1
|
Yang SH, Tao G, Yang L, Wu X, Liu JW, Dagher F, Ou SY, Song Y, Huang JQ. Dietary phytochemical and metabolic disease prevention: Focus on plant proteins. Front Nutr 2023; 10:1089487. [PMID: 36761228 PMCID: PMC9905127 DOI: 10.3389/fnut.2023.1089487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Plant-based functional foods have attracted increasing research interest to validate their use in preventing metabolic disease. Since it is increasingly recognized that inflammation, oxidative stress, and circadian rhythm play vital roles in various metabolic diseases, including diabetes, obesity and non-alcoholic liver disease, plant proteins, protein hydrolysates, and food extracts that intervene in these biological processes are promising dietary supplements to prevent metabolic diseases. Here, we reviewed the recent research on plant-based foods used for metabolic disease prevention and provided new perspectives regarding the current study gaps and future directions in this field.
Collapse
Affiliation(s)
- Song-hong Yang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Liu Yang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xiaohui Wu
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing-wen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Shi-yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yuan Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China,Yuan Song,
| | - Jun-qing Huang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Jun-qing Huang,
| |
Collapse
|
2
|
Improving the Efficiency and Antioxidant Activity of Essential Oil Extraction from Abies sachalinensis by Underwater Shockwave Pretreatment for the Construction of Low-Energy and Sustainable Essential Oil Extraction System. Processes (Basel) 2022. [DOI: 10.3390/pr10122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Essential oils (EOs) from Abies sachalinensis (Sakhalin fir), a conifer species found in Sakhalin Island and Hokkaido in Japan, effectively remove nitrogen dioxide and possess antifungal activity. EOs also exert a relaxing effect and enhance air quality. Underwater shock waves generate instantaneous high pressure that ruptures cell walls, enhancing the performance of steam distillation and oil extraction. In this study, we aimed to increase the yield and quality of A. sachalinensis extracts using shockwaves. Leaves and branches were subjected to shockwave pretreatment or left untreated before EO extraction by steam distillation. EO yield of untreated dried leaves was 2.4 g/kg of dry leaf weight (DW). Upon application of a 3.0 kV, 3.6 kJ shockwave, the yield increased with the number of shockwave cycles. After ten cycles, yield increased 13.6-fold. Pretreatment with shockwaves for 10 cycles resulted in approximately 6- and 13-fold reductions in total energy consumption relative to fresh and dried leaves, respectively. Antioxidant activity increased more than 30-fold in shockwave-pretreated leaves than in untreated dried leaves after 10 cycles. This novel process can significantly reduce the energy used for EO extraction in steam distillation, thereby contributing to the development of a sustainable, low-energy EO production system.
Collapse
|
3
|
Huang WY, Heo W, Jeong I, Kim MJ, Han BK, Shin EC, Kim YJ. Ameliorative Effect of Citrus junos Tanaka Waste (By-Product) Water Extract on Particulate Matter 10-Induced Lung Damage. Nutrients 2022; 14:nu14112270. [PMID: 35684069 PMCID: PMC9183116 DOI: 10.3390/nu14112270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Citrus junos Tanaka (CJ)-related products are well-accepted by consumers worldwide; thus, they generate huge amounts of waste (peel, pulp, and seed) through CJ processing. Although some CJ by-products (CJBs) are recycled, their use is limited owing to the limited understanding of their nutritional and economic value. The exposure to particulate matter (PM) increases the risk of respiratory diseases. In this study, we investigated the ameliorative effects of CJB extracts (100, 200 mg/kg/day, 7 days) on PM10-induced (10 mg/kg, intranasal, 6 h) lung damage in BALB/c mice. Cell type-specific signaling pathways are examined using the A549 (PM10, 200 μg/mL, 6 h) and RAW264.7 (LPS, 100 ng/mL, 6 h) cell lines. The CJB extracts significantly attenuated PM10-induced pulmonary damage and inflammatory cell infiltration in a mouse model. The essential protein markers in inflammatory signaling pathways, such as AKT, ERK, JNK, and NF-κB for PM10-induced phosphorylation, were dramatically reduced by CJB extract treatment in both the mouse and cell models. Furthermore, the CJB extracts reduced the production of reactive oxygen species and nitric oxide in a dose-dependent manner in the cells. Comprehensively, the CJB extracts were effective in reducing PM10-induced lung injuries by suppressing pulmonary inflammation, potentially due to their anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Wen-Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju 28647, Korea;
| | - Inhye Jeong
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Mi-Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
| | - Bok-Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
- Correspondence: ; Tel.: +82-44-860-1040
| |
Collapse
|
4
|
Kawai H, Kuraya E, Touyama A, Higa O, Hokamoto K, Tokeshi K, Yasuda A, Naragaki T, Itoh S. Improved yield and antioxidant activity of essential oil from Alpinia zerumbet (Zingiberaceae) leaves by underwater shockwave pretreatment. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Zibaee E, Kamalian S, Tajvar M, Amiri MS, Ramezani M, Moghadam AT, Emami SA, Sahebkar A. Citrus species: A Review of Traditional Uses, Phytochemistry and Pharmacology. Curr Pharm Des 2020; 26:44-97. [PMID: 31775593 DOI: 10.2174/1381612825666191127115601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The Citrus species from family Rutaceae has worldwide applications such as cardiovascular and gastrointestinal problems. Phytochemical investigations have shown that these plants have constituents including flavonoids, limonoids and carotenoids. There are many reports on a wide range of activities such as antiinflammatory, anti-oxidant, immunomodulatory, metabolic, cardiovascular and neuroprotective effects. In the current review, we discuss information regarding botany, phytochemistry, ethnobotany uses, traditional knowledge and pharmacological aspects of the Citrus species.
