1
|
Liu Z, Liu X, Sun J, Xiao X. Cascade Fluorescent Sensors Based on Isothermal Signal Amplification for the Detection of Mercury and Silver Ions. BIOSENSORS 2025; 15:213. [PMID: 40277528 PMCID: PMC12025150 DOI: 10.3390/bios15040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
In this study, novel fluorescent DNA biosensors for mercury (Hg2+) and silver (Ag+) ions were developed based on thymine (T)- and cytosine (C)-rich recognition elements in combination with exonuclease III and a mismatch-catalyzed hairpin assembly (MCHA)-based cascade isothermal signal-amplification strategy. In the presence of the respective target analytes, the recognition element terminals form so-called T-Hg2+-T or C-Ag+-C structures, resulting in cleavage by Exo III and the release of the trigger strand for MCHA. This binds to the H1 hairpin, which is fluorescently labeled with carboxyfluorescein (FAM) and tetramethylrhodamine (TAMRA), disrupting fluorescence resonance energy transfer between them and, thus, restoring FAM fluorescence, generating a strong signal at 520 nm. The linear range of the Hg2+ sensor is 0.5 to 3 pM, with a detection limit of 0.07 pM. The recovery range in actual spiked water samples is between 98.5% and 105.2%, with a relative standard deviation (RSD) ranging from 2.0% to 4.2%. The linear range of the Ag+ sensor is 10 to 90 pM, with a detection limit of 7.6 pM. The recovery range in actual spiked water samples is between 96.2% and 104.1%, with an RSD ranging from 3.2% to 6.3%. The cascade isothermal signal amplification strategy effectively enhances sensor sensitivity, while MCHA decreases the false-positive rate. The aptamer sensor exhibits high specificity, is resistant to interference, and can be used for the detection of Hg2+ and Ag+ in environmental water samples.
Collapse
Affiliation(s)
- Zhen Liu
- School of Public Health, Hengyang School of Medicine, University of South China, Hengyang 421001, China; (Z.L.); (X.L.); (J.S.)
| | - Xing Liu
- School of Public Health, Hengyang School of Medicine, University of South China, Hengyang 421001, China; (Z.L.); (X.L.); (J.S.)
| | - Jie Sun
- School of Public Health, Hengyang School of Medicine, University of South China, Hengyang 421001, China; (Z.L.); (X.L.); (J.S.)
| | - Xilin Xiao
- School of Public Health, Hengyang School of Medicine, University of South China, Hengyang 421001, China; (Z.L.); (X.L.); (J.S.)
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Department of Public Health Laboratory Science, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Wang Y, Zhang S, Bian J, Brake J, Luo C, Sun C, Wu X. A method for the rapid detection of heavy metal mercury ions based on a novel mercury chelator N,N'-bis (2-mercaptoethyl) isophthalamide. Food Chem 2025; 468:142486. [PMID: 39721482 DOI: 10.1016/j.foodchem.2024.142486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Mercury has caused severe harm to the environment and human health. A novel biological screen method was developed and identified a Hg2+ chelator BDTH2. Both biological and chemical methods demonstrated BDTH2 displayed a high specificity and strong binding capacity for Hg2+. Toxicological experiments of BDTH2 demonstrated its good safety. To enhance the sensitivity, functional composite BDTH2-AuNPs were synthesized, and the system exhibited strong specificity to Hg2+ and excellent anti-interference capabilities. The optimized colorimetric method and the paper test strip method showed a visual detection limit of 3 nM less than 30 s and 5 nM within 1 min respectively. This system was evaluated for detecting spiked Hg2+ concentrations in environmental water and six agricultural food samples and showed high consistence with those of ICP-MS. Therefore, this study provides a novel, rapid, and economical method for on-site detecting of Hg2+ in water and agricultural products.
Collapse
Affiliation(s)
- Yali Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Department of Chemistry and Chemical Engineering, Yulin University, Shaanxi 719000, China
| | - Shuangbo Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiang Bian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Department of Obstetrics and Gynecology, Shanghai Everjoy Medical Polyclinic, 675 Minbei Road, Shanghai 201107, China
| | - Joseph Brake
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, United States
| | - Chaoyang Luo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chuanwen Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaobin Wu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
3
|
Zhang G, Feng S, Ge R, Liu Y, Zhu Q. Facile Synthesis of Polyethylene Glycol Passivated N-doping CQDs as Fluorescent Probe for Multi-Target Simultaneous Detection in Heavy-Metals Solution. J Fluoresc 2025:10.1007/s10895-025-04161-w. [PMID: 39903391 DOI: 10.1007/s10895-025-04161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
In order to quickly and conveniently detect multiple heavy metal ions in aqueous phase simultaneously, a polyethylene glycol passivated N-doping carbon quantum (p-N-CQDs) was synthesized by a hydrothermal method with citric acid (carbon source), urea (nitrogen source) and polyethylene glycol (passivator). The as-prepared p-N-CQDs could be evenly dispersed in deionized water, and the average diameter was 1.83 nm, resulting in 18.72% of fluorescence quantum yield. As a sensor, the fluorescence of p-N-CQDs would be significantly quenched with Fe3+ or Cu2+ under the different maximum emission wavelength of 452 nm and 448 nm, respectively. Therefore, a method for simultaneously detecting multiple heavy metal ions was proposed by discriminative fitting of the fluorescence emission peaks after metal ion quenching. Upon the experiments, two linear calibration curves between resolving fluorescence intensities of p-N-CQDs and concentration of the metal ions were obtained within a range of 10 to 1000 µM of Cu2+ and 40 to 800 µM of Fe3+. And a limit of detection (LOD) of 0.032 µM was attained after resolving the curves based on the emission wavelength of 448 nm for Cu2+ and 452 nm for Fe3+ by a peak splitting software. In addition, the stability, selectivity and anti-interference of the proposal senor was confirmed.
