
13
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217432] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The food industry generates a large amount of waste every year, which opens up a research field aimed at minimizing and efficiently managing this issue to support the concept of zero waste. From the extraction process of oilseeds results oil cakes. These residues are a source of bioactive compounds (protein, dietary fiber, antioxidants) with beneficial properties for health, that can be used in foods, cosmetics, textile, and pharmaceutical industries. They can also serve as substrates for the production of enzymes, antibiotics, biosurfactants, and mushrooms. Other applications are in animal feedstuff and for composites, bio-fuel, and films production. This review discusses the importance of oilseed and possible valorization methods for the residues obtained in the oil industry.
Collapse
|
15
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
17
|
Cheng S, Tu M, Liu H, An Y, Du M, Zhu B. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chem 2020; 334:127507. [PMID: 32688180 DOI: 10.1016/j.foodchem.2020.127507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
A novel food-derived anticoagulant heptapeptides (P-3-CG) was isolated and characterized from oyster (Crassostrea gigas) pepsin hydrolysate. P-3-CG competed with fibrinogen against thrombin active domain by a spontaneous and exothermic reaction which was entropically driven. The residue Lys7 of P-3-CG anchored thrombin S1 pocket strongly, which inhibited fibrinogen binding to the thrombin, then blocked the conversion of fibrinogen to fibrin. The fibrinogen clotting time was prolonged to 27.55 s, and the reciprocally authenticated results of dynamic light scattering and scanning electron microscope further explained for fibrinogen clotting time extension. Inhibition of amidolytic activity of thrombin was affected significantly by reaction time and P-3-CG concentration. Furthermore, P-3-CG prolonged activated partial thromboplastin time significantly in vitro/vivo, and decreased the mortality which was confirmed by pulmonary pathological slide results. The obtained results demonstrated that P-3-CG may potentially serve as an alternative food-derived anticoagulant peptide that could be utilized for thrombosis prevention.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yue An
- Clinical Laboratory, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, Liaoning, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
18
|
Marson GV, de Castro RJS, Belleville MP, Hubinger MD. Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J Microbiol Biotechnol 2020; 36:95. [PMID: 32583032 DOI: 10.1007/s11274-020-02866-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Development of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer's yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of. SBY cells need to be disrupted to release intracellular and cell wall proteins. This procedure has been performed using autolysis, glass bead milling, enzymatic hydrolysis and ultrasound processing. Enzymatic treatment is usually performed without prior purification and is a challenging process, which involves multiple factors, but has been successfully used as a strategy to add value to agro-industrial by-products. Scope and approach: in this review, we particularly focused on enzymatic hydrolysis as a strategy to promote SBY valorisation, illustrating the state-of-the-art processes used to produce protein extracts from this material as well as exploring fundamental concepts related to the particularities of yeast cell disruption and protein hydrolysis. Furthermore, innovative applications of value-added yeast by-products in food, biotechnological and pharmaceutical industries are presented and discussed. Key findings and conclusions: the discovery of valuable compounds found in spent yeasts as well as the development of new processing methodologies have been widening the possibilities of reuse and transformation of SBY as an ingredient and innovative matrix. Once released, yeast proteins and peptides may be applied as an innovative non-animal protein source or a functional and bioactive ingredient.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France. .,Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, Université de Montpellier, CNRS, ENSCM, UM, CC 047, 2 Place Eugène Bataillon, 34095, Montpellier, France
