1
|
Min CW, Gupta R, Jung JY, Rakwal R, Kang JW, Cho JH, Jeon JS, Kim ST. Comparative Proteome-wide Characterization of Three Different Tissues of High-Protein Mutant and Wild Type Unravels Protein Accumulation Mechanisms in Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12357-12367. [PMID: 37549031 DOI: 10.1021/acs.jafc.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Ju-Young Jung
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea
| | - Jun-Hyeon Cho
- Sangju Substation, National Institute of Crop Science, Rural Development Administration (RDA), Sangju 37139, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Hu J, Bettembourg M, Moreno S, Zhang A, Schnürer A, Sun C, Sundström J, Jin Y. Characterisation of a low methane emission rice cultivar suitable for cultivation in high latitude light and temperature conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92950-92962. [PMID: 37501024 PMCID: PMC10447601 DOI: 10.1007/s11356-023-28985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32° N) and Sweden (lat. 59° N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies.
Collapse
Affiliation(s)
- Jia Hu
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Mathilde Bettembourg
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Silvana Moreno
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Jens Sundström
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Yunkai Jin
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden.
| |
Collapse
|
3
|
Fei J, Wang YS, Cheng H, Sun FL, Sun CC. Comparative physiological and proteomic analyses of mangrove plant Kandelia obovata under cold stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1826-1840. [PMID: 34618290 DOI: 10.1007/s10646-021-02483-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Cold events had broadly affected the survival and geographic distribution of mangrove plants. Kandelia obovata, has an excellent cold tolerance as a true halophyte and widespread mangrove species. In this study, physiological characters and comparative proteomics of leaves of K. obovata were performed under cold treatment. The physiological analysis showed that K. obovata could alleviate its cold-stress injuries through increasing the levels of antioxidants, the activities of related enzymes, as well as osmotic regulation substances (proline). It was detected 184 differentially expressed protein spots, and of 129 (70.11%) spots were identified. These proteins have been involved in several pathways such as the stress and defense, photosynthesis and photorespiration, signal transduction, transcription factors, protein biosynthesis and degradation, molecular chaperones, ATP synthesis, the tricarboxylic acid (TCA) cycle and primary metabolisms. The protein post-translational modification may be a common phenomenon and plays a key role in cold-response process in K. obovata. According to our precious work, a schematic diagram was drawn for the resistance or adaptation strategy of mangrove plants under cold stress. This study provided valuable information to understand the mechanism of cold tolerance of K. obovata.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| |
Collapse
|
4
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zhao X, Wen B, Li C, Tan Q, Liu L, Chen X, Li L, Fu X. Overexpression of the Peach Transcription Factor Early Bud-Break 1 Leads to More Branches in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:681283. [PMID: 34220902 PMCID: PMC8247907 DOI: 10.3389/fpls.2021.681283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is an important adaptive trait that determines plant architecture. In a previous study, the Early bud-break 1 (EBB1) gene in peach (Prunus persica var. nectarina) cultivar Zhongyou 4 was transformed into poplar (Populus trichocarpa). PpEBB1-oe poplar showed a more branched phenotype. To understand the potential mechanisms underlying the EBB1-mediated branching, transcriptomic and proteomics analyses were used. The results showed that a large number of differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with light response, sugars, brassinosteroids (BR), and nitrogen metabolism were significantly enriched in PpEBB1-oe poplar. In addition, contents of sugars, BR, and amino acids were measured. Results showed that PpEBB1 significantly promoted the accumulation of fructose, glucose, sucrose, trehalose, and starch. Contents of brassinolide (BL), castasterone (CS), and 6-deoxocathasterone (6-deoxoCS) were all significantly changed with overexpressing PpEBB1. Various types of amino acids were measured and four of them were significantly improved in PpEBB1-oe poplar, including aspartic acid (Asp), arginine (Arg), cysteine (Cys), and tryptohpan (Trp). Taken together, shoot branching is a process controlled by a complex regulatory network, and PpEBB1 may play important roles in this process through the coordinating multiple metabolic pathways involved in shoot branching, including light response, phytohormones, sugars, and nitrogen.
