1
|
Li Y, Wang F, Liang M, Sun M, Xia L, Qu F. Fabrication of a two-dimensional bi-lanthanide metal-organic framework as a ratiometric fluorescent sensor based on energy competition. Talanta 2024; 278:126456. [PMID: 38917551 DOI: 10.1016/j.talanta.2024.126456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Bimetallic lanthanide metal-organic frameworks (bi-Ln-MOFs) exhibit great appeal for ratiometric luminescent sensors due to their unique advantages. Specially, the low-lying energy of the empty 4f band of Ce4+ ions benefits Ce-MOFs with robust and broad fluorescent emission. Therefore, constructing ratiometric sensors based on Ce-MOFs is of significance but remains a challenge. Here, a two-dimensional (2D) bi-Ln-MOF is fabricated using Eu3+/Ce4+ and 5-boronoisophthalic acid (5-bop) via a crystal phase transformation strategy to construct a ratiometric luminescent Hg2+ sensor. Due to the lower energy gap of Ce4+ compared to Eu3+ and the corresponding stronger energy-absorption ability, the Ce4+ in bi-Ln-MOF shows a stronger and broader fluorescent emission than that of Eu3+. The substitution of the boric acid group in the bi-Ln-MOF by Hg2+ amplifies the difference between the two lanthanide ions. Therefore, the fluorescence intensity of Ce4+ increases whereas that of Eu3+ decreases accordingly, a behavior distinct from individual Eu-MOF or Ce-MOF performance. This novel bi-Ln-MOF sensor not only achieves a wide linear response range from 0.5 to 120 μM with a low detection limit of 167 nM for Hg2+, but also demonstrates exceptional selectivity and stability. The intriguing sensing mechanism of energy competition and the novel synthesis approach for 2D bi-Ln-MOF are anticipated to broaden the application possibilities of bi-Ln-MOFs for designing ratiometric sensors.
Collapse
Affiliation(s)
- Yingying Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Maosheng Liang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Mengyu Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Luo J, Liu S, Chen Y, Tan J, Zhao W, Zhang Y, Li G, Du Y, Zheng Y, Li X, Li H, Tan Y. Light Addressable Potentiometric Sensors for Biochemical Imaging on Microscale: A Review on Optimization of Imaging Speed and Spatial Resolution. ACS OMEGA 2023; 8:42028-42044. [PMID: 38024735 PMCID: PMC10652365 DOI: 10.1021/acsomega.3c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Light addressable potentiometric sensors (LAPS) are a competitive tool for unmarked biochemical imaging, especially imaging on microscale. It is essential to optimize the imaging speed and spatial resolution of LAPS since the imaging targets of LAPS, such as cell, microfluidic channel, etc., require LAPS to image at the micrometer level, and a fast enough imaging speed is a prerequisite for the dynamic process involved in biochemical imaging. In this study, we discuss the improvement of LAPS in terms of imaging speed and spatial resolution. The development of LAPS in imaging speed and spatial resolution is demonstrated by the latest applications of biochemistry monitoring and imaging on the microscale.
Collapse
Affiliation(s)
- Jiezhang Luo
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Shibin Liu
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yinhao Chen
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Jie Tan
- School
of Electrical Engineering and Electronic Information, Xihua University, Chengdou, Sichuan 610097, People’s Republic of China
| | - Wenbo Zhao
- Institute
of Flexible Electronics, Northwestern Polytechnical
University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yun Zhang
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Guifang Li
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yongqian Du
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yaoxin Zheng
- Beijing
Automation Control Equipment Institute, Beijing 100074, People’s Republic of China
| | - Xueliang Li
- School
of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People’s Republic of China
| | - Huijuan Li
- College of
Electrical Engineering, Shaanxi Polytechnic
Institute, Xianyang, Shaanxi 712000, People’s Republic of China
| | - Yue Tan
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| |
Collapse
|
3
|