Collapse
Affiliation(s)
- Guangmei Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Shang Feng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Ruiming Ge
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Ying Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiufeng Zhu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China, National Light Industry, Beijing, 100048, China.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Wang J. Micro-droplet printed ion-selective membrane sensors for in situ monitoring of marine heavy metal ions. Talanta 2025; 281:126837. [PMID: 39276575 DOI: 10.1016/j.talanta.2024.126837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Fast, accurate, and reliable techniques for marine toxic heavy metal ions (HMI) detection are critical for the ecological environment and human health. One of the fatal drawbacks of traditional ion selective electrochemical sensors is that the modification of electrode cannot be accurately quantified, resulting in poor repeatability of the detection electrode and large error between the multi-electrode detection results. In order to tackle this challenge, this study presents ultra-fine micro-droplet printed electrodes for the in-situ detection of Cd2+, a carcinogenic and toxic HMI commonly found in the ocean. The ion selective membrane casting liquid was dispersed into tiny droplets with a diameter of micron through microfluidic technology, and the microdroplets were precisely arranged on the electrode surface. As a result, the modification error of electrode was reduced to pL level (accurate to 10 pL), which greatly improved the repeatability between electrodes prepared in different batches. The results of experiments with pure electrolyte, interference ions and artificial seawater indicated that the micro-droplet printed sensors possessed excellent properties of accuracy, precision, repeatability, and anti-interference. This novel micro-droplet printed sensor has the potential to capture an accurate picture of nearshore HMI in heterogeneous environments under shock conditions.
Collapse
Affiliation(s)
- Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; College of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| | - Yichi Zhang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|
5
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2025; 35:267-289. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
6
|
Wang X, Yang Z, Meng L, Li X, Wei H, Ning J, Wang S, Cao D, Hao L. Hydrazone-linked covalent organic frameworks for fluorescence detection of Hg 2. Chem Commun (Camb) 2024. [PMID: 39558873 DOI: 10.1039/d4cc05468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A hydrazone-linked COF (DvDf-C3XJ-COF) with hydrogen-bond reinforcement and abundant coordination sites was synthesized, exhibiting strong fluorescence and high sensitivity/selectivity for Hg2+ detection, with a detection limit of 1.65 × 10-6 M. The fluorescence quenching for Hg2+ is attributed to coordination interactions, which occur through a dynamic quenching process.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Zhaowei Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Lingsuo Meng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Xuehui Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Hongtao Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Jing Ning
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Long Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| |
Collapse
|
7
|
Xiao J, Yao W, Yan D, Yang J, Qiu Z, Wang L, Guo X. Label-free fluorescence platform based on SiO 2-coated CdTeS quantum dots for trace analysis of Ag + in environmental water. Talanta 2024; 278:126469. [PMID: 38944942 DOI: 10.1016/j.talanta.2024.126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
In this study, a core-shell structural nano-composite material, namely CdTeS@SiO2, is synthesized by a simple silanization of Te-doped CdS quantum dots (CdTeS QDs). Through SiO2 capping, CdTeS QDs not only improve the fluorescence performance effectively, but also greatly enhance the anti-interference ability in the environment. Based on its excellent optical properties, a novel fluorescence sensor is constructed for the ultramicro detection of Ag+. The fluorescence of CdTeS@SiO2 is strongly quenched in the presence of Ag+ and shows good linearity in the range of 0.005-5.0 μmol L-1 with a detection limit as low as 1.6 nmol L-1. This is mainly due to its unique quenching mechanism: Ag+ destroys the spherical structure of SiO2 and promotes the formation of non-radiative electron-hole pairs through electron transfer, leading to fluorescence quenching. At the same time, it competes with Cd for Te, S and MPA on the CdTeS surface, forming Ag-Te, Ag-S and Ag-MPA complexes attached to the CdTeS surface leading to wavelength red-shift. The feasibility of the proposed sensor is demonstrated through spiking experiments, which confirmed the potential value of the constructed fluorescence probe for real-world applications in detecting Ag+ in environmental water.
Collapse
Affiliation(s)
- Junhui Xiao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Dongxu Yan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyin Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Wang S, Xu J, Yue F, Zhang L, Bi N, Gou J, Li Y, Huang Y, Zhao T, Jia L. Smartphone-assisted mobile fluorescence sensor for self-calibrated detection of anthrax biomarker, Cu 2+, and cysteine in food analysis. Food Chem 2024; 451:139410. [PMID: 38670024 DOI: 10.1016/j.foodchem.2024.139410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Dipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO4:Eu and Tb-β-diketone complex for rapid visual detection of DPA. This sensor exhibits high selectivity, fast response time, excellent detection sensitivity, and the detection limit is as low as 4.5 nM in the linear range of 0-16 μM. A smartphone APP and portable ultraviolet lamp can assemble a mobile fluorescence sensor for on-site analysis. Interestingly, adding Cu2+ ions can quench the fluorescence intensity of Tb3+. In contrast, the addition of cysteine can restore the fluorescence, allowing the accurate detection of Cu2+ ions and cysteine in environmental water and food samples. This work provides a portable sensor that facilitates real-time analysis of multiple targets in food and the environment.
Collapse
Affiliation(s)
- Sheng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Fengzhi Yue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
9
|
Sahu M, Ganguly M, Sharma P. Recent applications of coinage metal nanoparticles passivated with salicylaldehyde and salicylaldehyde-based Schiff bases. NANOSCALE ADVANCES 2024:d4na00427b. [PMID: 39148500 PMCID: PMC11322903 DOI: 10.1039/d4na00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Salicylaldehyde (SD) and its derivatives are effective precursors for generating coinage metal (gold, silver, and copper) nanoparticles (NPs). These NPs have a variety of potential environmental applications, such as in water purification and sensing, and those arising from their antibacterial activity. The use of SD and its derivatives for synthesizing coinage NPs is attractive due to several factors. First, SD is a relatively inexpensive and readily available starting material. Second, the synthetic procedures are typically simple and can be carried out under mild conditions. Finally, the resulting NPs can be tailored to have specific properties, such as size, shape, and surface functionality, by varying the reaction conditions. In an alkaline solution, the phenolate form of SD was converted to its quinone form, while ionic coinage metal salts were converted to zero-valent nanoparticles. The capping in situ produced quinone of coinage metal nanoparticles generated metal-enhanced fluorescence under suitable experimental conditions. The formation of iminic bonds during the formation of Schiff bases altered the properties (especially metal-enhanced fluorescence) and applications.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
10
|
Lan W, Rao Y, Zhao X, Zhao Y, Min X, Wu Y, Jiang Z, Li T, Li Y, Chen H, Long W, She Y, Fu H. Rapid visual detection of sulfur dioxide residues in food using acid-sensitive CdTe quantum dots-loaded alginate hydrogel beads. Food Chem 2024; 446:138791. [PMID: 38422638 DOI: 10.1016/j.foodchem.2024.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Acid-sensitive CdTe quantum dots-loaded alginate hydrogel (CdTe QDs-AH) beads were designed for the visual detection of SO2 residues. As proof of concept, two types of CdTe QDs were selected as model probes and embedded in AH beads. The entire test was performed within 25 min in a modified double-layer test tube with one bead fixed above the sample solution. Adding citric acid and heating at 70 ℃ for 20 min transformed the sulfites in the solution into SO2 gas, which then quenched the fluorescence of the CdTe QDs-AH beads. Using this assay, qualitative, naked-eye detection of SO2 residues was achieved in the concentration range of 25-300 ppm, as well as precise quantification was possible based on the difference in the average fluorescence brightness of the beads before and after the reaction. Five food types were successfully analysed using this method, which is simpler and more economical than existing methods, and does not require complex pretreatment.