Collapse
Affiliation(s)
- Xuehui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Chen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Li Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- Ling Li,
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Tai’an, China
- *Correspondence: Xiling Fu,
| |
Collapse
|
6
|
Tan Y, Yang X, Pei M, Xu X, Wang C, Liu X. A genome-wide survey of interaction between rice and Magnaporthe oryzae via microarray analysis. Bioengineered 2020; 12:108-116. [PMID: 33356807 PMCID: PMC8806351 DOI: 10.1080/21655979.2020.1860479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The main aim of the work is to study the regulation of gene expression in the interaction between rice and Magnaporthe oryzae by gene chip technology. In this study, we mainly focused on changes of gene expression at 24, 48, and 72 hours post-inoculation (hpi), through which we could conduct a more comprehensive analysis of rice blast-related genes in the process of infection. The results showed that the experimental groups contained 460, 1227, and 3937 significant differentially expressed genes at 24, 48, and 72 hpi, respectively. Furthermore, 115 significantly differentially expressed genes were identified in response to rice blast infection at all three time points. By annotating these 115 genes, they were divided into three categories: metabolic pathways, proteins or enzymes, and organelle components. As expected, many of these genes were known rice blast-related genes; however, we discovered new genes with high fold changes. Most of them encoded conserved hypothetical proteins, and some were hypothetically conserved genes. Our study may contribute to finding new resistance genes and understanding the mechanism of rice blast development.
Collapse
Affiliation(s)
- Yanping Tan
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xiaolin Yang
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences , Wuhan, China
| | - Minghao Pei
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xin Xu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Chuntai Wang
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xinqiong Liu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| |
Collapse
|
7
|
Zhang X, Zhang R, Li L, Yang Y, Ding Y, Guan H, Wang X, Zhang A, Wen H. Negligible transcriptome and metabolome alterations in RNAi insecticidal maize against Monolepta hieroglyphica. PLANT CELL REPORTS 2020; 39:1539-1547. [PMID: 32869121 PMCID: PMC7554010 DOI: 10.1007/s00299-020-02582-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 06/01/2023]
Abstract
RNAi-based genetically modified maize resistant to Monolepta hieroglyphica (Motschulsky) was demonstrated with negligible transcriptome and metabolome alterations compared to its unmodified equivalent. As one of the most prevalent insect pests afflicting various crops, Monolepta hieroglyphica (Motschulsky) causes severe loss of agricultural and economic productivity for many years in China. In an effort to reduce damages, in this study, an RNA interference (RNAi)-based genetically modified (GM) maize was developed. It was engineered to produce MhSnf7 double-stranded RNAs (dsRNAs), which can suppress the Snf7 gene expression and then lead M. hieroglyphica to death. Field trail analysis confirmed the robustly insecticidal ability of the MhSnf7 GM maize to resist damages by M. hieroglyphica. RNA sequencing analysis identified that only one gene was differentially expressed in the MhSnf7 GM maize compared to non-GM maize, indicating that the transcriptome in MhSnf7 GM maize is principally unaffected by the introduction of the MhSnf7 dsRNA expression vector. Likewise, metabolomics analysis identified that only 8 out of 5787 metabolites were significantly changed. Hence, the integration of transcriptomics and metabolomics demonstrates that there are negligible differences between MhSnf7 GM maize and its unmodified equivalent. This study not only presents a comprehensive assessment of cellular alteration in terms of gene transcription and metabolite abundance in RNAi-based GM maize, but also could be used as a reference for evaluating the unintended effect of GM crops.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ruiying Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Yang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yijia Ding
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Haitao Guan
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoqin Wang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Aihong Zhang
