1
|
Ning J, Chen J, Zhu Q, Shi M, Chen J, Liu X, Luo X, Yue X. Peptidome profiling of human, bovine, and donkey colostrum through label-free quantitative analysis reveals proteolysis of milk proteins. Food Funct 2024; 15:7161-7173. [PMID: 38888609 DOI: 10.1039/d4fo00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Proteins and peptides play vital roles in different biological processes in vivo. As a dynamic hydrolysis system, milk is rich in proteins and proteases and provides a constant supply of endogenous bioactive peptides to newborn mammals. Previous studies have primarily focused on researching bioactive peptides by adding exogenous enzymes to milk samples. However, such an approach overlooks the significance of endogenous peptides and parent proteins that naturally exist in milk. Herein, we analyzed and compared parent proteins and their releasing peptides in human colostrum (HC), bovine colostrum (BC), and donkey colostrum (DC). The predominant proteins and hydrolyzed peptides in the three types of milk were identified. Among them, peptides were found to possess common bioactivities, including ACE inhibitory, antioxidant, antibacterial and immunomodulatory properties in HC, BC, and DC. Furthermore, the biological functions of these parent proteins were clarified using bioinformatics. These insights offer a novel perspective on natural bioactive peptides and the potential utilization of specific parent proteins and peptides to develop infant formulae derived from diverse milk sources.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jialu Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyue Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Ning J, Yang M, Zhu Q, Liu X, Li M, Luo X, Yue X. Revealing the diversity of endogenous peptides and parent proteins in human colostrum and mature milk through peptidomics analysis. Food Chem 2024; 445:138651. [PMID: 38359565 DOI: 10.1016/j.foodchem.2024.138651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Endogenous peptides and their parent proteins are important nutritional components with diverse biological functions. The objective of this study was to analyze and compare endogenous peptides and parent proteins found in human colostrum (HC) and human mature milk (HM) using a 4D label-free technique. In total, 5162 and 940 endogenous peptides derived from 258 parent proteins were identified in human milk by database (DB) search and de novo, respectively. Among these peptides, 2446 differentially expressed endogenous peptides with various bioactivities were identified. The Gene Ontology analysis unveiled the cellular components, biological processes, and molecular functions associated with these parent proteins. Metabolic pathway analysis suggested that neutrophil extracellular trap formation had the greatest significance with 24 parent proteins. These findings will offer a fresh perspective on the development of infant formula powder, highlighting the potential for incorporating these changes to enhance its nutritional composition and benefits.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Ning J, Li M, Chen W, Yang M, Chen J, Luo X, Yue X. Characterization and biological function analysis of endogenous peptides derived from donkey colostrum proteins. Food Funct 2023; 14:8261-8275. [PMID: 37602399 DOI: 10.1039/d3fo01703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Donkey colostrum, due to its abundance of active ingredients, including lysozyme, proteins, and peptides, is essential for the growth and immune defence of newborns. However, research on endogenous peptides in donkey colostrum is inadequate. This study analysed the profiles of endogenous peptides, their potential bioactivity, and the enzymes that generated these peptides using two different strategies. A total of 6202 endogenous peptides were characterised through a database search, while an additional 2997 peptides were identified de novo. Among the 1142 proteins identified, trypsin and plasmin demonstrated the highest bioactivities. Furthermore, a bioinformatics-based screening identified antioxidant peptides, angiotensin I-converting enzyme inhibitory peptides, and dipeptidyl peptidase IV inhibitory peptides as the three most active peptides. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted. These findings enhance our knowledge of endogenous peptides in donkey colostrum and provide crucial information regarding these peptides as nutritional factors for the future development of functional foods derived from donkey sources.