1
|
Harris ST, Gardner J, Davis A, Steed J, Christiansen S, Ryberg S, Ludlow W, Pendleton M, Grimshaw B, Watt RK. Physiological iron chelators pyrophosphate and citrate have different effects on the proportions of monoferric transferrin metalloforms. J Inorg Biochem 2025; 263:112773. [PMID: 39603148 DOI: 10.1016/j.jinorgbio.2024.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Human serum transferrin can bind up to two iron atoms, one in each of its two domains which are known as the N-lobe and the C-lobe. Ferric pyrophosphate and ferric citrate have been shown to direct loading into the C-lobe and N-lobe, respectively. We report that the iron supplement ferric pyrophosphate citrate directs iron to the C-lobe. We also show that pyrophosphate directs iron to the C-lobe as a free anion even at the concentrations found in human plasma. This indicates that pyrophosphate may play a physiological role in transferrin iron loading and body iron homeostasis. We also present a validation of an existing micellar capillary electrophoresis technique for separating the four transferrin metalloforms, which has potential to be adapted for use in a clinical setting.
Collapse
Affiliation(s)
- Shelby T Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Jordan Gardner
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Alexia Davis
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Julia Steed
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Steven Christiansen
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Stewart Ryberg
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Weston Ludlow
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Mitchell Pendleton
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Blake Grimshaw
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA
| | - Richard K Watt
- Department of Chemistry and Biochemistry, Brigham Young University, Benson Building, Campus Drive, Provo, UT 84604, USA.
| |
Collapse
|
2
|
Yuan L, Liu J, Xiao S, Wei J, Liu H, Li Y, Zuo Y, Li Y, Wang J, Li J. EGCG-Modified Bioactive Core-Shell Fibers Modulate Oxidative Stress to Synergistically Promote Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:543-555. [PMID: 39743979 DOI: 10.1021/acsbiomaterials.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Oxidative stress induced by reactive oxygen species (ROS) can adversely affect tissue repair, whereas endowing biomaterials with antioxidant activity can improve the in vivo microenvironment, thereby promoting angiogenesis and osteogenesis. Accordingly, this study utilized epigallocatechin-3-gallate (EGCG), a material known for its reducing properties, oxidative self-polymerization capability, and strong binding characteristics, to modify a bioactive core-shell fibrous membrane (10RP-PG). Compared to the 10RP-PG fibrous membrane, the EGCG-modified fibrous membrane (E/10RP-PG) exhibited superior hydrophilicity, excellent cell adhesion, and compatibility. Moreover, the EGCG-modified fibrous membrane can effectively scavenge free radicals, ameliorate the local microenvironment, and foster angiogenesis (enhancing the expression of angiogenic genes in human umbilical vein endothelial cells (HUVECs) by 1.58 times and promoting vascular generation area upon subcutaneous implantation by 4.47 times). The enhancement of angiogenic activity of the E/10RP-PG fibrous membrane further promoted cartilage degeneration and absorption, as well as new bone formation, thus facilitating the repair of bone defects. This study provides a new strategy for promoting bone defect repair through the surface modification of biomaterials with an antioxidant agent, and the fabricated E/10RP-PG fibrous membranes show promise for guiding vascularized bone regeneration.
Collapse
Affiliation(s)
- Li Yuan
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Jiangshan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Shiqi Xiao
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610081, PR China
| | - Jiawei Wei
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yongzhi Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
3
|
Moslehi N, van Eekelen M, Velikov KP, Kegel WK. Ferrous Pyrophosphate and Mixed Divalent Pyrophosphates as Delivery Systems for Essential Minerals. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1388-1401. [PMID: 38934009 PMCID: PMC11197097 DOI: 10.1021/acsfoodscitech.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Poorly water-soluble iron-containing compounds are promising iron fortificants. However, ensuring high bioaccessibility and low reactivity of iron is challenging. We present the potential application of ferrous pyrophosphate (Fe(II)PP) and Fe(II)-containing M2(1-x)Fe2x P2O7 salts (0 < x < 1, M = Ca, Zn, or Mn) for delivery of iron and a second essential mineral (M). After preparation by a facile and environment-friendly coprecipitation method, the salts were investigated for their composition, pH-dependent dissolution, iron-mediated discoloration of a black tea solution, and oxidation of vitamin C. Our results suggest that these salts are possible dual-fortificants with tunable composition that compared to Fe(II)PP (i) show lower (<0.5 mM) and enhanced (to 5 mM) iron dissolution in moderate and gastric pH, respectively, (ii) exhibit less discoloration and dissolved iron in tea when x = 0.470 for M = Ca or Zn and x = 0.086 for M = Mn, and (iii) do not increase the oxidation extent of vitamin C over 48 h when x = 0.06, 0.086, or 0.053 for M = Ca, Zn, or Mn, respectively.