Collapse
Affiliation(s)
- Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yanmin Rao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiangyu Zhao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yi Zhao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xinyi Min
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yue Wu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Ziyi Jiang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Ting Li
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yinhua Li
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuanbin She
- Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Tech, Hangzhou 310032, PR China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Seesuea C, Sangtawesin T, Thangsunan P, Wechakorn K. Facile Green Gamma Irradiation of Water Hyacinth Derived-Fluorescent Carbon Dots Functionalized Thiol Moiety for Metal Ion Detection. J Fluoresc 2024; 34:1761-1773. [PMID: 37615896 DOI: 10.1007/s10895-023-03408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Fluorescent sensor-based carbon dots (CDs) have significantly developed for sensing metal ions because of their great physical and optical properties, including tunable fluorescence emission, high fluorescence quantum yield, high sensitivity, non-toxicity, and biocompatibility. In this research, a green synthetic approach via simple gamma irradiation for the carbon dot synthesis from water hyacinth was developed since water hyacinth has been classified as an invasive aquatic plant containing cellulose, hemicellulose, and lignin. The thiol moiety (SH) was further functionalized on the surface functional groups of CDs as the "turn-off" fluorescent sensor for metal ion detection. Fluorescence emission displayed a red shift from 451 to 548 nm when excited between 240 and 500 nm. The quantum yield of CDs-SH was elucidated to be 13%, with strong blue fluorescence emission under ultraviolet irridiation (365 nm), high photostability and no photobleaching. The limit of detection was determined at micromolar levels for Hg2+, Cu2+, and Fe3+. CDs-SH could be a real-time monitoring sensor for Hg2+ and Cu2+ as fluorescence quenching was observed within 2 min. Furthermore, paper test-strip based CDs-SH could be applied to detect these metal ions.
Collapse
Affiliation(s)
- Chuleekron Seesuea
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | - Tanagorn Sangtawesin
- Thailand Institute of Nuclear Technology (Public Organization), Nakorn Nayok, 26120, Thailand
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand.
- Advanced Photochemical and Electrochemical Materials Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
12
|
Sulthana SF, Iqbal UM, Suseela SB, Anbazhagan R, Chinthaginjala R, Chitathuru D, Ahmad I, Kim TH. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. ACS OMEGA 2024; 9:25493-25512. [PMID: 38911761 PMCID: PMC11190924 DOI: 10.1021/acsomega.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Heavy metal ions (HMIs) are very harmful to the ecosystem when they are present in excess of the recommended limits. They are carcinogenic in nature and can cause serious health issues. So, it is important to detect the metal ions quickly and accurately. The metal ions arsenic (As3+), cadmium (Cd2+), chromium (Cr3+), lead (Pb2+), and mercury (Hg2+) are considered to be very toxic among other metal ions. Standard analytical methods like atomic absorption spectroscopy, atomic fluorescence spectroscopy, and X-ray fluorescence spectroscopy are used to detect HMIs. But these methods necessitate highly technical equipment and lengthy procedures with skilled personnel. So, electrochemical sensing methods are considered to be more advantageous because of their quick analysis with precision and simplicity to operate. They can detect a wide range of heavy metals providing real-time monitoring and are cost-effective and enable multiparametric detection. Various sensing applications necessitate severe regulation regarding the modification of electrode surfaces. Numerous nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles have been extensively explored as interface materials in electrode modifiers. These nanoparticles offer excellent electrical conductivity, distinctive catalytic properties, and high surface area resulting in enhanced electrochemical performance. This review examines different HMI detection methods in an aqueous medium by an electrochemical sensing approach and studies the recent developments in interface materials for altering the electrodes.
Collapse
Affiliation(s)
- S. Fouziya Sulthana
- Department
of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - U. Mohammed Iqbal
- Department
of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreeja Balakrishnapillai Suseela
- Department
of Electronics and Communication Engineering, Centre for Medical Electronics,
College of Engineering, Anna University, Chennai, Tamil Nadu 600025, India
| | - Rajesh Anbazhagan
- School
of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613401, India
| | - Ravikumar Chinthaginjala
- School
of Electronics Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanamjayulu Chitathuru
- School of
Electrical Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Tai-hoon Kim
- School
of Electrical and Computer Engineering Yeosu Campus, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do 59626, Republic of Korea
| |
Collapse
|
13
|
Dinu (Iacob) A, Bounegru AV, Iticescu C, Georgescu LP, Apetrei C. Electrochemical Detection of Cd 2+, Pb 2+, Cu 2+ and Hg 2+ with Sensors Based on Carbonaceous Nanomaterials and Fe 3O 4 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:702. [PMID: 38668196 PMCID: PMC11053428 DOI: 10.3390/nano14080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Two electrochemical sensors were developed in this study, with their preparations using two nanomaterials with remarkable properties, namely, carbon nanofibers (CNF) modified with Fe3O4 nanoparticles and multilayer carbon nanotubes (MWCNT) modified with Fe3O4 nanoparticles. The modified screen-printed electrodes (SPE) were thus named SPE/Fe3O4-CNF and SPE/Fe3O4-MWCNT and were used for the simultaneous detection of heavy metals (Cd2+, Pb2+, Cu2+ and Hg2+). The sensors have been spectrometrically and electrochemically characterized. The limits of detection of the SPE/Fe3O4-CNF sensor were 0.0615 μM, 0.0154 μM, 0.0320 μM and 0.0148 μM for Cd2+, Pb2+, Cu2+ and Hg2+, respectively, and 0.2719 μM, 0.3187 μM, 1.0436 μM and 0.9076 μM in the case of the SPE/ Fe3O4-MWCNT sensor (following optimization of the working parameters). Due to the modifying material, the results showed superior performance for the SPE/Fe3O4-CNF sensor, with extended linearity ranges and detection limits in the nanomolar range, compared to those of the SPE/Fe3O4-MWCNT sensor. For the quantification of heavy metal ions Cd2+, Pb2+, Cu2+ and Hg2+ with the SPE/Fe3O4-CNF sensor from real samples, the standard addition method was used because the values obtained for the recovery tests were good. The analysis of surface water samples from the Danube River has shown that the obtained values are significantly lower than the maximum limits allowed according to the quality standards specified by the United States Environmental Protection Agency (USEPA) and those of the World Health Organization (WHO). This research provides a complementary method based on electrochemical sensors for in situ monitoring of surface water quality, representing a useful tool in environmental studies.