Ma S, Zhao W, Zhang Q, Zhang K, Liang C, Wang D, Liu X, Zhan X. A portable microfluidic electrochemical sensing platform for rapid detection of hazardous metal Pb 2+ based on thermocapillary convection using 3D Ag-rGO-f-Ni(OH) 2/NF as a signal amplifying element. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130923. [PMID: 36738616 DOI: 10.1016/j.jhazmat.2023.130923] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution is causing a great threat to ecological environment and public health, which needs an efficient strategy for monitoring. A portable microfluidic electrochemical sensing system was developed for the determination of heavy metal ions. Herein, the detection of Pb2+ was chosen as a model, and a microfluidic electrochemical sensing chip relying on a smartphone-based electrochemical workstation was proposed for rapid detection Pb2+ with the assistance of thermocapillary convection result from the formed temperature gradient. The 3D Ag-rGO-f-Ni(OH)2/NF composites, prepared by one-step hydrothermal method without any Ni precursor salt, were used to further amplify electrochemical signals under the synergistic effect of thermocapillary convection. The thermocapillary convection could accelerate the preconcentration process and shorten the detection time (save 300 s of preconcentration time). The fabricated system exhibited the exceptional competence for monitoring of Pb2+ range from 0.01 μg/L to 2100 μg/L with a low detection limit (LOD) of 0.00464 μg/L. Furthermore, this portable system has been successfully demonstrated for detecting Pb2+ (0.01 μg/L to 2100 μg/L) in river water (LOD = 0.00498 μg/L), fish (LOD = 0.00566 μg/L) and human serum samples (LOD = 0.00836 μg/L), and the results were consistent with inductively coupled plasma-mass spectrometry (ICP-MS). The proposed novel sensing platform provides a cost-effectiveness, rapidly responding and ease-to-use pathway for analysis of heavy metal ions in real samples and shows great potential in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China.
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Chong Liang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Dingkai Wang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
4
|
Sciurti E, Blasi L, Prontera CT, Barca A, Giampetruzzi L, Verri T, Siciliano PA, Francioso L. TEER and Ion Selective Transwell-Integrated Sensors System for Caco-2 Cell Model. MICROMACHINES 2023; 14:496. [PMID: 36984903 PMCID: PMC10054836 DOI: 10.3390/mi14030496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.
Collapse
Affiliation(s)
- Elisa Sciurti
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Laura Blasi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Carmela Tania Prontera
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Lucia Giampetruzzi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pietro Aleardo Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Luca Francioso
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| |
Collapse
|
5
|
Meng Y, Chen F, Wu C, Krause S, Wang J, Zhang DW. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sens 2022; 7:1791-1807. [PMID: 35762514 DOI: 10.1021/acssensors.2c00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.
Collapse
Affiliation(s)
- Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
6
|
The Light-Addressable Potentiometric Sensor and Its Application in Biomedicine towards Chemical and Biological Sensing. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The light-addressable potential sensor (LAPS) was invented in 1988 and has developed into a multi-functional platform for chemical and biological sensing in recent decades. Its surface can be flexibly divided into multiple regions or pixels through light addressability, and each of them can be sensed independently. By changing sensing materials and optical systems, the LAPS can measure different ions or molecules, and has been applied to the sensing of various chemical and biological molecules and cells. In this review, we firstly describe the basic principle of LAPS and the general configuration of a LAPS measurement system. Then, we outline the most recent applications of LAPS in chemical sensing, biosensing and cell monitoring. Finally, we enumerate and analyze the development trends of LAPS from the aspects of material and optical improvement, hoping to provide a research and application perspective for chemical sensing, biosensing and imaging technology.
Collapse
|
7
|
Li X, Liu S, Tan J, Wu C. Light-Addressable Potentiometric Sensors in Microfluidics. Front Bioeng Biotechnol 2022; 10:833481. [PMID: 35265603 PMCID: PMC8899193 DOI: 10.3389/fbioe.2022.833481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor based on the field-effect principle of semiconductors. It is able to sense the change of Nernst potential on the sensor surface, and the measuring area can be controlled by the illumination of a movable light. Due to the unique light-addressable ability of the LAPS, the chemical imaging system constructed with the LAPS can realize the two-dimensional image distribution detection of chemical/biomass. In this review, the advantages of the LAPS as a sensing unit of the microelectrochemical analysis system are summarized. Then, the most recent advances in the development of the LAPS analysis system are explained and discussed. In particular, this review focused on the research of ion diffusion, enzymatic reaction, microbial metabolism, and droplet microfluidics using the LAPS analysis system. Finally, the development trends and prospects of the LAPS analysis system are illustrated.