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Weiyan Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Chauvet L, Ménard O, Le Gouar Y, Henry G, Jardin J, Hennetier M, Croguennec T, Van Audenhaege M, Dupont D, Lemaire M, Le Huërou-Luron I, Deglaire A. Protein ingredient quality of infant formulas impacts their structure and kinetics of proteolysis under in vitro dynamic digestion. Food Res Int 2023; 169:112883. [PMID: 37254331 DOI: 10.1016/j.foodres.2023.112883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Infant formula (IF) is a complex matrix requiring numerous ingredients and processing steps. The objective was to understand how the quality of protein ingredients impacts IF structure and, in turn, their kinetics of digestion. Four powdered IFs (A/B/C/D), based on commercial whey protein (WP) ingredients, with different protein denaturation levels and composition (A/B/C), and on caseins with different supramolecular organisations (C/D), were produced at a semi-industrial level after homogenization and spray-drying. Once reconstituted in water (13 %, wt/wt), the IF microstructure was analysed with asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractometer, transmission electron microscopy and electrophoresis. The rehydrated IFs were subjected to simulated infant in vitro dynamic digestion (DIDGI®). Digesta were regularly sampled to follow structural changes (confocal microscopy, laser-light scattering) and proteolysis (OPA, SDS-PAGE, LC-MS/MS, cation-exchange chromatography). Before digestion, different microstructures were observed among IFs. IF-A, characterized by more denatured WPs, presented star-shaped mixed aggregates, with protein aggregates bounded to casein micelles, themselves adsorbed at the fat droplet interface. Non-micellar caseins, brought by non-micellar casein powder (IF-D) underwent rearrangement and aggregation at the interface of flocculated fat droplets, leading to a largely different microstructure of IF emulsion, with large aggregates of lipids and proteins. During digestion, IF-A more digested (degree of proteolysis + 16 %) at 180 min of intestinal phase than IF-C/D. The modification of the supramolecular organisation of caseins implied different kinetics of peptide release derived from caseins during the gastric phase (more abundant at G80 for IF-D). Bioactive peptide release kinetics were also different during digestion with IF-C presenting a maximal abundance for a large proportion of them. Overall, the present study highlights the importance of the structure and composition of the protein ingredients (WPs and caseins) selected for IF formulation on the final IF structure and, in turn, on proteolysis. Whether it has some physiological consequences remains to be investigated.
Collapse
Affiliation(s)
- Lucile Chauvet
- INRAE, Institut Agro, STLO, 35042 Rennes, France; Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France; SODIAAL International, Centre Recherche & Innovation, Rennes, France
| | | | | | | | | | - Marie Hennetier
- Université de Toulouse, Institut National Polytechnique de Toulouse - Ecole d'ingénieur de Purpan, Département Sciences Agronomique et Agroalimentaire, Toulouse, France
| | | | | | | | - Marion Lemaire
- SODIAAL International, Centre Recherche & Innovation, Rennes, France
| | | | | |
Collapse
|
5
|
van Dongen KCW, Ioannou A, Wesseling S, Beekmann K, Belzer C. Differences in gut microbial fructoselysine degradation activity between breast-fed and formula-fed infants. FEMS Microbiol Ecol 2022; 99:6849965. [PMID: 36442156 PMCID: PMC9749803 DOI: 10.1093/femsec/fiac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The Amadori product fructoselysine is formed upon heating of food products and is abundantly present in infant formula while being almost absent in breast milk. The human gut microbiota can degrade fructoselysine for which interindividual differences have been described for adults. The aim of this study is to compare functional differences in microbial fructoselysine degradation between breast-fed and formula-fed infants, in view of their different diets and resulting different fructoselysine exposures. First, a publicly available metagenomic dataset with metagenome-assembled genomes (MAGs) from infant fecal samples was analyzed and showed that query genes involved in fructoselysine degradation (frlD/yhfQ) were abundantly present in multiple bacterial taxa in the fecal samples, with a higher prevalence in the formula-fed infants. Next, fecal samples collected from exclusively breast-fed and formula-fed infants were anaerobically incubated with fructoselysine. Both groups degraded fructoselysine, however the fructoselysine degradation activity was significantly higher by fecal samples from formula-fed infants. Overall, this study provides evidence that infant formula feeding, leading to increased dietary fructoselysine exposure, seems to result in an increased fructoselysine degradation activity in the gut microbiota of infants. This indicates that the infant gut microbiota adapts towards dietary fructoselysine exposure.
