1
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
2
|
Gubitosa F, Fraternale D, Benayada L, De Bellis R, Gorassini A, Saltarelli R, Donati Zeppa S, Potenza L. Anti-Inflammatory, Antioxidant, and Genoprotective Effects of Callus Cultures Obtained from the Pulp of Malus pumila cv Miller (Annurca Campana Apple). Foods 2024; 13:2036. [PMID: 38998542 PMCID: PMC11241768 DOI: 10.3390/foods13132036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Apples are rich in phytochemicals useful for human health. However, environmental factors can greatly affect the accumulation of these compounds. To face this problem, the callus culture technique was used to obtain large quantities of phytochemicals. Specifically, two callus cultures were obtained from ripe Annurca apple pulp (Malus pumila cv Miller) and cultivated under different light conditions: darkness and an 18-h photoperiod. The hydro-alcoholic extracts from the calli underwent analysis using GC-MS, GC-FID, and HPLC-DAD-ESI-MSn to determine the qualitative and quantitative content of phenolic and triterpenic acids. The study revealed the predominant presence of triterpenic compounds in both calli. Furthermore, we investigated their radical scavenging and antioxidant activities through DPPH, ABTS, ORAC assays, and lipoxygenase inhibition activity. Genoprotection was evaluated via nicking assay, and the anti-inflammatory effect was investigated via Griess assay on LPS-injured murine macrophages. All the analyses performed were compared with peel and pulp hydroalcoholic extracts. The results showed that both calli primarily show anti-inflammatory activity and moderate antioxidant effect and can protect DNA against oxidative stimuli. This data encouraged further research aimed at utilizing callus as a bioreactor to produce secondary metabolites for use in preventive and therapeutic applications to combat acute or chronic age-associated diseases.
Collapse
Affiliation(s)
- Federica Gubitosa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Leila Benayada
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, 33100 Udine, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
3
|
Benedetto N, Mangieri C, De Biasio F, Carvalho RF, Milella L, Russo D. Malus pumila Mill. cv Annurca apple extract might be therapeutically useful against oxidative stress and patterned hair loss. FEBS Open Bio 2024; 14:955-967. [PMID: 38711215 PMCID: PMC11148120 DOI: 10.1002/2211-5463.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased β-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Milella
- Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Daniela Russo
- Department of ScienceUniversity of BasilicataPotenzaItaly
- Spinoff Bioactiplant S.r.l.PotenzaItaly
| |
Collapse
|
4
|
Magri A, Rega P, Capriolo G, Petriccione M. Impact of Novel Active Layer-by-Layer Edible Coating on the Qualitative and Biochemical Traits of Minimally Processed 'Annurca Rossa del Sud' Apple Fruit. Int J Mol Sci 2023; 24:ijms24098315. [PMID: 37176023 PMCID: PMC10179199 DOI: 10.3390/ijms24098315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The color changes brought on by the enzymatic interactions of phenolic compounds with released endogenous polyphenol oxidase and the penetration of oxygen into the tissue has a significant impact on the commercialization of fresh-cut fruit, such as apples. This process causes a loss of quality in fresh-cut apples, resulting in browning of the fruit surface. By acting as a semipermeable barrier to gases and water vapor and thus lowering respiration, enzymatic browning, and water loss, edible coatings can provide a chance to increase the shelf life of fresh-cut produce. In this study, the effect of edible coatings composed of carboxymethylcellulose (CMC, 1%), sodium alginate (SA, 1%), citric acid (CA, 1%), and oxalic acid (OA, 0.5%) on fresh-cut 'Annurca Rossa del Sud' apple was studied. Four formulations of edible coatings, A. SA+CMC, B. SA+CMC+CA, C. SA+CMC+OA, and D. SA+CMC+CA+OA, were tested. Fresh-cut apples were dipped into different solutions and then stored at 4 °C, and physicochemical and biochemical analyses were performed at 0, 4, 8, and 12 days of storage. Results demonstrated that all four combinations improved the shelf-life of fresh-cut apple by slowing down the qualitative postharvest decay, total soluble solid, and titratable acidity. The browning index was highest in the control samples (82%), followed by CMC+SA (53%), CMC+SA+CA (32%), CMC+SA+OA (22%), and finally CMC+SA+CA+OA (7%) after 12 days of cold storage. Furthermore, coating application increased the bioactive compound content and antioxidant enzyme activities. Furthermore, the synergistic activity of SA+CMC+CA+OA reduces enzymatic browning, prolonging the postharvest life of minimally processed 'Annurca Rossa del Sud' apples.