Collapse
Affiliation(s)
- Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Kamalian
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrangiz Tajvar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali T Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed A Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Fan Y, Mehta DV, Basheer IM, MacIntosh AJ. A review on underwater shockwave processing and its application in food technology. Crit Rev Food Sci Nutr 2020; 62:980-988. [PMID: 33938777 DOI: 10.1080/10408398.2020.1832439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Underwater shockwave processing (USP) is a non-thermal food processing method where a high-energy impulse is generated near a food product submerged in a liquid. The resulting shockwave transfers energy to the food, and is used to improve quality, safety, and nutritional aspects. This review presents the origin and evolution of the technology, principles of shockwave generation, mechanism of action, and applications in the food industry. The most common food application of USP is currently meat tenderization, where it is used to improve the sensory characteristics of meat as a value-added process. The use of USP as a pretreatment process has also been investigated to increase the yield and nutritional value of extracted juice and oil via softening of plant tissues. This technique also has an impact on food-borne pathogens and spoilage microorganisms in food, however, it is more effective when combined with other hurdles. Major challenges facing the industrial implementation of underwater shockwave technology include the lack of appropriate packaging materials resistant to the disruptive effects of shockwaves, the capital investment required, and a lack of regulatory information pertaining to USP. So far, most studies of underwater shockwaves on food are at the laboratory scale and validation stage. Further research endeavors and collaboration between food scientists, engineers, and regulators are necessary to scale up this technology to industrial implementation.
Collapse
Affiliation(s)
- Ying Fan
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Devanshu V Mehta
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Iqdiam M Basheer
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida, USA
| | - Andrew J MacIntosh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Modification of Cockcroft–Walton-Based High-Voltage Multipliers with 220 V and 50 Hz Input for Non-Thermal Food Processing Apparatus. SUSTAINABILITY 2020. [DOI: 10.3390/su12166330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A design of high-voltage multipliers to generate underwater shockwaves is one of the most important factors for successfully providing non-thermal food processing in a cost-effective manner. To be capable of fully utilizing the Cockcroft–Walton-based high-voltage multipliers for underwater shockwave generation, this paper presents a topological modification of three interesting design approaches in bipolar structure for 220 V and 50 Hz AC input to generate more than 3.5 kV DC output within short time periods. In addition to Cockcroft–Walton multipliers (CWMs), the first modified scheme employs a positive full-wave rectifier (FWR) and positive voltage multiplier block (VMB), the second modified scheme employs positive/negative half-wave rectifiers (HWRs), and the last modified scheme employs a switched-capacitor AC-AC converter. To comparatively analyze their performances, the digitally controlled operations of the modified realization schemes as well as their electrical characteristic estimation based on a four-terminal equivalent model are described in detail. The effectiveness of three modified circuit configurations and the correctness of the given theoretical analysis are verified through SPICE (Simulation Program with Integrated Circuit Emphasis) simulation results. The formulas achieved from theoretical estimation are particularly useful when designing the proposed high-voltage multipliers (HVMs) because good agreement between the theoretical and simulation results can be achieved.
Collapse
|
8
|
Durazzo A, Lucarini M, Novellino E, Daliu P, Santini A. Fruit-based juices: Focus on antioxidant properties-Study approach and update. Phytother Res 2019; 33:1754-1769. [PMID: 31155809 DOI: 10.1002/ptr.6380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
This paper proposes a perspective literature review of the antioxidant properties in fruit-based juices. The total antioxidant properties due to compounds such as carotenoids, polyphenolic compounds, flavonoids, and tannins as well as the assessment of interactions between natural active compounds and other food matrix components can be seen as the first step in the study of potential health benefits of fruit-based juices. A brief summary is given on the significance of antioxidant properties of fruit juices, the conventional methods for antioxidant activity evaluation, and on the newly emerged sample analysis and data interpretation strategies, that is, chemometric analysis based on spectroscopic data. The effect of fruit processing techniques and the addition of ingredients on the antioxidant properties of fruit-based juices are also discussed.