- Beijing DaBeiNong Biotechnology Co., Ltd., Beijing, 100080, China
| | - Hongtao Wen
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
8
|
Bedair M, Glenn KC. Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops. Metabolomics 2020; 16:111. [PMID: 33037482 PMCID: PMC7547035 DOI: 10.1007/s11306-020-01733-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The safety assessment of foods and feeds from genetically modified (GM) crops includes the comparison of key characteristics, such as crop composition, agronomic phenotype and observations from animal feeding studies compared to conventional counterpart varieties that have a history of safe consumption, often including a near isogenic variety. The comparative compositional analysis of GM crops has been based on targeted, validated, quantitative analytical methods for the key food and feed nutrients and antinutrients for each crop, as identified by Organization of Economic Co-operation and Development (OCED). As technologies for untargeted metabolomic methods have evolved, proposals have emerged for their use to complement or replace targeted compositional analytical methods in regulatory risk assessments of GM crops to increase the number of analyzed metabolites. AIM OF REVIEW The technical opportunities, challenges and strategies of including untargeted metabolomics analysis in the comparative safety assessment of GM crops are reviewed. The results from metabolomics studies of GM and conventional crops published over the last eight years provide context to enable the discussion of whether metabolomics can materially improve the risk assessment of food and feed from GM crops beyond that possible by the Codex-defined practices used worldwide for more than 25 years. KEY SCIENTIFIC CONCEPTS OF REVIEW Published studies to date show that environmental and genetic factors affect plant metabolomics profiles. In contrast, the plant biotechnology process used to make GM crops has little, if any consequence, unless the inserted GM trait is intended to alter food or feed composition. The nutritional value and safety of food and feed from GM crops is well informed by the quantitative, validated compositional methods for list of key analytes defined by crop-specific OECD consensus documents. Untargeted metabolic profiling has yet to provide data that better informs the safety assessment of GM crops than the already rigorous Codex-defined quantitative comparative assessment. Furthermore, technical challenges limit the implementation of untargeted metabolomics for regulatory purposes: no single extraction method or analytical technique captures the complete plant metabolome; a large percentage of metabolites features are unknown, requiring additional research to understand if differences for such unknowns affect food/feed safety; and standardized methods are needed to provide reproducible data over time and laboratories.
Collapse
|
9
|
Gupta R, Baruah AM, Acharjee S, Sarmah BK. Compositional analysis of transgenic Bt-chickpea resistant to Helicoverpa armigera. GM CROPS & FOOD 2020; 11:262-274. [PMID: 32594843 PMCID: PMC7523883 DOI: 10.1080/21645698.2020.1782147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Transgenic chickpeas expressing high levels of a truncated version of the cry1Ac (trcry1Ac) gene conferred complete protection to Helicoverpa armigera in the greenhouse. Homozygous progeny of two lines, Cry1Ac.1 and Cry1Ac.2, had similar growth pattern and other morphological characteristics, including seed yield, compared to the non-transgenic counterpart; therefore, seed compositional analysis was carried out. These selected homozygous chickpea lines were selfed for ten generations along with the non-transgenic parent under contained conditions. A comparative seed composition assessment, seed storage proteins profiling, and in vitro protein digestibility were performed to confirm that these lines do not have significant alterations in seed composition compared to the parent. Our analyses showed no significant difference in primary nutritional composition between transgenic and non-transgenic chickpeas. In addition, the seed storage protein profile also showed no variation between the transgenic chickpea lines. Seed protein digestibility assays using simulated gastric fluid revealed a similar rate of digestion of proteins from the transgenic trcry1Ac lines compared to the non-transgenic line. Thus, our data suggest no unintended changes in the seed composition of transgenic chickpea expressing a trcry1Ac gene.