Collapse
Affiliation(s)
- Anna Magri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy
| | - Pietro Rega
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy
| | - Giuseppe Capriolo
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruits and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
5
|
Cice D, Ferrara E, Magri A, Adiletta G, Capriolo G, Rega P, Di Matteo M, Petriccione M. Autochthonous Apple Cultivars from the Campania Region (Southern Italy): Bio-Agronomic and Qualitative Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1160. [PMID: 36904021 PMCID: PMC10007192 DOI: 10.3390/plants12051160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Apple (Malus × domestica Borkh.) is an important fruit crop widely spread in the cold and mild climates of temperate regions in the world, with more than 93 million tons harvested worldwide in 2021. The object of this work was to analyze thirty-one local apple cultivars of the Campania region (Southern Italy) using agronomic, morphological (UPOV descriptors) and physicochemical (solid soluble content, texture, pH and titratable acidity, skin color, Young's modulus and browning index) traits. UPOV descriptors highlighted similarities and differences among apple cultivars with a depth phenotypic characterization. Apple cultivars showed significant differences in fruit weight (31.3-236.02 g) and physicochemical trait ranging from 8.0 to 14.64° Brix for solid soluble content, 2.34-10.38 g malic acid L-1 for titratable acidity, and 15-40% for browning index. Furthermore, different percentages in apple shape and skin color have been detected. Similarities among the cultivars based on their bio-agronomic and qualitative traits have been evaluated by cluster analyses and principal component analyses. This apple germplasm collection represents an irreplaceable genetic resource with considerable morphological and pomological variabilities among several cultivars. Nowadays, some local cultivars, widespread only in restricted geographical areas, could be reintroduced in cultivation contribution to improving the diversity of our diets and contemporary to preserve knowledge on traditional agricultural systems.
Collapse
Affiliation(s)
- Danilo Cice
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| | - Elvira Ferrara
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Magri
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Adiletta
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giuseppe Capriolo
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| | - Pietro Rega
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| | - Marisa Di Matteo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Milena Petriccione
- CREA, Council for Agricultural Research and Economics, Research Centre for Olive, Fruits and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| |
Collapse
|
6
|
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research Progress and Trends in Metabolomics of Fruit Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:881856. [PMID: 35574069 PMCID: PMC9106391 DOI: 10.3389/fpls.2022.881856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xin Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Shengnan Tan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Analysis and Test Center, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|
7
|
Effects of Biostimulants on Annurca Fruit Quality and Potential Nutraceutical Compounds at Harvest and during Storage. PLANTS 2020; 9:plants9060775. [PMID: 32575770 PMCID: PMC7355878 DOI: 10.3390/plants9060775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
The cultivar Annurca is an apple that is cultivated in southern Italy that undergoes a typical redding treatment and it is appreciated for organoleptic characteristics, high pulp firmness, and nutritional profile. In this study, the effects of three different biostimulants (Micro-algae (MA), Protein hydrolysate (PEP), and Macro-algae mixed with zinc and potassium (LG)), with foliar application, on the quality parameters of Annurca apple fruits at the harvest, after redding, and at +60 and +120 days of cold storage were analyzed: total soluble solids (TSS) content, total acidity (TA), pH, firmness flesh, and red coloration of epicarp. Additionally, the polyphenolic quali-quantitative profile of pulp and peel was analyzed by UHPLC-Q-Orbitrap HRMS and Folin-Ciocalteu and the antioxidant capacity with the methods 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant capacity (FRAP). The results obtained suggest that biostimulants are involved in the regulation of the secondary metabolism of the treated plants, acting positively on the quality of the Annurca fruits and their nutritional value. Fruits treated with PEP have shown, during cold storage, a significantly higher content of total polyphenols in flesh and a higher concentration of phloretin xylo-glucoside and phloridzin (350.53 and 43.58 mg/kg dw respectively). MA treatment caused, at the same time, an enhancement of flavonols between 0.6–28% and showed the highest total polyphenol content in the peel after 60 and 120 days of cold storage, with 2696.048 and 2570.457 mg/kg dw, respectively. The long-term cold storage (120 days) satisfactorily maintained phenolic content of fruits deriving from MA and PEP application, in accordance with data that were obtained for peel, showed an increase of 7.8 and 5.8%, respectively, when compared to the fruits cold stored for 60 days. This study represents the first detailed research on the use of different types of biostimulants on the quality of the Annurca apple from harvest to storage.