| | - Miriam Dupas Hubinger
- Laboratory of Process Engineering, Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
19
|
Pérez-Escalante E, Cruz-Guerrero AE, Álvarez-Romero GA, Mendoza-Huizar LH, Flores-Aguilar JF, González-Olivares LG. Urea as the best fibrin solubilizer in the thrombin inhibition analysis: Theoretical and experimental modeling of fibrinogen denaturation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Huang Q, Gao Q, Chai X, Ren W, Zhang G, Kong Y, Zhang Y, Gao J, Lei X, Ma L. A novel thrombin inhibitory peptide discovered from leech using affinity chromatography combined with ultra-high performance liquid chromatography-high resolution mass spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122153. [PMID: 32512533 DOI: 10.1016/j.jchromb.2020.122153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
Thrombin (THR) inhibitors play an important role in the treatment of thrombotic diseases. This study established a THR-based bio-specific extraction coupled with affinity chromatography and ultra-high performance liquid chromatography-high resolution mass spectroscopy (UPLC-HR-MS) analysis method to screen and identify THR ligands in Leech. After evaluating the reliability of the screening method using positive control drug (hirudin), it was successfully used to screen the potential active constituents in leech. And a comprehensive analysis of the peptides in leech elution was performed by UPLC-HR-MS, a total of 34 peptides were identified. At the same time, anti-THR activity was explored and inferred by searching databases and published literature. As a result, six peptides were discovered to be potential active compounds in leech. Further, the six peptides were synthesized and in vitro enzymatic activity assay was performed. Finally, SYELPDGQVITIGNER was screened as an anti-THR peptide with an IC50 value of 255.75 µM and it was discovered for the first time from Whitmania pigra Whitman and Hirudo nipponica Whitman. The molecular docking study showed that THR inhibitory activity of the polypeptide was mainly attributed to the hydrogen bond interactions, van der Waals forces and electrostatic interactions interaction between polypeptide and THR. These results suggest that the polypeptide is a potential natural THR inhibitor that can be used as anticoagulant.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qian Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiongxin Lei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Liu H, Tu M, Cheng S, Xu Z, Xu X, Du M. Anticoagulant Decapeptide Interacts with Thrombin at the Active Site and Exosite-I. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:176-184. [PMID: 31850760 DOI: 10.1021/acs.jafc.9b06450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin can be used as a target for its inhibitors to prevent blood coagulation. A novel peptide (TKLTEEEKNR, PfCN) identified from αS2-casein (fragments 211-220) with high anticoagulant activity was screened and prepared. The activated partial thromboplastin time, prothrombin time, and thrombin time, at the concentration of 4 mM, prolonged about 19, 2.5 and 5.5 s, respectively. At the same concentration, the fibrinogen clotting time prolonged from 25.5 ± 0.7 to 38.3 ± 1.3 s. The thrombin inhibitory efficiency in vitro (IC50 value of 29.27 mM) and antithrombosis effect in vivo were determined. The secondary structure of thrombin, which was influenced by PfCN, indicates that PfCN can bind to thrombin. Isothermal titration calorimetry and the chromogenic substrate test showed that PfCN belongs to the bivalent thrombin inhibitor like bivalirudin. Although the effect was not as good as bivalirudin, in the animal experiment, bleeding occurred in the bivalirudin group but not in the PfCN group. Moreover, molecular docking illustrates the mechanism for the antithrombin activity of PfCN. These results indicated that PfCN could be used as an effective thrombin inhibitor with broad potential for the prevention of thrombotic acute pulmonary embolism and other thrombotic events.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - ShuZhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing , Dalian Polytechnic University , Dalian 116034 , China
| |
Collapse
|
22
|