Collapse
Affiliation(s)
| | | | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Patricia Daliu
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
9
|
Park JA, Oh JE, Cho MS. Development of yuja ( Citrus junos) beverage based on antioxidant properties and sensory attributes using response surface methodology. Journal of Food Science and Technology 2019; 56:1854-1863. [PMID: 30996421 DOI: 10.1007/s13197-019-03639-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022]
Abstract
This study aimed to develop a new type of Citrus junos beverage (known as yuja in Korean and yuzu in Japanese) based on a traditional drink preparation method (Galsu). Processing conditions (yuja extract, sugar, and soybean milk) were optimized using response surface methodology (RSM) to develop the beverage. The polynomial models developed by RSM were based on physicochemical characteristics and sensory attributes. Sugar, vitamin C, and total phenolic compound contents, DPPH free radical scavenging activity, sweet odor, yuja flavor, sweet taste, and pungent sensation were used as indices of positive product quality. Beany flavor, astringent taste, beany aftertaste, and astringent aftertaste, were used as indices of negative product quality. Sour odor and sour taste, which are the major characteristics of the traditional yuja beverage, were set in a range to optimize the numerical model. The predicted optimum formulation of yuja beverage (Galsu) as a final product was determined to be 28.4% yuja extract, 36.6% sugar, and 35.0% soybean milk.
Collapse
Affiliation(s)
- Jeong Ah Park
- 1Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Ji Eun Oh
- 2College of Science and Industry Convergence, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Mi Sook Cho
- 1Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
10
|
Abe H, Ishioka M, Fujita Y, Umeno A, Yasunaga M, Sato A, Ohnishi S, Suzuki S, Ishida N, Shichiri M, Yoshida Y, Nakajima Y. Yuzu ( Citrus junos Tanaka) Peel Attenuates Dextran Sulfate Sodium-induced Murine Experimental Colitis. J Oleo Sci 2018; 67:335-344. [DOI: 10.5650/jos.ess17184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroko Abe
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Yasuko Fujita
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mayu Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
11
|
Adhikari D, Panthi VK, Pangeni R, Kim HJ, Park JW. Preparation, Characterization, and Biological Activities of Topical Anti-Aging Ingredients in a Citrus junos Callus Extract. Molecules 2017; 22:molecules22122198. [PMID: 29232889 PMCID: PMC6149992 DOI: 10.3390/molecules22122198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we prepared and characterized a callus extract from Citrus junos and assessed its utility as a source of topical anti-aging ingredients. Callus extract was produced by aqueous extraction from Citrus junos grown on Murashige and Skoog medium with picloram as a growth regulator. After measuring the total phenolic and flavonoid contents, the major phenolic compound in calli was identified as p-hydroxycinnamoylmalic acid (1) by spectroscopic analysis. The total phenol content in the extract was determined to be 24.50 ± 0.43 mg/g of gallic acid equivalents; however, the total flavonoid content of the extract was not determined. The biological activities of the callus extract, in terms of skin anti-aging, were assessed by measuring the anti-tyrosinase activity in, and melanogenesis by, melanoma cells; and proliferation of, and procollagen synthesis by, human fibroblasts. The callus extract was incorporated into nanoliposomes (NLs) to improve its percutaneous absorption. Addition of the callus extract resulted in a 1.85-fold decrease in the melanin content of melanocytes compared with that with arbutin. The extract (500 μg/mL) significantly promoted the proliferation of, and procollagen synthesis by, fibroblasts (by 154% and 176%, respectively). In addition, the flux through the human epidermis of Citrus junos callus extract incorporated into NLs was 17.67-fold higher than that of the callus extract alone. These findings suggest that Citrus junos callus extract-loaded NLs have promise as an anti-aging cosmetic, as well as having a skin-lightening effect.
Collapse
Affiliation(s)
- Deepak Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Vijay Kumar Panthi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea.
| |
Collapse
|
12
|
Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot ( Daucus carota L.) juice. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Underwater Shockwave Pretreatment Process to Improve the Scent of Extracted Citrus junos Tanaka (Yuzu) Juice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2017; 2017:2375181. [PMID: 28761874 PMCID: PMC5518519 DOI: 10.1155/2017/2375181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022]
Abstract
Citrus junos Tanaka (yuzu) has a strong characteristic aroma and thus its juice is used in various Japanese foods. Herein, we evaluate the volatile compounds in yuzu juice to investigate whether underwater shockwave pretreatment affects its scent. A shockwave pretreatment at increased discharge and energy of 3.5 kV and 4.9 kJ, respectively, increased the content of aroma-active compounds. Moreover, the underwater shockwave pretreatment afforded an approximate tenfold increase in the scent intensity of yuzu juice cultivated in Rikuzentakata. The proposed treatment method exhibited reliable and good performance for the extraction of volatile and aroma-active compounds from the yuzu fruit. The broad applicability and high reliability of this technique for improving the scent of yuzu fruit juice were demonstrated, confirming its potential for application to a wide range of food extraction processes.
Collapse
|
14
|
Wu CS, Shih WL, Liao HT, Chan WC, Tsou CH. Fabrication, characterization, cytocompatibility, and biological activity of lemon fiber-filled polyester composites. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1309542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Taiwan, Republic of China
| | - Hsin-Tzu Liao
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Wen-Chia Chan
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan, Republic of China
| | - Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|