1
|
Dashtian K, Kamalabadi M, Ghoorchian A, Ganjali MR, Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J Chromatogr A 2024; 1733:465240. [PMID: 39154494 DOI: 10.1016/j.chroma.2024.465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghoorchian
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shangguan Y, Ni J, Jiang L, Hu Y, He C, Ma Y, Wu G, Xiong H. Response surface methodology-optimized extraction of flavonoids from pomelo peels and isolation of naringin with antioxidant activities by Sephadex LH20 gel chromatography. Curr Res Food Sci 2023; 7:100610. [PMID: 37860143 PMCID: PMC10582393 DOI: 10.1016/j.crfs.2023.100610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, flavonoids were extracted from pomelo peels and naringin was isolated from the flavonoid extract. The effects of extraction parameters, namely, ethanol concentration, solid-to-liquid ratio, and extraction time, on the yield of flavonoids extracted from pomelo peels were analyzed according to the Box-Behnken design of response surface methodology. The experimental conditions for flavonoid extraction were optimized, and naringin was separated from the extracted flavonoids using Sephadex LH-20 column chromatography. Experimental results showed that the influence of factors on the extraction rate of flavonoids from pomelo peels was in the order of ethanol concentration > solid-to-liquid ratio > extraction time, and the optimal extraction parameters were 85% ethanol concentration, 1:20 solid-to-liquid ratio, and 4-h extraction time for extracting flavonoids from pomelo peels. Under these conditions, the yield of flavonoids was 6.07 ± 0.06 mg/g. After three times of extraction, the flavonoid extraction rate reached 96.55%, and the residual naringin in the pomelo peels was 0.017 mg/g, at which point the bitterness in the pomelo peels disappeared. Two components, namely, PF1 and PF2, were separated from the crude flavonoid of pomelo peels through Sephadex LH20 column chromatography. PF2 was identified as naringin by high-performance liquid chromatography tandem mass spectrometry, with a purity of 95.7 ± 0.23%. Both flavonoids and PF2 exhibited good in vitro radicals scavenging activities on DPPH, ABTS, superoxide anion and hydroxyl.
Collapse
Affiliation(s)
- Yuchen Shangguan
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
- Jiangle County Agricultural Products Quality and Safety Inspection Station, Sanming, 353300, China
| | - Jing Ni
- Fisheries College of Jimei University, Xiamen, 361021, China
| | - Lili Jiang
- Xiamen Municipal Southern Ocean Testing Co., L, Xiamen, 361021, China
| | - Yang Hu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Ying Ma
- Fisheries College of Jimei University, Xiamen, 361021, China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| |
Collapse
|
3
|
Antifungal activity against plant pathogens of purely microwave-assisted copper nanoparticles using Citrus grandis peel. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Ling W, Kaliaperumal K, Huang M, Liang Y, Ouyang Z, Zhou Z, Jiang Y, Zhang J. Pomelo seed oil: Natural insecticide against cowpea aphid. FRONTIERS IN PLANT SCIENCE 2022; 13:1048814. [PMID: 36426147 PMCID: PMC9681153 DOI: 10.3389/fpls.2022.1048814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cowpea aphid (Aphis craccivora Koch) is a plant pest that causes serious damage to vegetable crops. Extensive use of synthetic chemical pesticides causes deleterious effects on consumers as well as the environment. Hence, the search for environmentally friendly insecticides in the management of cowpea aphids is required. The present work aims to investigate the aphicidal activity of pomelo seed oil (PSO) on cowpea aphids, the possible insecticidal mechanisms, its chemical constituent profile, as well as the toxicity of its primary compounds. The results of the toxicity assay showed that PSO had significant insecticidal activity against aphids with a 72-hour LC50 value of 0.09 μg/aphid and 3.96 mg/mL in the contact and residual toxicity assay, respectively. The enzymatic activity of both glutathione S-transferase (GST) and acetyl cholinesterase (AChE) significantly decreased, as well as the total protein content, after PSO treatment, which suggested that the reduction of AChE, GST, and the total protein content in aphids treated with PSO might be responsible for the mortality of A. craccivora. The GC-MS analysis revealed that PSO contained limonene (22.86%), (9Z,12Z)-9,12-octadecadienoic acid (20.21%), n-hexadecanoic acid (15.79%), (2E,4E)-2,4-decadienal (12.40%), and (2E,4Z)-2,4-decadienal (7.77%) as its five major compounds. Furthermore, (9Z,12Z)-9,12-octadecadienoic acid showed higher toxicity to aphids than both PSO and thiamethoxam (positive control). This study emphasized the potential of PSO as a natural plant-derived insecticide in controlling cowpea aphids and also provided a novel approach for the value-added utilization of pomelo seed.