Liu H, Cheng S, Wang Z, Du M. Evaluation and Improvement of in vitro Detection Methods of Thrombin Inhibitor Activity. EFOOD 2020. [DOI: 10.2991/efood.k.201002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Chen F, Huang G. Mechanism and inhibition kinetics of peptide P13 as thrombin inhibitor. Int J Biol Macromol 2019; 150:1046-1052. [PMID: 31743711 DOI: 10.1016/j.ijbiomac.2019.10.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Excessive coagulation can easily lead to arterial and venous thrombosis, which is the main reason for the evolution of myocardial infarction and cerebrovascular accidents. As a key coagulation factor for the coagulation pathway, thrombin has become a remarkable target for the control of thrombosis. The synthesized peptide P13 with amino acid sequence of N-RGDAGFAGDDAPR was expected to be an inhibitor with higher antithrombotic activity. The results showed that the IC50 (50% inhibition of thrombin activity) of the peptide P13 was determined by colorimetric method to be 115 µM. And enzyme kinetic experiments showed that P13 was a competitive inhibitor of thrombin with Ki = 106 µM. Fluorescence spectra and three-dimensional fluorescence showed that P13 could alter the secondary structure of thrombin and the microenvironment of certain chromogenic amino acids. P13 can spontaneously bind with thrombin exosite 1 in the form of 1:1 mainly through hydrogen bonding and van der Waals force. And the optimal docking mode of P13 and thrombin was revealed by molecular docking with "-CDOCKER_Energy" of 178.679 kcal mol-1. This study revealed P13 may become a potential anticoagulant drug widely used after further studies in preclinical and clinical trials.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Guangrong Huang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
24
|
Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03381-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Ayala-Niño A, Rodríguez-Serrano GM, González-Olivares LG, Contreras-López E, Regal-López P, Cepeda-Saez A. Sequence Identification of Bioactive Peptides from Amaranth Seed Proteins ( Amaranthus hypochondriacus spp.). Molecules 2019; 24:E3033. [PMID: 31438557 PMCID: PMC6749583 DOI: 10.3390/molecules24173033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 01/07/2023] Open
Abstract
Amaranthus hypochondriacus spp. is a commonly grown cereal in Latin America, known for its high protein content. The objective of this study was to separate and identify bioactive peptides found in amaranth seeds through enzymatically-assisted hydrolysis using alcalase and flavourzyme. Hydrolysis was carried out for each enzyme separately and compared to two-step continuous process where both enzymes were combined. The biological activity of the resulting three hydrolysates was analyzed, finding, in general, higher bioactive potential of the hydrolysate obtained in a continuous process (combined enzymes). Its fractions were separated by RP-HPLC, and their bioactivity was analyzed. In particular, two fractions showed the highest biological activity as ACE inhibitors with IC50 at 0.158 and 0.134, thrombin inhibitors with IC50 of 167 and 155, and antioxidants in ABTS assay with SC50 at 1.375 and 0.992 mg/L, respectively. Further sequence analysis of the bioactive peptides was carried out using MALDI-TOF, which identified amino acid chains that have not been reported as bioactive so far. Bibliographic survey allowed identification of similarities between peptides reported in amaranth and other proteins. In conclusion, amaranth proteins are a potential source of peptides with multifunctional activity.
Collapse
Affiliation(s)
- Alexis Ayala-Niño
- Chemistry Investigation Center, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma Hidalgo C.P. 46067, Mexico
| | | | - Luis Guillermo González-Olivares
- Chemistry Investigation Center, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma Hidalgo C.P. 46067, Mexico.
| | - Elizabeth Contreras-López
- Chemistry Investigation Center, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma Hidalgo C.P. 46067, Mexico
| | - Patricia Regal-López
- Universidad de Santiago de Compostela, Campus Lugo, 15705 Santiago de Compostela, 27002 A Coruña, Spain
| | - Alberto Cepeda-Saez
- Universidad de Santiago de Compostela, Campus Lugo, 15705 Santiago de Compostela, 27002 A Coruña, Spain
| |
Collapse
|
26
|