Collapse
Affiliation(s)
- Katja C W van Dongen
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Clara Belzer
- Corresponding author: Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands. Tel: +31317482795; E-mail:
| |
Collapse
|
6
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Insights into in vitro digestion properties and peptide profiling of Chinese rubing PDO cheese prepared using different acidification technology. Food Res Int 2022; 158:111564. [DOI: 10.1016/j.foodres.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
8
|
How to adjust α-lactalbumin and β-casein ratio in milk protein formula to give a similar digestion pattern to human milk? J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Feng L, Ye W, Zhang K, Qu D, Liu W, Wu M, Han J. In vitro Digestion Characteristics of Hydrolyzed Infant Formula and Its Effects on the Growth and Development in Mice. Front Nutr 2022; 9:912207. [PMID: 35811942 PMCID: PMC9263559 DOI: 10.3389/fnut.2022.912207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Infant formula, an important food for babies, is convenient and nutritious, and hydrolyzed formulas have attracted much attention due to their non-allergicity. However, it is uncertain whether hydrolyzed formulars cause obesity and other side effects in infants. Herein, three infant formulas, standard (sIF), partially hydrolyzed (pHIF), and extensively hydrolyzed (eHIF), were analyzed in an in vitro gastrointestinal digestion model. With increasing degree of hydrolysis, the protein moleculars, and allergenicity of the proteins decreased and the long-chain polyunsaturated fatty acid content increased. Moreover, the digestion model solutions quickly digested the small fat globules and proteins in the hydrolyzed formula, allowing it to become electrostatically stable sooner. The eHIF-fed mice presented larger body sizes, and exhibited excellent exploratory and spatial memory abilities in the maze test. Based on villus height and crypt depth histological characterizations and amplicon sequencing, eHIF promoted mouse small intestine development and changed the gut microbiota composition, eventually favoring weight gain. The mouse spleen index showed that long-term infant formula consumption might be detrimental to immune system development, and the weight-bearing swimming test showed that eHIF could cause severe physical strength decline. Therefore, long-term consumption of infant formula, especially eHIF, may have both positive and negative effects on mouse growth and development, and our results might shed light on feeding formula to infants.
Collapse
Affiliation(s)
- Lifang Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kuo Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Jianzhong Han,
| |
Collapse
|
10
|
Liu L, Jiang S, Xie W, Xu J, Zhao Y, Zeng M. Fortification of yogurt with oyster hydrolysate and evaluation of its in vitro digestive characteristics and anti-inflammatory activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Xiao T, Zeng J, Qiu L, Wang R, Li N, Deng Z, Zheng L. Combining in silico and in vitro approaches to identify endogenous hypoglycemic peptides from human milk. Food Funct 2022; 13:2899-2912. [DOI: 10.1039/d1fo03537a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potential endogenous hypoglycemic peptides derived from breast milk were screened by in silico approaches against intestinal glucose absorption- and metabolism-related membrane proteins (i.e., SGLT1, ATPase, and GPR40), and their inhibitory...
Collapse
|
12
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Zou Z, Duley JA, Cowley DM, Reed S, Arachchige BJ, Koorts P, Shaw PN, Bansal N. Digestibility of proteins in camel milk in comparison to bovine and human milk using an in vitro infant gastrointestinal digestion system. Food Chem 2021; 374:131704. [PMID: 34883428 DOI: 10.1016/j.foodchem.2021.131704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The absence of β-lactoglobulin, high β-/αs-casein ratio and protective proteins make camel milk a promising alternative protein base for making human infant formulae. In this study, protein digestibility of camel milk was compared with that of bovine and human milk using an in vitro infant gastrointestinal digestion system. A low degree of gastric proteolysis was observed in all three kinds of milk, and a single clot was formed in camel milk. The soluble milk proteins remaining in the gastric digesta were digested rapidly and extensively in the intestinal phase, while the proteins in the camel milk clot were hydrolysed gradually. Despite several similarities, bioactive peptides unique to individual milk were identified in the three intestinal milk digesta. The results suggest that camel milk proteins are equally digestible as bovine and human milk proteins under infant gastrointestinal digestion conditions, and it may be a prospective substitute for infant formula base.