Collapse
Affiliation(s)
- Wei Ling
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Kumaravel Kaliaperumal
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
- Unit of Biomaterials Division, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Meiling Huang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Zhigang Ouyang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Zhonggao Zhou
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
5
|
The Enhancement of the Antibacterial Activity for Silver Nanoparticles Synthesized from the Extract of Citrus grandis Peel Under LED Irradiation. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Comprehensive Utilization of Immature Honey Pomelo Fruit for the Production of Value-Added Compounds Using Novel Continuous Phase Transition Extraction Technology. BIOLOGY 2021; 10:biology10080815. [PMID: 34440047 PMCID: PMC8389540 DOI: 10.3390/biology10080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary For the first time, this study investigated the extraction of bioactive substances with different polarities from immature honey pomelo fruit (IPF), a by-product of pomelo planting processing that causes resource waste and environmental pollution, using novel continuous phase transition extraction technology (CPTE). The results showed that CPTE was suitable for extracting essential oil, naringin, and pectin in sequence according to their polarities. The naringin extraction process was optimized by the response surface methodology, resulting in an extract ratio up to 99.47%. Moreover, the pectin extracted from IPF by CPTE showed better quality compared to commercial counterparts, as evidenced by lower protein and ash contents and higher white value. Together, these results suggested that CPTE could be a promising technology to improve the application value of IPF. For instance, the extracted bioactive components can be utilized as nutraceutical food ingredients. The scientific insights from this study will contribute to the development of functional food ingredients and comprehensive utilization of farming by-products. Abstract The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel continuous phase transition extraction technology (CPTE) to improve the comprehensive utilization of IPF by sequentially generating high value products and solve pollution problems related to their disposal. First, essential oil was successively extracted by CPTE at a yield of 1.12 ± 0.36%, in which 43 species were identified. Second, naringin extraction parameters were optimized using the response surface methodology (RSM), resulting in a maximum extraction rate of 99.47 ± 0.15%. Finally, pectin was extracted at a yield of 20.23 ± 0.66%, which is similar to the contents of commercial pectin. In conclusion, this study suggested that IPF was an excellent potential substrate for the production of value-added components by CPTE.
Collapse
|
7
|
Xiao L, Ye F, Zhou Y, Zhao G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem 2021; 351:129247. [PMID: 33640768 DOI: 10.1016/j.foodchem.2021.129247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Pomelo peel as a by-product from pomelo consumption is rich in various nutrients and functional compounds, while most of the by-product is disposed as wastes. The utilization of pomelo peels could not only result in valued-added products/ingredients, but also reduce the environmental threats. By mainly reviewing the recent articles, pomelo peels could be directly used to produce candied pomelo peel, tea, jams, etc. Additionally, functional components (essential oils, pectin, polyphenols, etc.) could be extracted from pomelo peels and applied in food, pharmaceutical and chemical fields. The extraction methods exerted important influences on the composition, physicochemical properties, bioactivities and structures of the resultant fractions. Furthermore, pomelo peel was exploited to make adsorbents, bioethanol, etc. For the future investigations, the functionality- or bioactivity-oriented regimes to recovery valuable components from pomelo peel should be developed in an economic, effective and eco-friendly way and their applicability in large-scale production should be addressed.
Collapse
Affiliation(s)
- Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
8
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
9
|
Paskeviciute E, Zudyte B, Luksiene Z. Innovative Nonthermal Technologies: Chlorophyllin and Visible Light Significantly Reduce Microbial Load on Basil. Food Technol Biotechnol 2019; 57:126-132. [PMID: 31316285 PMCID: PMC6600308 DOI: 10.17113/ftb.57.01.19.5816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to the high amount of biologically active compounds, basil is one of the most popular herbs. However, several outbreaks have been reported in the world due to the consumption of basil contaminated with different food pathogens. The aim of this study is to apply nonthermal and ecologically friendly approach based on photosensitization for microbial control of basil which was naturally contaminated with mesophils and inoculated with thermoresistant food pathogen Listeria monocytogenes 56Ly. The obtained data indicate that soaking the basil in 1.5·10-4 M chlorophyllin (Chl) for 15 min and illumination with light for 15 min at 405 nm significantly reduced total aerobic microorganisms on basil by 1.3 log CFU/g, and thermoresistant L. monocytogenes 56Ly from 6.1 log CFU/g in control to 4.5 log CFU/g in the treated samples. It is important to note that this treatment had no impact on enzymatic activity of polyphenol oxidase and pectinesterase. Results obtained in this study support the idea that photosensitization technique with its high selectivity, antimicrobial efficiency and nonthermal nature can serve in the future for the development of safe nonthermal and environmentally friendly preservation technology for different fruits and vegetables.