Zhang Y, Sun Q, Li Z, Wang H, Li J, Wan X. Fermented soybean powder containing Bacillus subtilis SJLH001 protects against obesity in mice by improving transport function and inhibiting angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Chen F, Jiang H, Chen W, Huang G. Interaction of the synthetic antithrombotic peptide P10 with thrombin: a spectroscopy study. RSC Adv 2019; 9:18498-18505. [PMID: 35515240 PMCID: PMC9064813 DOI: 10.1039/c9ra02994j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/29/2019] [Indexed: 11/21/2022] Open
Abstract
Thrombin is a critical serine protease in the coagulation system and is widely used as a target protein for antithrombotics. Spectroscopic analysis is a simple and effective method that is used to study the interaction between small molecules and proteins. In this study, the interactions of a potential antithrombotic peptide AGFAGDDAPR (P10) with thrombin were investigated by fluorescence spectroscopy, UV-vis spectroscopy, circular dichroism, Fourier-transform infrared spectroscopy and Raman spectroscopy, respectively. The results showed that the peptide P10 bonded to thrombin via hydrogen bonding and van der Waals forces, resulting in fluorescence quenching. And, the secondary structure of thrombin changed, the β-sheet decreased, and the random coil increased. The peptide P10 bonded to proline and lysine, and changed the space structure of thrombin, resulting in inhibition of thrombin activity. The results contributed to exploration of the mechanism of this potential antithrombotic drug interaction with thrombin in order to provide a preliminary understanding of the pharmacodynamic properties of P10.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Han Jiang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Wenwei Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Guangrong Huang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| |
Collapse
|
28
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
29
|
Hahn D, Bae JS. Recent Progress in the Discovery of Bioactive Components from Edible Natural Sources with Antithrombotic Activity. J Med Food 2019; 22:109-120. [DOI: 10.1089/jmf.2018.4268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
30
|
Liu H, Tu M, Cheng S, Chen H, Wang Z, Du M. An anticoagulant peptide from beta-casein: identification, structure and molecular mechanism. Food Funct 2019; 10:886-892. [DOI: 10.1039/c8fo02235f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bioactive peptide is identified from casein hydrolysates.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Maolin Tu
- Department of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Shuzhen Cheng
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Zhenyu Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Ming Du
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| |
Collapse
|
31
|
Abd El-Fattah A, Sakr S, El-Dieb S, Elkashef H. Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Origone A, Bersi G, Illanes A, Sturniolo H, Liggieri C, Guzmán F, Barberis S. Enzymatic and chemical synthesis of new anticoagulant peptides. Biotechnol Prog 2018; 34:1093-1101. [PMID: 29882241 DOI: 10.1002/btpr.2658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 04/10/2018] [Indexed: 12/29/2022]
Abstract
In this study we report the enzymatic synthesis of N-α-[Carbobenzyloxy]-Tyr-Gln-Gln (Z-YQQ), a new anticoagulant tripeptide. It was obtained using phytoproteases from the stems and petioles of Asclepias curassavica L. as catalyst in an aqueous-organic biphasic system formed by 50% (v/v) ethyl acetate and 0.1 M Tris-HCl buffer pH 8. The resulting peptide was compared with the analogous peptide Tyr-Gln-Gln (YQQ) produced by solid-phase chemical synthesis. The in vitro anticoagulant activity of the aforementioned peptides was determined using Wiener Lab Test (Wiener, Argentina). The toxicological activity of the peptides was also determined. The enzymatically synthesized Z-YQQ peptide acted on the extrinsic pathway of the coagulation cascade, delaying the conversion time of prothrombin to thrombin and fibrinogen to fibrin by 136 and 50%, respectively, with respect to the controls. The chemically synthesized YQQ peptide acted specifically on the intrinsic pathway of the coagulation cascade, affecting factors VIII, IX, XI, and XII from such cascade, and increasing the coagulation time by 105% with respect to the control. The results suggest that two new anticoagulant peptides (Z-YQQ and YQQ) can be useful for safe pharmaceutical applications. Nevertheless, some aspects related to peptide production should be optimized. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1093-1101, 2018.