Collapse
Affiliation(s)
- Zhengzheng Zou
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - John A Duley
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Cowley
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Sarah Reed
- Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | | | - Pieter Koorts
- Department of Neonatology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
14
|
Analysis of the Endogenous Peptidomes of Different Infant Formula Types and Human Milk. Foods 2021; 10:foods10112579. [PMID: 34828867 PMCID: PMC8623676 DOI: 10.3390/foods10112579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Infant formula (IF) is a commonly used replacement whenever mother’s own milk is not available. Most IFs are based on cow milk (powders, liquids). Alternatives, based on other sources such as goat milk or plants, exist. Independent of the source, IF production and composition are strictly regulated. Besides proteins, minerals, and lipids, milk contains a variety of endogenous peptides. Whereas the human milk peptidome has been studied intensively, the peptidomes of IFs have been mostly neglected. This study investigated the peptidomes of different types of first stage IF, including cow milk-based powders and liquids, and powdered goat milk-based IF, highlighting major similarities and differences to human milk. Extracted native peptidomes were analyzed by nanoRPC-ESI-MS/MS using two different fragmentation techniques allowing the confident identification of 1587 peptides. β-Casein peptides dominated in all samples. Interestingly, powdered and liquid cow milk-based IFs differed in the numbers of β- and αS1-casein peptides, indicating processing-derived variations. However, the peptidomes of cow and goat milk-based IF appeared to be more comparable to each other than to human milk. Despite an overlap in the major source proteins, many peptide sequences were different, i.e., species-specific. Remarkably, the data indicate that the human milk peptidome might be donor-specific as well.
Collapse
|
15
|
Effect of hurdle technology of gentle pasteurisation and drying process on bioactive proteins, antioxidant activity and microbial quality of cow and buffalo colostrum. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ma Y, Hou Y, Xie K, Zhang L, Zhou P. Digestive differences in immunoglobulin G and lactoferrin among human, bovine, and caprine milk following in vitro digestion. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021; 12:5157-5170. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bovine casein is considered as an important source of many bioactive peptides (BAPs), which can also be produced via in vitro simulated gastrointestinal hydrolysis. To perform their physiological functions, some active peptides need to pass through the intestinal epithelial barrier and keep their structural integrity after oral administration. Owing to the complexity of in vivo digestion and absorption, there have been few studies in this area. In this study, casein was labeled with FITC to trace its digestion and absorption in Sprague Dawley (SD) rats. Gastric juice, intestinal fluid, blood, and intestinal tissue samples were collected at different time-points for preservation and analysis after intragastric administration. The results showed that CN-FITC exhibited good labeling stability in the gastrointestinal digestive juice both in vivo and in vitro, suggesting its potential to be used for the detection and tracking of casein hydrolysate. After the intra-gastric administration of FITC, the diffusion rates of fluorescent substances in serum were much higher than in the CN-FITC group. The maximum peptide content in the CN-FITC group during intestinal digestion was achieved 2 h after administration, and electrophoretic analysis of the hydrolysate composition suggested that the molecular weights of the peptides were mainly concentrated in the range of 3.4-10 kDa. The hydrolyzed peptides from CN-FITC could be absorbed into the blood just 1 h after administration. Frozen sections of rat duodenal tissue were observed under a confocal laser scanning microscope, and they showed that the CN-FITC digested products were absorbed from villi to mucosa in the rat intestines, and the casein-hydrolyzed polypeptides were accumulated significantly in tissue samples 2 h after administration. The peptides were mainly absorbed in the duodenum on the basis of absorption experiments using an everted gut sac. After intestinal digestion for 2 h, peptides with weights less than 5 kDa were enriched and identified using LC-MS-MS, and they were found to be mainly derived from β-casein, containing potential angiotensin-I-converting enzyme inhibitory, antioxidant, dipeptidyl peptidase IV inhibitory, and morphine-like peptides. The peptides from casein hydrolysate were tracked entering the blood through the intestinal epithelial barrier in the form of complete fragments, and they might exert potential physiological activity in vivo.