Collapse
Affiliation(s)
| | | | | | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 47 Domneasca Street, 800008 Galați, Romania (C.I.); (L.P.G.)
| |
Collapse
|
14
|
Maranata GJ, Megantara S, Hasanah AN. An Update in Computational Methods for Environmental Monitoring: Theoretical Evaluation of the Molecular and Electronic Structures of Natural Pigment-Metal Complexes. Molecules 2024; 29:1680. [PMID: 38611959 PMCID: PMC11013237 DOI: 10.3390/molecules29071680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Metals are beneficial to life, but the presence of these elements in excessive amounts can harm both organisms and the environment; therefore, detecting the presence of metals is essential. Currently, metal detection methods employ powerful instrumental techniques that require a lot of time and money. Hence, the development of efficient and effective metal indicators is essential. Several synthetic metal detectors have been made, but due to their risk of harm, the use of natural pigments is considered a potential alternative. Experiments are needed for their development, but they are expensive and time-consuming. This review explores various computational methods and approaches that can be used to investigate metal-pigment interactions because choosing the right methods and approaches will affect the reliability of the results. The results show that quantum mechanical methods (ab initio, density functional theory, and semiempirical approaches) and molecular dynamics simulations have been used. Among the available methods, the density functional theory approach with the B3LYP functional and the LANL2DZ ECP and basis set is the most promising combination due to its good accuracy and cost-effectiveness. Various experimental studies were also in good agreement with the results of computational methods. However, deeper analysis still needs to be carried out to find the best combination of functions and basis sets.
Collapse
Affiliation(s)
- Gabriella Josephine Maranata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Guo W, Lei Y, Yu X, Wu Y. Ratiometric fluorometric and colorimetric dual-signal sensing platform for rapid analyzing Cr(VI), Ag(I) and HCHO in food and environmental samples based on N-doped carbon nanodots and o-phenylenediamine. Food Chem 2024; 437:137945. [PMID: 37951079 DOI: 10.1016/j.foodchem.2023.137945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Nitrogen-doped carbon nanodots (N-CNDs) were synthesized simply and efficiently using glutathione. The fluorescence emission of N-CNDs at 430 nm was effectively quenched by the fluorophore 2,3-diaminophenazine (DAP), produced through the oxidation of o-phenylenediamine (OPD) under the catalysis of Cr(VI)/Ag(I). This quenching was attributed to the fluorescence resonance energy transfer effect, while a new fluorescence emission at 560 nm was observed. Furthermore, the redox and chromogenic reaction of Cr(VI) and OPD at pH 5.4 could be effectively inhibited by formaldehyde (HCHO), resulting in the activation of N-CNDs fluorescence and the quenching of DAP fluorescence. Consequently, dual-signal sensing platforms for the rapid analysis of Cr(VI) and Ag(I) using N-CNDs/OPD and HCHO using N-CNDs/OPD/Cr(VI) were successfully constructed. By incorporating a masking reagent such as H2O2 for Cr(VI) and Cl- for Ag(I), the established sensing platform exhibited excellent selectivity and practical applicability for detecting Cr(VI), Ag(I), and HCHO in food and environmental samples.
Collapse
Affiliation(s)
- Wenwen Guo
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yaya Lei
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
16
|
Singh J, Mohan B, Kumar A, Bhardwaj P, Chauhan RK. Naphthaldehyde-Based Schiff Base Chemosensor for the Dual Sensing of Cu 2+ and Ni 2+ Ions. J Fluoresc 2024; 34:149-157. [PMID: 37178421 DOI: 10.1007/s10895-023-03245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
In this study, a simple Schiff base sensor 1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol(NNM) has been used for chemosensing of metal ions. The metal sensing properties of sensor NNM have been investigated using UV-visible and fluorescence spectroscopic approaches. The spectral investigations revealed a red shift in absorption spectra and quenching in the emission band of the ligand molecule in the presence of Cu2+ and Ni2+ ions. The binding stoichiometry of sensor NNM for the analyte (Cu2+ and Ni2+ ions) has been investigated by the Job's plot analysis and found to be 1:1 (NNM:Analyte). The data of the Benesi-Hildebrand plot demonstrated that NNM detected Cu2+ and Ni2+ ions in nanomolar quantity. The binding insights among NNM and analytes (Cu2+ and Ni2+ ions) have been confirmed by shifted IR signals. Moreover, the reusabilty of the sensor has been investigated using an EDTA solution. In addition, the sensor NNM also successfully applied to real water samples for the identification and measurement of Cu2+ and Ni2+ ions. Hence, this system could be highly applicable in environmental and biological applications.