Collapse
Affiliation(s)
- Xueliang Li
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Shibin Liu
- College of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Jie Tan
- College of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Wang L, Liu Y, Liu Y, Mao Y, Han J, Li W, Wang Y. Recyclable aptamer-derived aqueous two-phase flotation for high-efficiency separation of mercury(II) ions modulated by aggregation states. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
|
10
|
Zhang X, Zhu M, Jiang Y, Wang X, Guo Z, Shi J, Zou X, Han E. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu 2+-based metal-organic frameworks as signal reporting. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123222. [PMID: 32590133 DOI: 10.1016/j.jhazmat.2020.123222] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A convenient sensor is developed for electrochemical assay of Hg2+ in dairy product using the optimal Cu2+-based metal-organic frameworks (Cu-MOFs) as signal reporting. Benefiting from specific recognition between Hg2+ and thymine (T)-rich DNA strands, the interferences of milk matrices are effectively eliminated, thereby greatly improving the accuracy of test results. Moreover, the suitable Cu-MOFs offer an efficient carrier for probe design, and the contained Cu2+ ions could be directly detected to output electrochemical signal of Hg2+ presence without labor- or time-intensive operations. Compared with previous methods, this sensor substantially simplifies the process of electrochemical measurement and facilitates highly sensitive, selective and rapid analysis of Hg2+ with detection limit of 4.8 fM, offering a valuable means for monitoring dairy product contamination with Hg2+.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Minchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanjuan Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
11
|
A novel aptasensor based on light-addressable potentiometric sensor for the determination of Alpha-fetoprotein. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Zhang X, Huang X, Xu Y, Wang X, Guo Z, Huang X, Li Z, Shi J, Zou X. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework. Biosens Bioelectron 2020; 168:112544. [DOI: 10.1016/j.bios.2020.112544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
|
13
|
Micrometer-scale light-addressable potentiometric sensor on an optical fiber for biological glucose determination. Anal Chim Acta 2020; 1123:36-43. [DOI: 10.1016/j.aca.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022]
|
14
|
Swain KK, Balasubramaniam R, Bhand S. A portable microfluidic device-based Fe 3O 4-urease nanoprobe-enhanced colorimetric sensor for the detection of heavy metals in fish tissue. Prep Biochem Biotechnol 2020; 50:1000-1013. [PMID: 32564658 DOI: 10.1080/10826068.2020.1780611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A portable microfluidic device with highly sensitive enzyme nanoprobe (Fe3O4 MNPs-urease, average size 34.6 nm) was demonstrated for the analysis of heavy metals ions (Hg2+, Cd2+ and Pb2+) in fish gill and muscle tissue. The immobilized urease nanoprobe (Km = 0.05 mM) exhibited twofold sensitivity over the free enzyme assay (apparent Km = 0.1 mM). The nanoprobe was characterized using SEM, EDAX, PSA and FT-IR. The inhibition measurements were carried out for individual as well as the mixture of metal ions (CRM standards of 9 elements (CRMmix-9)). The lower limit of quantification (LOQ) (0.5, 0.1, and 0.1 ng L-1 for Hg2+, Cd2+, and Pb2+) and lower limit of detection (LOD) was achieved at 0.1 ng L-1 with sensitivity 8-14% per decade for Hg2+, Cd2+, and Pb2+ ions. A visual result can be observed by the naked eye through the microfluidic device as well as with 96 transparent microwell plates. The order of relative inhibition was found to be CRMmix-9 > (Hg2+ + Cd2+ + Pb2+) > (Cd2+ + Pb2+) > (Pb2+ + Hg2+) > (Hg2+ + Cd2+) > Pb2+ > Cd2+ > Hg2+, respectively. The recovery % in fish tissues were found to be 88-98% for Hg2+, Cd2+ and Pb2+ ions.