Collapse
Affiliation(s)
- Haiyan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jingjing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Baoyuan He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R.China.
| | - Meixia Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Xiaofeng Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Hongxin Song
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jingying Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
18
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Aalaei K, Khakimov B, De Gobba C, Ahrné L. Digestion patterns of proteins in pasteurized and ultra-high temperature milk using in vitro gastric models of adult and elderly. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Comprehensive Profiling of the Native and Modified Peptidomes of Raw Bovine Milk and Processed Milk Products. Foods 2020; 9:foods9121841. [PMID: 33321979 PMCID: PMC7763055 DOI: 10.3390/foods9121841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Bovine milk contains a variety of endogenous peptides, partially formed by milk proteases that may exert diverse bioactive functions. Milk storage allows further protease activities altering the milk peptidome, while processing, e.g., heat treatment can trigger diverse chemical reactions, such as Maillard reactions and oxidations, leading to different posttranslational modifications (PTMs). The influence of processing on the native and modified peptidome was studied by analyzing peptides extracted from raw milk (RM), ultra-high temperature (UHT) milk, and powdered infant formula (IF) by nano reversed-phase liquid chromatography coupled online to electrospray ionization (ESI) tandem mass spectrometry. Only unmodified peptides proposed by two independent software tools were considered as identified. Thus, 801 identified peptides mainly originated from αS- and β-caseins, but also from milk fat globular membrane proteins, such as glycosylation-dependent cell adhesion molecule 1. RM and UHT milk showed comparable unmodified peptide profiles, whereas IF differed mainly due to a higher number of β-casein peptides. When 26 non-enzymatic posttranslational modifications (PTMs) were targeted in the milk peptidomes, 175 modified peptides were identified, i.e., mostly lactosylated and a few hexosylated or oxidized peptides. Most modified peptides originated from αS-caseins. The numbers of lactosylated peptides increased with harsher processing.
Collapse
|
21
|
Ma Y, Hou Y, Han B, Xie K, Zhang L, Zhou P. Peptidome comparison following gastrointestinal digesta of bovine versus caprine milk serum. J Dairy Sci 2020; 104:47-60. [PMID: 33162096 DOI: 10.3168/jds.2020-18471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
Infant formula is used as a supplement for newborns. Although bovine milk-based infant formulas dominate the market, caprine milk-based infant formula has attracted increasing attention because of its lower allergenicity. This study compared the digestive peptidome of bovine and caprine milk serum proteins by using in vitro infant simulating conditions. The result showed that the degradation pattern of milk proteins was similar, whereas the digestive rates of milk proteins differed between bovine and caprine milks. Several proteins, such as α-lactalbumin (LALBA), β-lactoglobulin (LGB), serum amyloid A protein (SAA1), glycosylation-dependent cell adhesion molecule 1 (GLYCAM1), and lactotransferrin (LTF), released more peptides during digestion of caprine milk serum than during digestion of bovine milk serum; however, more peptides derived from αS1-casein (CSN1S1) were found in bovine digesta. In addition, antimicrobial-related peptides were mostly only found in caprine intestinal digesta. The results of this study may be useful in understanding the digestion characteristics of milk serum proteins and providing guidance on the improvement of infant formula.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Lopez C, Adelfio A, Wall AM, Molloy B, Holton TA, Khaldi N. Human milk and infant formulae: Peptide differences and the opportunity to address the functional gap. Curr Res Food Sci 2020; 3:217-226. [PMID: 33426531 PMCID: PMC7782925 DOI: 10.1016/j.crfs.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bovine-derived formula milk (FM) is a common substitute to human milk (HM), but lacks key functional benefits associated with HM. Accordingly, there have been significant efforts to humanise FM. Recent research has demonstrated that HM-derived peptides convey an array of beneficial bioactivities. Given that peptides serve as important signalling molecules offering high specificity and potency, they represent a prime opportunity to humanise FM. To further understand how HM-derived peptides contribute to infant health, we used peptidomics and bioinformatics to compare the peptide profile of HM to commercially available FM. We found clear and substantial differences between HM and FM in terms of peptide physicochemical properties, protein coverage and abundance. We additionally identified 618 peptides specific to HM that represent an important untapped source to be explored for novel bioactivities. While further study is required, our findings highlight the potential of a peptide-based approach to address the functional gap in FM.