Collapse
Affiliation(s)
- Jasbir Singh
- Department of Chemistry, Baba Mastnath University, Rohtak, 124021, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Pallavi Bhardwaj
- Department of Chemistry, Baba Mastnath University, Rohtak, 124021, India.
| | - Ravish K Chauhan
- Department of Chemistry, Indira Gandhi National College, Kurukshetra, 136132, India.
| |
Collapse
|
17
|
Shao X, Yang D, Wang M, Yue Q. A colorimetric detection of Hg 2+ based on gold nanoparticles synthesized oxidized N-methylpyrrolidone as a reducing agent. Sci Rep 2023; 13:22208. [PMID: 38097761 PMCID: PMC10721636 DOI: 10.1038/s41598-023-49551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
In this study, a gold nanoparticles colorimetric probe (AuNPs) with direct response to mercury ions (Hg2+) were developed using treated N-methylpyrrolidone (NMP) and chloroauric acid (HAuCl4) as precursors. NMP showed good reducibility after high temperature hydrolysis and could be used as reducing and stabilizing agent to synthesize AuNPs. The prepared AuNPs have obvious characteristic absorption peaks and appear wine-red. At the same time, it was found that the presence of Hg2+ can cause the aggregation of AuNPs, increased the absorbance at 700 nm, and changed the color of the solution into blue-gray. This method is capable of sensitive and specific determination of Hg2+ ranging from 1 to 30 μM, with the limit of detection (LOD) at 0.3 μM. The method showed good specificity for the determination of Hg2+ and has the potential to be applied to Hg2+ detection in sewage samples in the environment.
Collapse
Affiliation(s)
- Xiaodong Shao
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an, 710077, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Dou Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
18
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
19
|
Wang Y, Ma T, Brake J, Sun Z, Huang J, Li J, Wu X. A novel method of rapid detection for heavy metal copper ion via a specific copper chelator bathocuproinedisulfonic acid disodium salt. Sci Rep 2023; 13:10761. [PMID: 37402819 DOI: 10.1038/s41598-023-37838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The extensive usage and production of copper may lead to toxic effects in organisms due to its accumulation in the environment. Traditional methods for copper detection are time consuming and infeasible for field usage. It is necessary to discover a real-time, rapid and economical method for detecting copper to ensure human health and environmental safety. Here we developed a colorimetric paper strip method and optimized spectrum method for rapid detection of copper ion based on the specific copper chelator bathocuproinedisulfonic acid disodium salt (BCS). Both biological assays and chemical methods verified the specificity of BCS for copper. The optimized reaction conditions were 50 mM Tris-HCl pH 7.4, 200 µM BCS, 1 mM ascorbate and less than 50 µM copper. The detection limit of the copper paper strip test was 0.5 mg/L by direct visual observation and the detection time was less than 1 min. The detection results of grape, peach, apple, spinach and cabbage by the optimized spectrum method were 0.91 μg/g, 0.87 μg/g, 0.19 μg/g, 1.37 μg/g and 0.39 μg/g, respectively. The paper strip assays showed that the copper contents of grape, peach, apple, spinach and cabbage were 0.8 mg/L, 0.9 mg/L, 0.2 mg/L, 1.3 mg/L and 0.5 mg/L, respectively. These results correlated well with those determined by inductively coupled plasma-mass spectrometry (ICP-MS). The visual detection limit of the paper strip based on Cu-BCS-AgNPs was 0.06 mg/L. Our study demonstrates the potential for on-site, rapid and cost-effective copper monitoring of foods and the environment.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, China
| | - Tinglin Ma
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Joseph Brake
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | - Zhaoyue Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiayu Huang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiaobin Wu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
20
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
21
|
Liu X, Li J, Wen T, Li Z, Wang X, Li M, Ma P, Song D, Fei Q. Copper ion ratio chemiluminescence probe based on chemiluminescence resonance energy transfer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
23
|
Kolcu F, Çulhaoğlu S, Kaya İ. Synthesis and investigation of bis(phenyl)fluorene and carbazole appended dipodal Schiff base for fluorescence sensing towards Sn(II) ion and its regioselective polymerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
24
|
Vanillin allied 1,2,3- triazole as a selective sensor for detection of Al3+ ions: A potent inhibitor against Entamoeba histolytica. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Tang K, Chen Y, Tang S, Wu X, Zhao P, Fu J, Lei H, Yang Z, Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159073. [PMID: 36179841 DOI: 10.1016/j.scitotenv.2022.159073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
26
|
Gibi C, Liu CH, Barton SC, Wu JJ. Recent Progress in Morphology-Tuned Nanomaterials for the Electrochemical Detection of Heavy Metals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3930. [PMID: 36432216 PMCID: PMC9695927 DOI: 10.3390/nano12223930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are one of the most important classes of environmental pollutants which are toxic to living beings. Many efforts are made by scientists to fabricate better sensors for the identification and quantification of heavy metal ions (HMI) in water and food samples to ensure good health. Electrocatalysts have been demonstrated to play an important role in enhancing the sensitivity and selectivity of HMI detection in electrochemical sensors. In this review, we presented morphologically well-tuned nanomaterials used as efficient sensor materials. Based on the molecular dimensions, shapes, and orientation, nanomaterials can be classified into 0-D, 1-D, 2-D, and 3-D nanomaterials. Active surface areas with significant exposure of active sites and adsorption-desorption abilities are extensively varied with dimensionality, which in turn ultimately influence the sensing performance for HMI.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
| | - Scott C. Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
27
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
28
|
He K, Yu X, Qin L, Wu Y. CdS QDs: Facile synthesis, design and application as an “on–off” sensor for sensitive and selective monitoring Cu2+, Hg2+ and Mg2+ in foods. Food Chem 2022; 390:133116. [DOI: 10.1016/j.foodchem.2022.133116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
|
29
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
30
|
Synthesis and Characterization of a Carbazole-Based Schiff Base Capable of Detection of Al 3+ in Organic/Aqueous Media. J Fluoresc 2022; 32:2097-2106. [PMID: 35915282 DOI: 10.1007/s10895-022-03008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
A new fluorescence probe (L) selectively detecting Al3+ ions was synthesized via the condensation reaction, and characterized using UV-Vis, FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The limit of detection for Al3+ ions of this synthesized probe was found to be 9.29 × 10-7 M, while the Ka constant value was determined to be 1.64 × 104 M-1. The stoichiometric binding ratio of L-Al3+ was found to be 2:1 using the Job's plot method, and this ratio was also confirmed by 1H-NMR titration and mass spectrometry. The recyclability of the chemosensor was found by the fluorescence method through the addition of EDTA to the L-Al3+ solution. The obtained data showed that the carbazole-based Schiff base acted as an ideal chemosensor for Al3+. Carbazole-based Schiff base as a fluorescent sensor for detection of Al3+ was synthesized and characterized. The association constant (Ka) was calculated to be 1.64 × 104 M-1 and the limit of detection (LOD) value was determined to be 9.29 × 10-7 M. It was determined that th Schiff base was bound to Al3+ ions in 2:1 stoichiometric ratio. In the presence of other competitive metal cations, the selectivity of sensor L to Al3+ was not significantly affected.