Collapse
Affiliation(s)
- Neshat Moslehi
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel van Eekelen
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Krassimir P. Velikov
- Unilever
Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Willem K. Kegel
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Yang M, Cai X, Wang C, Wang Z, Xue F, Chu C, Bai J, Liu Q, Ni X. Highly Stable Amorphous (Pyro)phosphate Aggregates: Pyrophosphate as a Carrier for Bioactive Ions and Drugs in Bone Repair Applications. ACS OMEGA 2024; 9:23724-23740. [PMID: 38854518 PMCID: PMC11154929 DOI: 10.1021/acsomega.4c01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Pyrophosphate is widely used as an iron supplement because of its excellent complexation and hydrolysis ability; however, there are few reports on the use of pyrophosphate in active ionophores for bone repair. In this research, we proposed a simple and efficient ultrasonic method to prepare magnesium-calcium (pyro)phosphate aggregates (AMCPs). Due to strong hydration, AMCPs maintain a stable amorphous form even at high temperatures (400 °C). By changing the molar ratio of calcium and magnesium ions, the content of calcium and magnesium ions can be customized. AMCPs had surface negativity and complexing ability that realized the controlled release of ions (Ca2+, Mg2+, and P) and drugs (such as doxorubicin) over a long period. Pyrophosphate gave it an excellent bacteriostatic effect. Increasingly released Mg2+ exhibited improved bioactivity though the content of Ca2+ decreased. While Mg2+ content was regulated to 15 wt %, it performed significantly enhanced stimulation on the proliferation, attachment, and differentiation (ALP activity, calcium nodules, and the related gene expression of osteogenesis) of mouse embryo osteoblast precursor cells (MC3T3-E1). Furthermore, the high content of Mg2+ also effectively promoted the proliferation, attachment, and migration of human umbilical vein endothelial cells (HUVECs) and the expression of angiogenic genes. In conclusion, pyrophosphate was an excellent carrier for bioactive ions, and the AMCPs we prepared had a variety of active functions for multiscenario bone repair applications.
Collapse
Affiliation(s)
- Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Xiang Cai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
| | - Zan Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing 211212, China
| | - Qizhan Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Xinye Ni
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
| |
Collapse
|
5
|
Bijlsma J, Moslehi N, Velikov KP, Kegel WK, Vincken JP, de Bruijn WJC. Reactivity of Fe(III)-containing pyrophosphate salts with phenolics: complexation, oxidation, and surface interaction. Food Chem 2023; 407:135156. [PMID: 36525808 DOI: 10.1016/j.foodchem.2022.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Mixed pyrophosphate salts with the general formula Ca2(1-x)Fe4x(P2O7)(1+2x) potentially possess less iron-phenolic reactivity compared to ferric pyrophosphate (FePP), due to decreased soluble Fe in the food-relevant pH range 3-7. We investigated reactivity (i.e., complexation, oxidation, and surface interaction) of FePP and mixed salts (with x = 0.14, 0.15, 0.18, and 0.35) in presence of structurally diverse phenolics. At pH 5-7, increased soluble iron from all salts was observed in presence of water-soluble phenolics. XPS confirmed that water-soluble phenolics solubilize iron after coordination at the salt surface, resulting in increased discoloration. However, color changes for mixed salts with x ≤ 0.18 remained acceptable for slightly water-soluble and insoluble phenolics. Furthermore, phenolic oxidation in presence of mixed salts was significantly reduced compared to FePP at pH 6. In conclusion, these mixed Ca-Fe(III) pyrophosphate salts with x ≤ 0.18 can potentially be used in designing iron-fortified foods containing slightly water-soluble and/or insoluble phenolics.