Collapse
Affiliation(s)
- Cyril Lopez
- Nuritas Ltd, Joshua Dawson House, Dublin 2, D02 RY95, Ireland
| | | | - Audrey M. Wall
- Nuritas Ltd, Joshua Dawson House, Dublin 2, D02 RY95, Ireland
| | - Brendan Molloy
- Nuritas Ltd, Joshua Dawson House, Dublin 2, D02 RY95, Ireland
| | | | - Nora Khaldi
- Nuritas Ltd, Joshua Dawson House, Dublin 2, D02 RY95, Ireland
| |
Collapse
|
23
|
Elwakiel M, Boeren S, Wang W, Schols HA, Hettinga KA. Degradation of Proteins From Colostrum and Mature Milk From Chinese Mothers Using an in vitro Infant Digestion Model. Front Nutr 2020; 7:162. [PMID: 33117838 PMCID: PMC7557360 DOI: 10.3389/fnut.2020.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
This study provided insights into the degradation of human milk proteins in an in vitro infant digestion model by comparing colostrum (week 1) and mature milk (week 4) of 7 Chinese mothers individually. In this study, we adapted the exiting INFOGEST in vitro model, to conditions representative to infants (0 to 3 month-old). The level of undigested proteins was analyzed by LC-MS/MS after gel-electrophoretic separation and in-gel digestion. The BCA protein assay showed that the total undigested milk protein content decreased from the start to the end of digestion with variations between mothers, especially in the gastric phase (25–80%). Undigested proteins could also still be found after the intestinal phase, ranging from 0.5 to 4.2% of initial protein content. Based on LC-MS/MS analysis, milk protein digestion varied between the mothers individually, especially during the gastric phase. No differences could be observed between protein digestion from colostrum and mature milk after the intestinal phase. The highest levels of proteins remaining after intestinal digestion can be linked to the group immune-active proteins, for all mothers. The level of protease inhibitors and total protein content in the milk did not correlate with the overall proteolysis during digestion. The results also showed that milk serum proteins partly remained after the gastric phase, with 33% remaining from colostrum and 37% remaining from mature milk. More than 40 milk serum proteins were detected after the intestinal phase. Some of the highly abundant milk serum proteins (lactoferrin, serum albumin, bile salt-activated lipase, immunoglobulins, α1-antichymotrypsin) were still partially present intact after the intestinal phase, for all mothers. Caseins were also not completely digested in the gastric phase, with 35% remaining from colostrum and 13% remaining from mature milk. Caseins, on the other hand, were almost completely digested after the intestinal phase. The complete degradation of caseins into peptides might be related to their structural features. Overall, this study showed that digestion differed for the various human milk proteins by adapting an in vitro digestion model to infant physiological conditions, with the main differences between digestion of the milk from individual mothers being observed after gastric digestion.
Collapse
Affiliation(s)
- Mohèb Elwakiel
- Food Quality and Design Group, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Wendan Wang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
24
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
25
|
Chemical composition, protein profile and physicochemical properties of whey protein concentrate ingredients enriched in α-lactalbumin. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Nguyen HTH, Gathercole JL, Day L, Dalziel JE. Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chem 2020; 317:126419. [PMID: 32088406 DOI: 10.1016/j.foodchem.2020.126419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Fermentation of milk is commonly used throughout the world to produce a variety of foods with different health benefits. We hypothesised that due to differences in physicochemical properties and protein sequences among milk from different species and their fermented yogurt samples, their protein digestion and resulting peptide profiles would differ. Cow, goat and sheep milk and yogurt were compared at designated timepoints throughout in vitro gastric and intestinal digestion for differences in peptide profiles and peptide bioactivities. The results showed that most proteins in all milk and yogurt samples were digested within the early phase of gastric digestion. β-Lg and β-CN were digested faster in yogurt than milk, which was most evident for sheep products. Regardless of species, in vitro gastric and intestinal digestion released a higher concentration of specific peptides, particularly anti-hypertensives, from yogurt compared with their milk counterparts.