Collapse
|
31
|
Wu H, Liu J, Chen Z, Lin P, Ou W, Wang Z, Xiao W, Chen Y, Cao D. Mechanism and Application of Surface-Charged Ferrite Nanozyme-Based Biosensor toward Colorimetric Detection of l-Cysteine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8266-8279. [PMID: 35749646 DOI: 10.1021/acs.langmuir.2c00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peroxidase-like nanozymes with robust catalytic capacity and detection specificity have been proposed as substitutes to natural peroxidases in biochemical sensing. However, the catalytic activity enhancement, detection mechanism, and application of nanozyme-based biosensors toward l-cysteine (l-Cys) detection still remain significant challenges. In this work, a doped ferrite nanozyme with well-defined structure and surface charges is fabricated by a two-step method of continuous flow coprecipitation and high-temperature annealing. The resulted ferrite nanozyme possesses an average size of 54.5 nm and a zeta-potential of 6.45 mV. A high-performance biosensor is manufactured based on the peroxidase-like catalytic feature of the doped ferrite. The ferrite nanozyme can oxidize the 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of H2O2 because of the instinctive capacity to decompose H2O2 into ·OH. The Michaelis-Menten constants (0.0911 mM for TMB, 0.140 mM for H2O2) of the ferrite nanozyme are significantly smaller than those of horseradish peroxidase. A reliable colorimetric method is established to selectively analyze l-Cys via a facile mixing-and-detecting methodology. The detection limit and linear range are 0.119 μM and 0.2-20 μM, respectively. Taking the merits of the ferrite nanozyme-based biosensors, the l-Cys level in the human serum can be qualitatively detected. It can be anticipated that the surface-charged ferrite nanozyme shows great application prospects in the fields of bioanalytical chemistry and point-of-care testing.
Collapse
Affiliation(s)
- Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zhuoyu Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wentao Ou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zian Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
32
|
Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
DHASARATHAN S, SHUNMUGAPERUMAL S, SELVARAJ P K. Exploration of Role of Concentration on Sensing Activities using Novel unsymmetrical Schiff bases. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1008926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Wang X, Gao X, Lin X, Zheng S, Yan Y, Wang S, Liu Y. A reliable fluorescent and colorimetric dual-readout assay for Ag + tracing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120696. [PMID: 34896676 DOI: 10.1016/j.saa.2021.120696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Silver ion pollution is a great threat to global environment and public healthcare today. Thus, quick, portable and sensitive assays for Ag+ tracing are highly needed. Herein, a reliable fluorescent and colorimetric dual-channel assay has been constructed for Ag+ detection by utilizing a terbium-based fluorescent nanomaterial (named as Tb-DPA) and a Pt/Pd nanoflower (Pt/Pd NF)-triggered reaction between N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt (TOPS) and 4-amino-antipyrine (4-AAP). Initially, in the sensing system containing 4-AAP, TOPS, Tb-DPA and Pt/Pd NF, TOPS and 4-AAP is catalyzed by Pt/Pd NF to produce a purple compound (called as PC1), which endows a broad UV absorption that can fully cover the emission band of Tb-DPA. Thus, the system exhibits a high UV absorption (originating from PC1) and a low fluorescence intensity (originating from Tb-DPA) which has been quenched by PC1 through a filtering effect. However, when the system meets Ag+, the oxidase-like activity of Pt/Pd NF will be inhibited, leading less amount of PC1. As a result, the system exhibits a decreased UV absorption and a recovered fluorescence intensity, both of which can be used for Ag+ detection, reporting low detection limits of 3.63 nM and 1.63 nM, respectively. Specially, results from the dual-channel assay can mutually validate each other, improving the detection reliability. Moreover, this dual-mode assay shows good capability toward Ag+ detection in real samples, illustrating the potential for practical applications.
Collapse
Affiliation(s)
- Xinke Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong Yan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
35
|
Singh G, Suman, Diksha, Mohit, Gupta S, Thakur Y, Gonzalez-SilveraEspinosa-RuizAngelesEsteban. Development of 3-Acetylcoumarin derived organosilane as potent antioxidant: Selective and sensitive colorimetric and fluorescent sensor for Al3+ ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
He Y, Wang Y, Mao G, Liang C, Fan M. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal Chim Acta 2022; 1191:339251. [PMID: 35033275 DOI: 10.1016/j.aca.2021.339251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Owing to the high risk to human and environmental health, heavy metal pollution has become a global problem. Rapid, accurate and multiplexed determination of heavy metal ions is critical. In this work, we reported a promising approach to designing ratiometric fluorescent nanoprobes for multiplexed determination of Hg2+, Cu2+, and Ag+ ions. The nanoprobes (CDs-QDx) were designed by mixing the CDs and multicolor CdTe QDs without the involvement of recognition elements. The CDs were insensitive to heavy metal ions while CdTe QDs showed the size-dependent fluorescence response to different heavy metal ions, thereby establishing a ratiometric detection scheme by measuring the fluorescence intensity ratios of CDs-QDx systems. By evaluating the detection performance, the CDs-QDx (x = 570, 650, and 702) were successfully used for differentiation and quantification of Hg2+, Cu2+, and Ag+ ions. In addition, we also carried out the detection of heavy metal ions in actual samples with acceptable results. We believed that this work offers new insight into the design of ratiometric fluorescent nanoprobe for multiplexed determination of not only heavy metals but also some other analytes by combining the CDs with CdTe QDs with fine-tuned sizes.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Gennian Mao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Min Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
37
|
Yang Q, Wan X, Chen Y, Luo H, Zheng Y, Li L. Theoretical investigation complexation characteristics and UV-Vis absorption spectral properties of CdTe QDs with four capping agents. J Mol Model 2022; 28:28. [PMID: 34984545 DOI: 10.1007/s00894-021-04940-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023]
Abstract
In this paper, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to study the complexation characteristics CdTe QDs with four different capping agents, i.e. 3-mercaptopropionic acid (MPA), reduced glutathione (GSH), 1-thioglycerol (TG) and 2-mercaptoethanesulfonate (MES). The properties of these complexes are analyzed by the complexation free energies, bond lengths, LOL, ADCH charges, frontier molecular orbitals and the UV-Vis absorption spectra. The results indicate that the four capping agents could form stable complexes with CdTe QDs. Whether the four capping agents interact with (CdTe)6 or (CdTe)9, MES has the strongest complexation ability with CdTe QDs and the MES-complexes are the most stable. For (CdTe)6, A2-MES is the most stable configuration. The complexation free energy and bond length of A2-MES are - 74.50 kcal/mol and 2.461 Å, respectively. When (CdTe)9 as substrate, A4-MES is the most stable configuration and corresponding complexation free energy is - 100.97 kcal/mol, which is followed by A4-MPA (- 57.75 kcal/mol) and A3-TG (- 60.20 kcal/mol), while A4-GSH (- 44.47 kcal/mol) is the weakest. Moreover, the electron amount transferred from MES to CdTe QDs is the most, and the ADCH charge value is 1.47 e. The absorption intensity of UV-visible light after complexation is also the largest. This is consistent with the result of the complexation free energy. Thus, it can be seen that the complexation abilities of four capping agents are in order of MES > MPA≈TG > GSH.