Collapse
Affiliation(s)
- Judith Bijlsma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Neshat Moslehi
- Van 't Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Krassimir P Velikov
- Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, the Netherlands; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands; Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Willem K Kegel
- Van 't Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Scheuchzer P, Syryamina VN, Zimmermann MB, Zeder C, Nyström L, Yulikov M, Moretti D. Ferric Pyrophosphate Forms Soluble Iron Coordination Complexes with Zinc Compounds and Solubilizing Agents in Extruded Rice and Predicts Increased Iron Solubility and Bioavailability in Young Women. J Nutr 2023; 153:636-644. [PMID: 36931746 PMCID: PMC10127525 DOI: 10.1016/j.tjnut.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Co-extrusion of ferric pyrophosphate (FePP) with solubilizers, citric acid/trisodium citrate (CA/TSC), or ethylenediaminetetraacetic acid (EDTA) sharply increases iron absorption. Whether this can protect against the inhibition of iron absorption by phytic acid (PA) is unclear. Sodium pyrophosphate (NaPP) may be a new enhancer of iron absorption from FePP. OBJECTIVES Our objectives were to 1) investigate the ligand coordination of iron, zinc, and solubilizers in extruded rice and test associations with iron solubility and absorption, 2) assess whether co-extrusion of FePP + CA/TSC rice can protect against inhibition of iron absorption by PA; 3) determine the effect of zinc oxide (ZnO) compared with zinc sulfate (ZnSO4), and 4) quantify iron absorption from FePP + NaPP rice. METHODS We produced labeled 57FePP rice cofortified with ZnSO4 and EDTA, CA/TSC or NaPP, and FePP + EDTA rice with ZnO. We used electron paramagnetic resonance (EPR) to characterize iron-ligand complexes. We measured in vitro iron solubility and fractional iron absorption (FIA) in young women (n = 21, age: 22 ± 2 y, BMI: 21.3 ± 1.5 kg/m2 geometric mean plasma ferritin, 28.5 μg/L) compared with ferrous sulfate (58FeSO4). FIA was compared by linear mixed-effect model analysis. RESULTS The addition of zinc and solubilizers created new iron coordination complexes of Fe(III) species with a weak ligand field at a high-spin state that correlated with solubility (r2 = 0.50, P = 0.02) and absorption (r2 = 0.72, P = 0.02). Phytic acid reduced FIA from FePP + CA/TSC rice by 50% (P < 0.001), to the same extent as FeSO4. FIA from FePP + EDTA + ZnO and FePP + EDTA + ZnSO4 rice did not significantly differ. Mean FIAs from FePP + EDTA + ZnSO4, FePP + CA/TSC + ZnSO4, and FePP + NaPP + ZnSO4 rice were 9% to 11% and did not significantly differ from each other or from FeSO4. CONCLUSION Rice extrusion of FePP with solubilizers resulted in bioavailable iron coordination complexes. In the case of FePP + CA/TSC, PA exerted similar inhibition of FIA as with FeSO4. FePP + NaPP could be a further viable solubilizing agent for rice fortification. This study was registered at clinicaltrials.gov as NCT03703739.