Collapse
Affiliation(s)
- Rubi Gupta
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Ananta Madhab Baruah
- Department of Biochemistry and Agricultural Chemistry, Assam Agricultural University, Jorhat, India
| | - Sumita Acharjee
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Bidyut Kumar Sarmah
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| |
Collapse
|
10
|
Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 2019; 60:3304-3320. [DOI: 10.1080/10408398.2019.1685454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | | | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
11
|
Karmakar S, Datta K, Molla KA, Gayen D, Das K, Sarkar SN, Datta SK. Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Sci Rep 2019; 9:10461. [PMID: 31320685 PMCID: PMC6639406 DOI: 10.1038/s41598-019-46885-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
The generation of sheath blight (ShB)-resistant transgenic rice plants through the expression of Arabidopsis NPR1 gene is a significant development for research in the field of biotic stress. However, to our knowledge, regulation of the proteomic and metabolic networks in the ShB-resistant transgenic rice plants has not been studied. In the present investigation, the relative proteome and metabolome profiles of the non-transformed wild-type and the AtNPR1-transgenic rice lines prior to and subsequent to the R. solani infection were investigated. Total proteins from wild type and transgenic plants were investigated using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). The metabolomics study indicated an increased abundance of various metabolites, which draws parallels with the proteomic analysis. Furthermore, the proteome data was cross-examined using network analysis which identified modules that were rich in known as well as novel immunity-related prognostic proteins, particularly the mitogen-activated protein kinase 6, probable protein phosphatase 2C1, probable trehalose-phosphate phosphatase 2 and heat shock protein. A novel protein, 14-3-3GF14f was observed to be upregulated in the leaves of the transgenic rice plants after ShB infection, and the possible mechanistic role of this protein in ShB resistance may be investigated further.
Collapse
Affiliation(s)
- Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Kutubuddin Ali Molla
- ICAR-National Rice Research Institute, Cuttack, 753 006, Odisha, India
- The Huck Institute of the Life Sciences and Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA-16802, USA
| | - Dipak Gayen
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
12
|
Feng M, Cai H, Guan Y, Sun J, Zhang L, Cang J. Analyses of transgenic fibroblast growth factor 21 mature rice seeds. BREEDING SCIENCE 2019; 69:279-288. [PMID: 31481837 PMCID: PMC6711730 DOI: 10.1270/jsbbs.18117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 05/06/2023]
Abstract
Although some studies have been conducted on the effects of foreign protein expression on rice, the results vary with foreign gene types and protein expression. This study reveals the effects of fibroblast growth factor 21 (FGF21) expression on mature rice seeds in various aspects. Results revealed that the grain weight of the transgene rice was lower than that of non-transgenic wild-type. The sucrose content and ADP-glucose pyrophosphorylase (AGPase) activity in transgenic FGF21 rice were higher than that in non-transgenic wild-type rice, while changes in the starch content, starch branching enzyme (SBE), sucrose synthase (SuS), superoxide dismutase (SOD) and peroxidase (POD) activity were lower in transgenic FGF21 rice compared to non-transgenic wild-type. The scanning electron microscope results revealed that mature seeds of the transgenic FGF21 rice contained fewer vascular bundles with irregular arrangement compared to the wild-type. The mature seeds of CK and T1 rice lines were collected for proteome analysis, and 167 differentially expressed proteins (DEPs) were found. In addition, the most enriched pathways in both rice lines were determined to be amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism, etc. This study laid the foundation for revealing the effects of exogenous protein expression on rice bioreactors.
Collapse
Affiliation(s)
- Mingfang Feng
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Hua Cai
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Ying Guan
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Jian Sun
- College of Agriculture, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences,
Harbin 150086,
P.R. China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| |
Collapse
|
13
|
Liu W, Xu W, Li L, Dong M, Wan Y, He X, Huang K, Jin W. iTRAQ-based quantitative tissue proteomic analysis of differentially expressed proteins (DEPs) in non-transgenic and transgenic soybean seeds. Sci Rep 2018; 8:17681. [PMID: 30518773 PMCID: PMC6281665 DOI: 10.1038/s41598-018-35996-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The unintended effects of transgenesis have increased food safety concerns, meriting comprehensive evaluation. Proteomic profiling provides an approach to directly assess the unintended effects. Herein, the isobaric tags for relative and absolute quantitation (iTRAQ) comparative proteomic approach was employed to evaluate proteomic profile differences in seed cotyledons from 4 genetically modified (GM) and 3 natural genotypic soybean lines. Compared with their non-GM parents, there were 67, 61, 13 and 22 differentially expressed proteins (DEPs) in MON87705, MON87701 × MON89788, MON87708, and FG72. Overall, 170 DEPs were identified in the 3 GM soybean lines with the same parents, but 232 DEPs were identified in the 3 natural soybean lines. Thus, the differences in protein expression among the genotypic varieties were greater than those caused by GM. When considering ≥2 replicates, 4 common DEPs (cDEPs) were identified in the 3 different GM soybean lines with the same parents and 6 cDEPs were identified in the 3 natural varieties. However, when considering 3 replicates, no cDEPs were identified. Regardless of whether ≥2 or 3 replicates were considered, no cDEPs were identified among the 4 GM soybean lines. Therefore, no feedback due to GM was observed at the common protein level in this study.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Yusong Wan
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China.