Collapse
Affiliation(s)
- Qinghong Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xujiang Wan
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Hui Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
38
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
39
|
Zhang K, Zhu G, Wei Y, Zhang L, Shen Y. Engineering of an Upconversion Luminescence Sensing Platform Based on the Competition Effect for Mercury-Ion Monitoring in Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8565-8570. [PMID: 34310878 DOI: 10.1021/acs.jafc.1c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurately monitoring mercury ions (Hg2+) in food and agriculture-related matrixes (e.g., green tea) is of great significance to safeguard food safety. Here, we employed upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) to engineer a cysteine (Cys)-assisted anti-Stokes luminescence sensing platform (UCNPs-AuNPs) for precisely detecting residual Hg2+ in green tea through the competition effect. Initially, AuNPs could effectively quench the luminescence of UCNPs through the luminescence resonance energy transfer process, which was then interrupted by Cys-triggered AuNP aggregation via Au-S, thereby restoring UCNP luminescence. Interestingly, owing to the competition effect with AuNPs toward Cys, Hg2+ could weaken the luminescence restoring efficiency, achieving a Hg2+ concentration-dependent luminescence change. On this basis, a facile, reliable, and sensitive upconversion luminescence sensing platform for monitoring residual Hg2+ in green tea was successfully established. This study offers a novel insight into integrating the competition effect and anti-Stokes luminescence for food- and agriculture-related contaminant monitoring.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guang Zhu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
40
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Gauthama B, Narayana B, Sarojini B, Suresh N, Sangappa Y, Kudva AK, Satyanarayana G, Raghu SV. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Zhou Q, Li Z, Wang Q, Peng L, Luo S, Gu FL. Polymer-capped CdSe/ZnS quantum dots for the sensitive detection of Cu 2+ and Hg 2+ and the quenching mechanism. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2305-2312. [PMID: 33949435 DOI: 10.1039/d1ay00432h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, poly(styrene-co-maleic anhydride)-capped CdSe/ZnS quantum dots (QDs) aminolyzed with ethanolamine are proposed as fluorescent probes for the detection of Cu2+ and Hg2+, and two different quenching mechanisms are discussed in detail. The coordination abilities of the surface polymer of CdSe/ZnS QDs and two metal ions are calculated by density functional theory (DFT). The photoinduced electron transfer from excited QDs to Cu2+ unoccupied orbitals is enhanced due to the coordination between Cu2+ and the surface polymer of QDs. The electron transfer consumes non-radiative energy and performs fluorescence quenching. For Hg2+, the formation of HgS and the slight aggregation of polymer-coated CdSe/ZnS QDs lead to fluorescence quenching. The probe is sensitive to both Cu2+ and Hg2+, and the response can be detected within 1 min without adjusting the pH. With the addition of a masking agent, Cu2+ and Hg2+ can be exclusively detected in coexistence with another ion. For Cu2+, a linear relation in the concentration ranging from 0.02 to 0.7 μM was found between the relative fluorescence intensity (F0/F) and the concentration of Cu2+; the limit of detection (S/N = 3) is 6.94 nM. For Hg2+, a linear relation ranging from 0.1 to 1.4 μM was found between ln(F0/F) and the concentration of Hg2+; the limit of detection is 20.58 nM.
Collapse
Affiliation(s)
- Quanxiu Zhou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Zhaofa Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Qunfang Wang
- Analysis and Testing Centre, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Liang Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Shihe Luo
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
43
|
Malik LA, Pandith AH, Bashir A, Qureashi A, Manzoor T. Studies on a glutathione coated hollow ZnO modified glassy carbon electrode; a novel Pb(ii) selective electrochemical sensor. RSC Adv 2021; 11:18270-18278. [PMID: 35480912 PMCID: PMC9033425 DOI: 10.1039/d1ra01294k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the electrochemical detection of heavy metal ions such as Pb(ii), Cd(ii) and Hg(ii) ions while using glutathione coated hollow ZnO modified glassy carbon electrode (Glu-h-ZnO/GCE). An excellent voltammetric response of the modified electrode towards these metal ions was observed by different voltammetric techniques. Among the different target metal ions, a selective electrochemical response (sensitivity = 4.57 μA μM-1) for the detection of Pb(ii) ions was obtained with differential pulse voltammetric (DPV) measurements. Besides, under optimal experimental conditions and in the linear concentration range of 2-18 μM, a very low detection limit of 0.42 μM was obtained for Pb(ii) ion. The observed electrochemical behaviour of Glu-h-ZnO/GCE towards these metal ions is in conformity with the band gap of the composite in the presence of various test metal ions. The band gap studies of the composite and various "Composite-Metal Ion" systems were obtained by reflectance as well as by computational methods where results are in close agreement, justifying the observed electrochemical behaviour of the systems. The lowest band gap value of the "Composite-Pb" system may be the reason for the excellent electrochemical response of the Glu-h-ZnO modified GCE towards the detection of Pb(ii) ion.