Collapse
Affiliation(s)
- Anabella Origone
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, 917 (5700) San Luis, Argentina.,INFAP-CCT San Luis-CONICET, Avenida Ejército los Andes 950, (5700) San Luis, Argentina
| | - Grisel Bersi
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, 917 (5700) San Luis, Argentina.,INFAP-CCT San Luis-CONICET, Avenida Ejército los Andes 950, (5700) San Luis, Argentina
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Héctor Sturniolo
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, 917 (5700) San Luis, Argentina
| | - Constanza Liggieri
- Centro de Investigación de Proteínas Vegetales (CIProVe), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 711 (1900), La Plata, Argentina
| | - Fanny Guzmán
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, , Chile
| | - Sonia Barberis
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, 917 (5700) San Luis, Argentina.,INFAP-CCT San Luis-CONICET, Avenida Ejército los Andes 950, (5700) San Luis, Argentina
| |
Collapse
|
33
|
Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
|
35
|
Abd El-Fattah A, Sakr S, El-Dieb SM, Elkashef H. Biological activities of lactobacilli relevant to cardiovascular health in skim milk. Food Sci Biotechnol 2017; 26:1613-1623. [PMID: 30263698 DOI: 10.1007/s10068-017-0219-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/15/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, skim milk was fermented using 14 Lactobacillus strains for 16 h at 42 °C or for 48 h at 25 °C. On conclusion of fermentation, the proteolytic, angiotensin converting enzyme-inhibitory (ACE-I), and antioxidant activities as well as the inhibition of thrombin and cholesterol micellar solubility were determined. The results revealed that Lb. paracasei B-4564 exhibited the highest ACE-I activity (68.11%) under the 42 °C for 16 h condition, while Lb. rhamnosus B-1445 demonstrated the highest ACE-I activity (92.23%) under the 25 °C for 48 h condition. Lb. paracasei B-4564 exhibited the highest inhibition rate of thrombin (42.43 and 48.10%) and cholesterol (68.60 and 87.01%) under the 42 °C for 16 h and 25 °C for 48 h conditions, receptively. Lb. rhamnosus B-442 exhibited the highest DPPH radical scavenging activity of 95.63 and 62.89% under the 42 °C for 16 h and 25 °C for 48 h conditions, receptively. Lb. rhamnosus B-1445 demonstrated the highest Fe2+ chelating activity and reducing power under both the tested fermentation conditions.
Collapse
Affiliation(s)
- Alaa Abd El-Fattah
- Dairy Science Department, Faculty of Agriculture, Cairo University, PO Box 12613, Giza, Egypt
| | - Sally Sakr
- Dairy Science Department, Faculty of Agriculture, Cairo University, PO Box 12613, Giza, Egypt
| | - Samia Mahmoud El-Dieb
- Dairy Science Department, Faculty of Agriculture, Cairo University, PO Box 12613, Giza, Egypt
| | - Hany Elkashef
- Dairy Science Department, Faculty of Agriculture, Cairo University, PO Box 12613, Giza, Egypt
| |
Collapse
|
36
|
Bio-enrichment of functional properties of peanut oil cakes by solid state fermentation using Aspergillus oryzae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9675-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Sadh PK, Chawla P, Bhandari L, Kaushik R, Duhan JS. In vitro assessment of bio-augmented minerals from peanut oil cakes fermented by Aspergillus oryzae through Caco-2 cells. Journal of Food Science and Technology 2017; 54:3640-3649. [PMID: 29051659 DOI: 10.1007/s13197-017-2825-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/29/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023]
Abstract
Present study was carried out to assess the significances of solid state fermentation of peanut oil cakes (POC) by Aspergillus oryzae on in vitro bioavailability of minerals (iron, zinc and calcium) and cellular transport, retention and uptake from POC through Caco-2 cells. Bioavailability of iron, zinc and calcium of POC was examined by means of a combined simulated gastrointestinal digestion/Caco-2 cell system. Bio-augmentation of minerals of fermented POC attributed a positive, statistically significant increased influence on minerals retention, transport and uptake values when compared with that of respective inorganic salts as reference. Results revealed increased cellular ferritin content from fermented POC digests than the digests of free form of respective inorganic salt. In prospect of the present investigation the fermented POC samples showed significantly higher iron, zinc and calcium bioavailability and enormous possible health benefits.
Collapse
Affiliation(s)
- Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125 055 India
| | - Prince Chawla
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173 212 India
| | - Latika Bhandari
- Dairy Technology Division, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Ravinder Kaushik
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173 212 India
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125 055 India
| |
Collapse
|
38
|
Tu M, Feng L, Wang Z, Qiao M, Shahidi F, Lu W, Du M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 81:109-159. [PMID: 28317603 DOI: 10.1016/bs.afnr.2016.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits.
Collapse
Affiliation(s)
- M Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| |
Collapse
|