Collapse
Affiliation(s)
- Krishna Kumari Swain
- Biosensor Lab, Department of Chemistry, BITS Pilani KK Birla Goa Campus, South Goa, India
| | - R Balasubramaniam
- Precision Machining Section, Precision Engineering Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, BITS Pilani KK Birla Goa Campus, South Goa, India
| |
Collapse
|
15
|
Wu S, Li K, Dai X, Zhang Z, Ding F, Li S. An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Zhang W, Liu C, Liu F, Zou X, Xu Y, Xu X. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem 2020; 303:125378. [DOI: 10.1016/j.foodchem.2019.125378] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/24/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
17
|
Wu S, Li K, Zhang Z, Chen L. Synthesis of imprinted chitosan/AuNPs/graphene-coated MWCNTs/Nafion film for detection of lead ions. NEW J CHEM 2020. [DOI: 10.1039/d0nj02522d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An ultrasensitive electrochemical platform based on ion-imprinted nanocomposites for monitoring Pb2+ was proposed for environmental protection and food safety applications.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Kanghui Li
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Zihang Zhang
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
18
|
Wang L, Wang Y, Li W, Zhi W, Liu Y, Ni L, Wang Y. Recyclable DNA-Derived Polymeric Sensor: Ultrasensitive Detection of Hg(II) Ions Modulated by Morphological Changes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40575-40584. [PMID: 31613586 DOI: 10.1021/acsami.9b13035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Going beyond organic solvent as the solubilizer for small-molecular organic probes motivates exploration of water-soluble polymeric sensors. In this respect, dye-derived thermal-responsive polymeric sensors are an attractive direction, but for its practical application, it is limited by sensor recycling because only irreversible change in the structure of the recognition unit for many sensors can trigger the appearance of the detection signal. Here, we established the oligonucleotide-derived thermal-responsive polymeric sensor, TBC-P1, which overcame this fundamental limitation. The TBC-P1 sensor was based on reversible binding between oligonucleotides and Hg2+ ions, and easy sensor separation via tuning temperature, achieving the Hg2+ detection in a cost-effective and green manner. The TBC-P1 sensor displayed specific and rapid sensing properties toward Hg2+ ions in pure aqueous media via turn-off fluorescence emission, with a limit of detection as low as 0.65 nM (much lower than the presently reported dye-derived polymeric sensors). This high detection sensitivity was further enhanced (with LOD = 0.17 nM) via warming to yield spherical micelles, in which the oligonucleotide-containing thermoresponsive PNIPAM block forming a hydrophobic core amplified the fluorescence signals. Treating the Hg2+-trapped micelles with cysteine (Cys) led to competition-induced release of these combined Hg2+ ions and then thermally precipitating and recycling polymeric sensor TBC-P1. This oligonucleotide-derived thermalresponsive polymeric sensor will open a universal avenue for sensor recycling, which will achieve the goal of reducing cost and improving detection sensitivity of sensors.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Yu Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Wenxuan Li
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Wenjing Zhi
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Yuanyuan Liu
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Liang Ni
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| | - Yun Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu Province , China
| |
Collapse
|
19
|
Wang W, Bao N, Yuan W, Si N, Bai H, Li H, Zhang Q. Simultaneous determination of lead, arsenic, and mercury in cosmetics using a plastic based disposable electrochemical sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Single‐gap Microelectrode Functionalized with Single‐walled Carbon Nanotubes and Pbzyme for the Determination of Pb
2+. ELECTROANAL 2019. [DOI: 10.1002/elan.201900016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ghosh S, Singharoy D, Naskar JP, Bhattacharya SC. Deciphering of Ligand‐to‐Metal Charge‐Transfer Process: Synthesis, Spectroscopic and Theoretical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201801898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Swadesh Ghosh
- Department of ChemistryJadavpur University Kolkata 700032 India
| | - Dipti Singharoy
- Department of ChemistryJadavpur University Kolkata 700032 India
| | | | | |
Collapse
|
22
|
Perošević A, Joksimović D, Đurović D, Milašević I, Radomirović M, Stanković S. Human exposure to trace elements via consumption of mussels Mytilus galloprovincialis from Boka Kotorska Bay, Montenegro. J Trace Elem Med Biol 2018; 50:554-559. [PMID: 29625781 DOI: 10.1016/j.jtemb.2018.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
In order to assess human health risks via consumption of potentially toxic mussels, the concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sr, Zn and Hg were studied in Mytilus galloprovincialis collected from the coastal area of Montenegro. By two approaches for the human health risk assessment (HHRA), considering oral reference doses by the United States Environmental Protection Agency (US EPA) and provisional tolerable intakes by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), it has been revealed that despite the fact that trace element levels do not exceed the defined limits for mussels, they can be limiting factors for the mussel consumption. Specifically, it was noticed that the levels of Co, Pb, Cd and Li could be the limiting factors for the consumption of mussels from this coastal area. Al and Li data obtained in this study are especially important since these two elements have not been previously studied in M. galloprovincialis. Furthermore, taking into account the significant differences in concentrations of elements in different seasons, the study confirmed the starting assumption that in the calculations for the HHRA the average concentrations of elements in samples taken in different seasons during a longer period should be used.