Collapse
Affiliation(s)
- Hanh T H Nguyen
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Jessica L Gathercole
- Proteins & Metabolites Team, Food & Bio-Based Products Group, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Li Day
- Food & Fibre Sector, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Julie E Dalziel
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
27
|
Kilvington A, Maldonado‐Pereira L, Torres‐Palacios C, Medina‐Meza I. Phytosterols and their oxidative products in infant formula. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Kilvington
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Lisaura Maldonado‐Pereira
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Cristobal Torres‐Palacios
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| | - Ilce Medina‐Meza
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| |
Collapse
|
28
|
Chen Z, Kondrashina A, Greco I, Gamon LF, Lund MN, Giblin L, Davies MJ. Effects of Protein-Derived Amino Acid Modification Products Present in Infant Formula on Metabolic Function, Oxidative Stress, and Intestinal Permeability in Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5634-5646. [PMID: 31017422 DOI: 10.1021/acs.jafc.9b01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteins present in infant formulas are modified by oxidation and glycation during processing. Modified amino acid residues released from proteins may be absorbed in the gastrointestinal tract, and pose a health risk to infants. In this study, the markers of glycation furosine (1.7-3.5 μg per milligram of protein) and Nε-(carboxymethyl)lysine (28-81 ng per milligram of protein) were quantitated in infant formulas. The effects of these species, and other amino acid modifications, at the levels detected in infant formulas, on 3T3-L1 (murine preadipocyte) and Caco-2 (human intestinal epithelial) cells were assessed. Incubation of 3T3-L1 cells for 48 h with amino acid side chain oxidation and glycation products (1 and 10 μM) resulted in a loss (up to 40%, p < 0.05) of cell thiols and decreased metabolic activity compared with those of the controls. In contrast, Caco-2 cells showed a stimulation (10-50%, p < 0.05) of cellular metabolism on exposure to these products for 24 or 48 h. A 28% ( p < 0.05) increase in protein carbonyls was detected upon incubation with 200 μM modified amino acids for 48 h, although no alteration in transepithelial electrical resistance was detected. Oxidation products were detected in the basolateral compartments of Caco-2 monolayers when modified amino acids were applied to the apical side, consistent with limited permeability (up to 3.4%) across the monolayer. These data indicate that modified amino acids present in infant formulas can induce effects on different cell types, with evidence of bioavailability and induction of cellular stress. This may lead to potential health risks for infants consistently exposed to high levels of infant formulas.
Collapse
Affiliation(s)
- Zhifei Chen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Alina Kondrashina
- Teagasc Food Research Centre , Moorepark, Fermoy , County Cork , Ireland
| | - Ines Greco
- Department of Food Science, Faculty of Science , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Marianne N Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
- Department of Food Science, Faculty of Science , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Linda Giblin
- Teagasc Food Research Centre , Moorepark, Fermoy , County Cork , Ireland
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| |
Collapse
|
29
|
Identification of bioactive short peptides in cow milk by high-performance liquid chromatography on C18 and porous graphitic carbon coupled to high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:3395-3404. [DOI: 10.1007/s00216-019-01815-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
|
30
|
Elwakiel M, Boeren S, Hageman JA, Szeto IM, Schols HA, Hettinga KA. Variability of Serum Proteins in Chinese and Dutch Human Milk during Lactation. Nutrients 2019; 11:E499. [PMID: 30818777 PMCID: PMC6471199 DOI: 10.3390/nu11030499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023] Open
Abstract
To better understand the variability of the type and level of serum proteins in human milk, the milk serum proteome of Chinese mothers during lactation was investigated using proteomic techniques and compared to the milk serum proteome of Dutch mothers. This showed that total milk serum protein concentrations in Chinese human milk decreased over a 20-week lactation period, although with variation between mothers in the rate of decrease. Variation was also found in the composition of serum proteins in both colostrum and mature milk, although immune-active proteins, enzymes, and transport proteins were the most abundant for all mothers. These three protein groups account for many of the 15 most abundant proteins, with these 15 proteins covering more than 95% of the total protein concentrations, in both the Chinese and Dutch milk serum proteome. The Dutch and Chinese milk serum proteome were also compared based on 166 common milk serum proteins, which showed that 22% of the 166 serum proteins differed in level. These differences were observed mainly in colostrum and concern several highly abundant proteins. This study also showed that protease inhibitors, which are highly correlated to immune-active proteins, are present in variable amounts in human milk and could be relevant during digestion.