Collapse
Affiliation(s)
- Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar-190006 Kashmir India +91-194-2414049 +91-194-2424900 +91-7006429021
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar-190006 Kashmir India +91-194-2414049 +91-194-2424900 +91-7006429021
| | - Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar-190006 Kashmir India +91-194-2414049 +91-194-2424900 +91-7006429021
| | - Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar-190006 Kashmir India +91-194-2414049 +91-194-2424900 +91-7006429021
| | - Taniya Manzoor
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar-190006 Kashmir India +91-194-2414049 +91-194-2424900 +91-7006429021
| |
Collapse
|
44
|
Wang S, Yu J, Zhao P, Guo S, Han S. One-Step Synthesis of Water-Soluble CdS Quantum Dots for Silver-Ion Detection. ACS OMEGA 2021; 6:7139-7146. [PMID: 33748627 PMCID: PMC7970548 DOI: 10.1021/acsomega.1c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
To realize fast synthesis of cadmium sulfide (CdS) quantum dots with a low-toxic material, a one-step synthesis method is investigated and conducted. Potato extract is used as a stabilizer and modifier, by which aqueous CdS quantum dots can be prepared at a lower temperature with a shorter time. Through systematic characterization and analysis, a green and fast synthesis mechanism is demonstrated in detail. And the nanoscale CdS quantum dots are uniform in size and dispersity. With low cost and high sensitivity, the prepared CdS quantum dots show promising application in silver-ion detection. This method shows great significance for an environmentally friendly and facile synthesis of CdS quantum dots.
Collapse
Affiliation(s)
- Shen Wang
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Yu
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Pingnan Zhao
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Siyao Guo
- School
of Civil Engineering, Qingdao University
of Technology, Qingdao 266033, China
| | - Song Han
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
45
|
Jlalia I, Zouaoui F, Chabbah T, Chatti S, Saint-Martin P, Casabianca H, Minot S, Bessueille F, Marestin C, Mercier R, Errachid A, Abderrazak H, Hammami M, Jaffrezic-Renault N. Adsorption Characteristics of WFD Heavy Metal Ions on New Biosourced Polyimide Films Determined by Electrochemical Impedance Spectroscopy. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Tall A, da Costa KR, de Oliveira MJ, Tapsoba I, Rocha U, Sales TO, Goulart MOF, Santos JCC. Photoluminescent nanoprobes based on thiols capped CdTe quantum dots for direct determination of thimerosal in vaccines. Talanta 2021; 221:121545. [DOI: 10.1016/j.talanta.2020.121545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
|
47
|
Xie YF, Jiang YJ, Zou HY, Wang J, Huang CZ. Discrimination of copper and silver ions based on the label-free quantum dots. Talanta 2020; 220:121430. [PMID: 32928435 DOI: 10.1016/j.talanta.2020.121430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
A simple and fast method for copper ions (Cu2+) and silver ions (Ag+) detection was established with cadmium telluride quantum dots (CdTe QDs) as fluorescent probes. In the presence of Cu2+ or Ag+, the fluorescence intensity of TGA-CdTe QD can be significantly quenched, which fitted a linear relationship between the fluorescence quenching degree (F0-F)/F0 and the concentration of metal ions. In this work, the lowest detected concentration for Cu2+ and Ag+ was 35.0 nM and 25.3 nM, respectively. In addition, the differentiation of Cu2+ and Ag+ at different concentrations was realized with the principal component analysis (PCA). Furthermore, Cu2+ was successfully detected in body fluids. This method provides a good potential for copper ions and silver ions detection with simplicity, rapidity, and excellent selectivity.
Collapse
Affiliation(s)
- Yi Fen Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yong Jian Jiang
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hong Yan Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Kanwar VS, Sharma A, Srivastav AL, Rani L. Phytoremediation of toxic metals present in soil and water environment: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44835-44860. [PMID: 32981020 DOI: 10.1007/s11356-020-10713-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals are one of the most hazardous inorganic contaminants of both water and soil environment composition. Normally, heavy metals are non-biodegradable in nature because of their long persistence in the environment. Trace amounts of heavy metal contamination may pose severe health problems in human beings after prolonged consumption. Many instrumental techniques such as atomic absorption spectrophotometry, inductively coupled plasma-mass spectrometry, X-ray fluorescence, neutron activation analysis, etc. have been developed to determine their concentration in water as well as in the soil up to ppm, ppb, or ppt levels. Recent advances in these techniques along with their respective advantages and limitations are being discussed in the present paper. Moreover, some possible remedial phytoremediation approaches (phytostimulation, phytoextraction, phyotovolatilization, rhizofiltration, phytostabilization) have been presented for the removal of the heavy metal contamination from the water and soil environments.
Collapse
Affiliation(s)
- Varinder Singh Kanwar
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Ajay Sharma
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Lata Rani
- School of Basic Sciences, Chitkara University, Solan, Himachal Pradesh, 174103, India
| |
Collapse
|
49
|
Ünver H, Boyacioglu B, Demir N, Zeyrek CT, Yıldız M. A Schiff base colorimetric probe for real-time naked-eye detection of biologically important fluoride and cyanide ions: Single crystal, experimental, theoretical, biological and antioxidant studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Shen F, Mao S, Mathivanan J, Wu Y, Chandrasekaran AR, Liu H, Gan J, Sheng J. Short DNA Oligonucleotide as a Ag + Binding Detector. ACS OMEGA 2020; 5:28565-28570. [PMID: 33195907 PMCID: PMC7658945 DOI: 10.1021/acsomega.0c03372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Ag+ has been known to mediate several natural metallo-base pairs. Based on the unique structural information of a short 8-mer DNA strand (5'-GCACGCGC-3') induced by Ag+, we constructed several fluorescent DNA beacons for the detection of Ag+ according to the increase in the fluorescence emission on Ag+ binding. This Ag+ detection assay is quick, sensitive, and easy to adapt and can function in a wide range of temperatures from 5 to 65 °C.
Collapse
Affiliation(s)
- Fusheng Shen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Song Mao
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Johnsi Mathivanan
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Ying Wu
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Arun Richard Chandrasekaran
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Hehua Liu
- Shanghai
Public Health Clinical Center, State Key Laboratory of Genetic Engineering,
Collaborative Innovation Center of Genetics and Development, School
of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai
Public Health Clinical Center, State Key Laboratory of Genetic Engineering,
Collaborative Innovation Center of Genetics and Development, School
of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jia Sheng
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| |
Collapse
|