| |
Collapse
|
14
|
Comparative compositional analysis of transgenic potato resistant to potato tuber moth (PTM) and its non-transformed counterpart. Transgenic Res 2018; 27:301-313. [PMID: 29728958 DOI: 10.1007/s11248-018-0075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
In this study, the compositions of transgenic potatoes (TPs) resistant to potato tuber moth (Phthorimaea operculella) were compared with those of its non-transgenic (NTP) counterparts. The light inducible promoter, phosphoenolpyruvate carboxylase led to the expression of Cry1Ab only in the leaves and light-treated tubers of the TPs. No significant differences were found in the moisture, ash, dry weight, total soluble protein, carbohydrate, starch, fiber, ascorbate, cations, anions, fatty acids, and glycoalkaloids contents of TP and NTP. Moreover, light treatment significantly affected the contents of ascorbate, acetate and nitrite anions, palmitic, stearic and linolenic fatty acids, α-haconine and α-solanine glycoalkaloids in TP and NTP tubers. While, significant differences were observed in the amino acid contents in light-treated tubers of TPs than the NTP ones. Although, light treatment in potato tubers resulted in marked metabolic changes, all the variations observed in the metabolites compositions were found to be within the desired reference ranges for potato plants. In conclusion, the results indicated that the TPs were substantially and nutritionally equivalent to the NTP counterparts.
Collapse
|
15
|
Li J, Liu X, Yang X, Li Y, Wang C, He D. Proteomic analysis of the impacts of powdery mildew on wheat grain. Food Chem 2018; 261:30-35. [PMID: 29739597 DOI: 10.1016/j.foodchem.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection.
Collapse
Affiliation(s)
- Jie Li
- College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan 450002, China; College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan 464001, China
| | - Xinhao Liu
- Kaifeng Agriculture and Forestry Science Institute, Kaifeng, Henan 475004, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan 450002, China
| | - Yongchun Li
- College of Agronomy, Henan Agricultural University/National Engineering Research Centre for Wheat/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University/National Engineering Research Centre for Wheat/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan 450002, China.
| |
Collapse
|
16
|
Yu X, Luo Q, Huang K, Yang G, He G. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:326. [PMID: 29599791 PMCID: PMC5862831 DOI: 10.3389/fpls.2018.00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.
Collapse
Affiliation(s)
- Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Kaixun Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
17
|
Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Ann Allergy Asthma Immunol 2017; 119:214-222.e3. [PMID: 28890018 DOI: 10.1016/j.anai.2017.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- S Eliza Dunn
- Medical Sciences and Outreach Lead, Monsanto Company, St Louis, Missouri; Division of Emergency Medicine, Washington University, St Louis, Missouri
| | - John L Vicini
- Food and Feed Safety Scientific Affairs Lead, Monsanto Company, St Louis, Missouri
| | - Kevin C Glenn
- Allergenicity/Pipeline Issues Management Lead, Monsanto Company, St Louis, Missouri
| | - David M Fleischer
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew J Greenhawt
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
18
|
Mishra P, Singh S, Rathinam M, Nandiganti M, Ram Kumar N, Thangaraj A, Thimmegowda V, Krishnan V, Mishra V, Jain N, Rai V, Pattanayak D, Sreevathsa R. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1395-1400. [PMID: 28114755 DOI: 10.1021/acs.jafc.6b05301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.
Collapse
Affiliation(s)
- Pragya Mishra
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Shweta Singh
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Maniraj Rathinam
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | | | - Nikhil Ram Kumar
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | | | - Vinutha Thimmegowda
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute , New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute , New Delhi 110012, India
| | - Vagish Mishra
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Neha Jain
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Vandna Rai
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Debasis Pattanayak
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology , New Delhi 110012, India
| |
Collapse
|