Collapse
Affiliation(s)
- Egle Paskeviciute
- Vilnius University, Institute of Photonics and Nanotechnology, Sauletekio 10, 10223 Vilnius, Lithuania
| | - Bernadeta Zudyte
- Vilnius University, Institute of Photonics and Nanotechnology, Sauletekio 10, 10223 Vilnius, Lithuania
| | - Zivile Luksiene
- Vilnius University, Institute of Photonics and Nanotechnology, Sauletekio 10, 10223 Vilnius, Lithuania
| |
Collapse
|
10
|
Ioannou I, M'hiri N, Chaaban H, Boudhrioua NM, Ghoul M. Effect of the process, temperature, light and oxygen on naringin extraction and the evolution of its antioxidant activity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Irina Ioannou
- Laboratory reactions and process engineering (LRGP); Lorraine University; 2 avenue de la Forêt de Haye - BP 20163 54505 Vandoeuvre Cedex France
- LGPM, CentraleSupélec; Université Paris-Saclay; SFR Condorcet FR CNRS 3417; Centre Européen de Biotechnologie et de Bioéconomie (CEBB); 3 rue des Rouges Terres 51110 Pomacle France
| | - Nouha M'hiri
- Laboratory reactions and process engineering (LRGP); Lorraine University; 2 avenue de la Forêt de Haye - BP 20163 54505 Vandoeuvre Cedex France
- LR17ES03 Physiopathologies; Alimentation et Biomolécules; Institut Supérieur de Biotechnologie de Sidi Thabet; Univ. De la Manouba; BP-66, 2020 Ariana-Tunis Tunisie
| | - Hind Chaaban
- Laboratory reactions and process engineering (LRGP); Lorraine University; 2 avenue de la Forêt de Haye - BP 20163 54505 Vandoeuvre Cedex France
| | - Nourhene Mihoubi Boudhrioua
- LR17ES03 Physiopathologies; Alimentation et Biomolécules; Institut Supérieur de Biotechnologie de Sidi Thabet; Univ. De la Manouba; BP-66, 2020 Ariana-Tunis Tunisie
| | - Mohamed Ghoul
- Laboratory reactions and process engineering (LRGP); Lorraine University; 2 avenue de la Forêt de Haye - BP 20163 54505 Vandoeuvre Cedex France
| |
Collapse
|
11
|
Zuin VG, Ramin LZ. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top Curr Chem (Cham) 2018; 376:3. [PMID: 29344754 PMCID: PMC5772139 DOI: 10.1007/s41061-017-0182-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
New generations of biorefinery combine innovative biomass waste resources from different origins, chemical extraction and/or synthesis of biomaterials, biofuels, and bioenergy via green and sustainable processes. From the very beginning, identifying and evaluating all potentially high value-added chemicals that could be removed from available renewable feedstocks requires robust, efficient, selective, reproducible, and benign analytical approaches. With this in mind, green and sustainable separation of natural products from agro-industrial waste is clearly attractive considering both socio-environmental and economic aspects. In this paper, the concepts of green and sustainable separation of natural products will be discussed, highlighting the main studies conducted on this topic over the last 10 years. The principal analytical techniques (such as solvent, microwave, ultrasound, and supercritical treatments), by-products (e.g., citrus, coffee, corn, and sugarcane waste) and target compounds (polyphenols, proteins, essential oils, etc.) will be presented, including the emerging green and sustainable separation approaches towards bioeconomy and circular economy contexts.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil.
- Green Chemistry Centre of Excellence, University of York, North Yorkshire, YO10 5DD, UK.
| | - Luize Z Ramin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil
| |
Collapse
|