Collapse
Affiliation(s)
- Pornpimol Scheuchzer
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Victoria N Syryamina
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Food Biochemistry, ETH Zürich, Zürich, Switzerland; Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, Russian Federation
| | - Michael Bruce Zimmermann
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Christophe Zeder
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Laura Nyström
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Food Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Bioscience (D-CHAB), Laboratory of Physical Chemistry (LPC), ETH Zürich, Zürich, Switzerland
| | - Diego Moretti
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland; Department of Health, Nutrition Research, Swiss Distance University of Applied Sciences (FFHS), Zürich, Switzerland.
| |
Collapse
|
7
|
Grazielle Siqueira Silva J, Paula Rebellato A, Silvestre de Abreu J, Greiner R, Azevedo Lima Pallone J. Impact of the fortification of a rice beverage with different calcium and iron sources on calcium and iron bioaccessibility. Food Res Int 2022; 161:111830. [DOI: 10.1016/j.foodres.2022.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
|
8
|
Moslehi N, Bijlsma J, de Bruijn WJ, Velikov KP, Vincken JP, Kegel WK. Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Polyphosphates as an effective vehicle for delivery of bioavailable nanoparticulate iron(III). Food Chem 2021; 373:131477. [PMID: 34731816 DOI: 10.1016/j.foodchem.2021.131477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Polyphosphates are widely used food additives with the potential to increase iron bioavailability but chemical nature of their soluble complexes with iron remains largely unknown. Here, pyrophosphate, tripolyphosphate, hexametaphosphate and ∼25-chain-length polyphosphate solubilized 896, 896, 1120 and 1344 mg Fe(III) per g, respectively, at neutral pH by mediating the formation of highly-negatively-charged ferric hydroxide-polyphosphate nanoparticles (PolyP-FeONPs). PolyP-FeONPs displayed fading yellow color with increasing initial dissolved P/Fe ratio ((P/Fe)init) and decreasing polyphosphate length due to rising proportion of Fe(III)-phosphate bonds, and specifically, pyrophosphate resulted colorless PolyP-FeONPs at (P/Fe)init ≥ 4. PolyP-FeONPs had weak pro-oxidant activity in glyceryl trilinoleate emulsion and good colloidal stability under spray/freeze-drying and gastrointestinal conditions. Serum iron kinetics in rats revealed sustained iron release and ∼170% iron bioavailability of oral PolyP-FeONPs relative to FeSO4. Calcein-fluorescence-quenching assay in polarized Caco-2 cells unveiled divalent-metal-transporter-1-independent and macropinocytosis-dependent iron uptake from PolyP-FeONPs. This study helps develop food-compatible, highly-bioavailable and sustained-release iron preparations.
Collapse
|
10
|
Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Sci Rep 2020; 10:8288. [PMID: 32427917 PMCID: PMC7237488 DOI: 10.1038/s41598-020-65171-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
Fortification of food with iron is considered to be an effective approach to counter the global health problem caused by iron deficiency. However, reactivity of iron with the catechol moiety of food phenolics leads to discolouration and impairs bioavailability. In this study, we investigated the interplay between intrinsic and extrinsic factors on food discolouration caused by iron-catechol complexation. To this end, a three-level fractional factorial design was implemented. Absorbance spectra were analysed using statistical methods, including PCA, HCA, and ANOVA. Furthermore, a direct link between absorbance spectra and stoichiometry of the iron-catechol complexes was confirmed by ESI-Q-TOF-MS. All statistical methods confirm that the main effects affecting discolouration were type of iron salt, pH, and temperature. Additionally, several two-way interactions, such as type of iron salt × pH, pH × temperature, and type of iron salt × concentration significantly affected iron-catechol complexation. Our findings provide insight into iron-phenolic complexation-mediated discolouration, and facilitate the design of iron-fortified foods.