Collapse
|
8
|
Cozzolino R, De Giulio B, Petriccione M, Martignetti A, Malorni L, Zampella L, Laurino C, Pellicano M. Comparative analysis of volatile metabolites, quality and sensory attributes of Actinidia chinensis fruit. Food Chem 2020; 316:126340. [DOI: 10.1016/j.foodchem.2020.126340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
|
9
|
Valentino G, Graziani V, D’Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020; 25:E1444. [PMID: 32210071 PMCID: PMC7145309 DOI: 10.3390/molecules25061444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Few topics are able to channel the interest of researchers, the public, and industries, like nutraceuticals. The ever-increasing demand of new compounds or new sources of known active compounds, along with the need of a better knowledge about their effectiveness, mode of action, safety, etc., led to a significant effort towards the development of analytical approaches able to answer the many questions related to this topic. Therefore, the application of cutting edges approaches to this area has been observed. Among these approaches, metabolomics is a key player. Herewith, the applications of NMR-based metabolomics to nutraceutical research are discussed: after a brief overview of the analytical workflow, the use of NMR-based metabolomics to the search for new compounds or new sources of known nutraceuticals are reviewed. Then, possible applications for quality control and nutraceutical optimization are suggested. Finally, the use of NMR-based metabolomics to study the impact of nutraceuticals on human metabolism is discussed.
Collapse
Affiliation(s)
- Giovanna Valentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Vittoria Graziani
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| |
Collapse
|
10
|
Lucini L, Rocchetti G, Trevisan M. Extending the concept of terroir from grapes to other agricultural commodities: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Önal B, Adiletta G, Crescitelli A, Di Matteo M, Russo P. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019; 24:molecules24061109. [PMID: 30897820 PMCID: PMC6471914 DOI: 10.3390/molecules24061109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples ('Golden Delicious', 'Red Delicious', 'Granny Smith' and 'Royal Gala'). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients.
Collapse
|
13
|
Mansfeld BN, Colle M, Kang Y, Jones AD, Grumet R. Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. HORTICULTURE RESEARCH 2017; 4:17022. [PMID: 28580151 PMCID: PMC5442961 DOI: 10.1038/hortres.2017.22] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 05/04/2023]
Abstract
The oomycete, Phytophthora capsici, infects cucumber (Cucumis sativus L.) fruit. An age-related resistance (ARR) to this pathogen was previously observed in fruit of cultivar 'Vlaspik' and shown to be associated with the peel. Young fruits are highly susceptible, but develop resistance at ~10-12 days post pollination (dpp). Peels from resistant (16 dpp) versus susceptible (8 dpp) age fruit are enriched with genes associated with defense, and methanolic extracts from resistant age peels inhibit pathogen growth. Here we compared developing fruits from 'Vlaspik' with those of 'Gy14', a line that does not exhibit ARR. Transcriptomic analysis of peels of the two lines at 8 and 16 dpp identified 80 genes that were developmentally upregulated in resistant 'Vlaspik' 16 dpp versus 8 dpp, but not in susceptible 'Gy14' at 16 dpp. A large number of these genes are annotated to be associated with defense and/or specialized metabolism, including four putative resistance (R) genes, and numerous genes involved in flavonoid and terpenoid synthesis and decoration. Untargeted metabolomic analysis was performed on extracts from 8 and 16 dpp 'Vlaspik' and 'Gy14' fruit peels using Ultra-Performance Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. Multivariate analysis of the metabolomes identified 113 ions uniquely abundant in resistant 'Vlaspik' 16 dpp peel extracts. The most abundant compounds in this group had relative mass defects consistent with terpenoid glycosides. Two of the three most abundant ions were annotated as glycosylated nor-terpenoid esters. Together, these analyses reveal potential mechanisms by which ARR to P. capsici may be conferred.
Collapse
Affiliation(s)
- Ben N Mansfeld
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Marivi Colle
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yunyan Kang
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|