Collapse
Affiliation(s)
- Mohèb Elwakiel
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jos A Hageman
- Biometris-Applied Statistics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Ignatius M Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Jinshan Road 8, Hohhot 010110, China.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
31
|
Fan F, Shi P, Chen H, Tu M, Wang Z, Lu W, Du M. Identification and availability of peptides from lactoferrin in the gastrointestinal tract of mice. Food Funct 2019; 10:879-885. [DOI: 10.1039/c8fo01998c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic fate of lactoferrin in vivo.
Collapse
Affiliation(s)
- Fengjiao Fan
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Pujie Shi
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Maolin Tu
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Zhenyu Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Weihong Lu
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Ming Du
- Department of Food Science and Engineering
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
32
|
Impact of Lactobacillus plantarum ST-III on the composition of infant gut microbiota and its potential synergism with breast milk and infant formula as revealed by an in vitro study. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem 2018; 274:766-774. [PMID: 30373006 DOI: 10.1016/j.foodchem.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/22/2022]
Abstract
Human milk is a dynamic protein-protease system that delivers bioactive peptides to infants. The pH of milk changes from the mother's mammary gland to the infant's digestive tract. Although the release of human milk peptides has been studied during in vivo or in vitro digestion, these models did not explicitly vary nor observe the effect of pH. The objective of this research was to determine the effect of pH on the proteolysis of human milk. Using high-resolution accurate-mass Orbitrap mass spectrometry, profiles of endogenous human milk peptides before and after incubation at various pH levels have been mapped. Over 5000 peptides were identified. Comparative analyses classified 74 peptides that were consistently found independent of pH alterations, and 8 peptides that were released only at pH 4 or 5 (typical infant gastric pH). Results documented that the proteolysis of milk proteins, particularly β-casein, polymeric immunoglobulin receptor, and α-lactalbumin, is pH-dependent.
Collapse
|
34
|
Hodgkinson AJ, Wallace OA, Boggs I, Broadhurst M, Prosser CG. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem 2018; 245:275-281. [DOI: 10.1016/j.foodchem.2017.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
|
35
|
Gan J, Bornhorst GM, Henrick BM, German JB. Protein Digestion of Baby Foods: Study Approaches and Implications for Infant Health. Mol Nutr Food Res 2018; 62:10.1002/mnfr.201700231. [PMID: 28891110 PMCID: PMC6435278 DOI: 10.1002/mnfr.201700231] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Protein digestion is critical for infants. Dissimilarities between infants and adults in food intake and digestive physiology lead to distinct patterns of proteolysis between individuals. However, such differences are not well represented in many studies on protein digestion of baby foods. The complex biological structures of baby foods and the physiology of the infant digestive system are key factors affecting proteolysis during the first two years of life. Well-controlled in vitro studies have demonstrated that varying digestion conditions alter the specificity, rate, and extent of proteolysis of baby foods. Nonetheless, these models do not completely replicate in vivo proteolysis or the complex biogeography of the gastrointestinal tract. Animal and clinical studies have revealed the fate of dietary proteins along the digestive tract and the overall health impact on subjects. Building comprehensive and annotated datasets from human infants will require innovative and standardized measurement. Now, more systematic evaluations of digestion are emerging to advance the knowledge and its translation as food design for effective diet and health management in infants.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, University of California Davis, USA
| | - Gail M. Bornhorst
- Department of Food Science and Technology, University of California Davis, USA
- Department of Biological and Agricultural Engineering, University of California Davis, USA
| | - Bethany M. Henrick
- Department of Food Science and Technology, University of California Davis, USA
- Foods for Health Institute, University of California Davis, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, USA
- Foods for Health Institute, University of California Davis, USA
| |
Collapse
|
36
|
|