Collapse
|
11
|
Ma XH, Zhao L, Dong YH. Oxidation degradation of 2,2',5-trichlorodiphenyl in a chelating agent enhanced Fenton reaction: Influencing factors, products, and pathways. CHEMOSPHERE 2020; 246:125849. [PMID: 32092814 DOI: 10.1016/j.chemosphere.2020.125849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
The sodium pyrophosphate (SP)-enhanced Fenton reaction has been proven to have promising potential in remediation of polychlorinated biphenyls in soils by keeping iron ions soluble at high pH and minimizing the useless decomposition of H2O2. However, little information can be obtained about the effect of environmental factors on its remediation performance. Thus, the effect of environmental factors on the degradation of 2,2',5-trichlorodiphenyl (PCB18), one of the main PCB congeners in Chinese sites, was investigated in this study. PCB18 degradation was sensitive to pH, which ranged from 39.8% to 99.5% as increased pH from 3.0 to 9.0. ·OH was responsible for PCB18 degradation at pH 5.0, while both ·OH and O2- resulted in PCB 18 degradation at pH 7.0 with the calculated reaction activation energy of 73.5 kJ mol-1. Bivalent cations and transition metal ions decreased PCB18 degradation markedly as their concentrations increased. The addition of humic acid had an inhibitory on PCB18 degradation, but no obvious inhibition of PCB18 removal was observed when the same concentration of fulvic acid was added. The addition of 1 and 10 μM model humic constituents (MHCs) promoted PCB18 degradation, but the addition of 100 μM MHCs decreased PCB18 removal. Biphenyl, two dichlorobiphenyl, and two hydroxy trichlorobiphenyl derivatives were identified as the major degradation products of PCB18 in the Fe2+/SP/H2O2 system at pH 7.0. Thus, an oxidative pathway contributed by OH and a reductive pathway induced by O2- were proposed as the main mechanisms for PCB18 degradation in the SP-enhanced Fenton reaction.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuan-Hua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Eilander A, Funke OM, Moretti D, Zimmermann MB, Owojuyigbe TO, Blonk C, Murray P, Duchateau GS. High Bioavailability from Ferric Pyrophosphate-Fortified Bouillon Cubes in Meals is Not Increased by Sodium Pyrophosphate: a Stable Iron Isotope Study in Young Nigerian Women. J Nutr 2019; 149:723-729. [PMID: 31004134 PMCID: PMC6499105 DOI: 10.1093/jn/nxz003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is challenging to find an iron compound that combines good bioavailability with minimal sensory changes when added to seasonings or condiments. Ferric pyrophosphate (FePP) is currently used to fortify bouillon cubes, but its bioavailability is generally low. Previously, the addition of a stabilizer, sodium pyrophosphate (NaPP), improved iron bioavailability from a bouillon drink. OBJECTIVE We assessed whether there is a dose-response effect of added NaPP on iron bioavailability from local meals prepared with intrinsically labeled FePP-fortified bouillon cubes in young Nigerian women using iron stable isotope techniques. METHODS In a double-blind, randomized, cross-over trial, women (n = 24; aged 18-40 y; mean BMI 20.5 kg/m2) consumed a Nigerian breakfast and lunch for 5 d prepared with bouillon cubes containing 2.5 mg 57Fe (as FePP) and 3 different molar ratios of NaPP: 57Fe (0:1, 3:1, and 6:1). Iron bioavailability was assessed by measuring 57Fe incorporation into erythrocytes 16 d after each 5 d NaPP: 57Fe feeding period. Data were analyzed using a linear regression model of log iron absorption on NaPP ratio, with body weight and baseline body iron stores as covariates and subject as a random intercept. RESULTS Of the women included, 46% were anemic and 26% were iron deficient. Iron bioavailability was 10.8, 9.8, and 11.0% for the 0:1, 3:1, and 6:1 NaPP:57Fe treatments, respectively. There was no dose-response effect of an increasing NaPP:57Fe ratio (β ± SE: 0.003 ± 0.028, P = 0.45). CONCLUSIONS In this study, the addition of NaPP did not increase iron bioavailability from FePP-fortified bouillon cubes. However, iron bioavailability from the Nigerian meals prepared with FePP-fortified bouillon cubes was higher than expected. These results are encouraging for the potential of bouillon cubes as a fortification vehicle. Further studies are needed to assess the effect of FePP-fortified bouillon cubes on improving iron status in low-income populations. This trial was registered at clinicaltrials.gov as NCT02815449.
Collapse
Affiliation(s)
- Ans Eilander
- Unilever R&D Vlaardingen, South Holland, The Netherlands
| | | | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Cor Blonk
- Unilever R&D Vlaardingen, South Holland, The Netherlands
| | | | | |
Collapse
|
13
|
Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate. Br J Nutr 2016; 116:496-503. [DOI: 10.1017/s0007114516002191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.
Collapse
|