Collapse
Affiliation(s)
- Ana Perošević
- BIO-ICT Centre of Excellence in Bioinformatics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro.
| | - Danijela Joksimović
- Institute of Marine Biology, University of Montenegro, Dobrota bb, 85330 Kotor, Montenegro
| | - Dijana Đurović
- Institute of Public Health of Montenegro, Džona Džeksona bb, 81000 Podgorica, Montenegro
| | - Ivana Milašević
- BIO-ICT Centre of Excellence in Bioinformatics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
| | - Milena Radomirović
- Faculty of Technology and Metallurgy, Department of Analytical Chemistry, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Slavka Stanković
- Faculty of Technology and Metallurgy, Department of Analytical Chemistry, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Zhang Y, Wang Q, Xie F, Xiong S. The stripping analysis of Hg(II) and Cu(II) based on hierarchical RTIL/γ-AlOOH/Fe(OH)3 composite. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Rapid determination of cadmium in rice using an all-solid RGO-enhanced light addressable potentiometric sensor. Food Chem 2018; 261:1-7. [DOI: 10.1016/j.foodchem.2018.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/22/2023]
|
25
|
Tu Y, Ahmad N, Briscoe J, Zhang DW, Krause S. Light-Addressable Potentiometric Sensors Using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications. Anal Chem 2018; 90:8708-8715. [PMID: 29932632 DOI: 10.1021/acs.analchem.8b02244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
Collapse
Affiliation(s)
- Ying Tu
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| | - Norlaily Ahmad
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom.,Centre of Foundation Studies , Universiti Teknologi MARA , Cawangan Selangor, Kampus Dengkil , 43800 Dengkil , Malaysia
| | - Joe Briscoe
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| | - De-Wen Zhang
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom.,Institute of Materials , China Academic of Engineering Physics , Jiangyou , 621908 , Sichuan , China
| | - Steffi Krause
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| |
Collapse
|
26
|
Hua J, Yang J, Zhu Y, Zhao C, Yang Y. Highly fluorescent carbon quantum dots as nanoprobes for sensitive and selective determination of mercury (II) in surface waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:149-155. [PMID: 28683370 DOI: 10.1016/j.saa.2017.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/05/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
A novel carbon quantum dots (CQDs) was successfully prepared through one-step green hydrothermal method using polyacrylamide as carbon source. The prepared CQDs were characterized using TEM, XRD, XPS, FT-IR, UV-Vis, and fluorescence spectroscopy. The CQDs was demonstrated as nanoprobes for mercury ion detection, moreover, it demonstrated excitation-dependent and superior stability in acidic and alkaline media. Besides, the probe exhibited a good linearity range (0.25-50μM) and a low detection limit (13.48nM). These attractive properties indicated that this novel CQDs can adapt to a variety of complex pH environment, which had extensive prospect and promising application for detection of mercury ions in complex water samples.
Collapse
Affiliation(s)
- Jianhao Hua
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Jian Yang
- Central Monitoring Center of Kunming City, Yunnan Province 650228, China
| | - Yan Zhu
- Central Monitoring Center of Kunming City, Yunnan Province 650228, China
| | - Chunxi Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
27
|
Song Y, Xu Z, Yu X, Shi X, Jiang H, Li X, Kong Y, Xu Q, Chen J. Raspberry-Like Bismuth Oxychloride on Mesoporous Siliceous Support for Sensitive Electrochemical Stripping Analysis of Cadmium. Molecules 2017; 22:E797. [PMID: 28505086 PMCID: PMC6154545 DOI: 10.3390/molecules22050797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
BiOCl-SiO₂ KIT-6 composite materials with raspberry-like structures are facilely prepared under hydrothermal conditions. The mesoporous siliceous support of SiO₂ KIT-6-incorporated BiOCl with enlarged yet refined surface morphology characterized by physiochemical methods exhibits an improved electrochemical performance. A sensitive electrochemical detection method of cadmium concentration using square wave anodic stripping voltammetry was developed based on BiOCl-SiO₂ KIT-6 composite-modified glassy carbon electrodes, which displayed wide linear ranges of 0.5 to 10 μg/L and 10 to 300 μg/L and a detection limit of 65 ng/L. The sensitive, versatile and eco-friendly sensor was successfully applied for the determination of cadmium-spiked human blood samples.
Collapse
Affiliation(s)
- Yiyan Song
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhihui Xu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinyu Yu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xueyan Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Xiaoming Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 211166, China.
| | - Yan Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 211166, China.
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jin Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210093, China.
| |
Collapse
|