1
|
Kang J, Yeo J. Critical overview of mass spectrometry-based lipidomics approach for evaluating lipid oxidation in foods. Food Sci Biotechnol 2025; 34:837-849. [PMID: 39974859 PMCID: PMC11833014 DOI: 10.1007/s10068-024-01726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
Mass spectrometry-based lipidomics, developed through rapid advancements in instruments and techniques, provides comprehensive analyses of individual lipidomes in diverse biological systems. This contribution summarizes the limitations of classical methods for measuring lipid oxidation in foods and presents current novel technologies for evaluating lipid oxidation. Notably, this study introduces the mass spectrometry-based lipidomics approach and its utility in assessing lipid oxidation through various analytical modes, supported by numerous examples. This overview offers significant insights into the use of mass spectrometry-based lipidomics for measuring lipid oxidation in foods, proposing lipidomics analysis as a promising method to address the limitations of classical approaches.
Collapse
Affiliation(s)
- JaeYoon Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
2
|
Williams B, Hewage SPWR, Alexander D, Fernando H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites 2025; 15:110. [PMID: 39997734 PMCID: PMC11857238 DOI: 10.3390/metabo15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Lipids are an important component of human nutrition. Conventional milk is obtained from animals, and dairy milk is consumed by many people worldwide. Recently, milk consumers have been increasingly shifting towards plant-based milk options. The aim of the study was the qualitative identification of lipid metabolites in animal- and plant-based milk, the identification and comparison of the fatty acids (FAs) of milk, and the qualitative identification of the lipid groups among the milk varieties. Methods: Milk samples were obtained from local grocery stores. Lipids were extracted using a modified Folch method and analyzed using nuclear magnetic resonance (NMR) metabolomics. Gas and liquid chromatography mass spectrometry methods (GC-MS and LC-MS) were used to identify the FAs and lipid groups. Lipid weights were compared and the NMR profiles of the lipids analyzed by multivariate statistical analysis. Principal component analysis was performed for the milk lipids obtained from the animal, and plant milk varieties. Results: Clustering of NMR data showed two main clusters: cow/almond/cashew and goat/soy/coconut. GC-MS analysis of the methylated fatty acids (FAs) showed the presence of 12:0, 14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:1, and 20:2 in all milk types, while FAs 19:0 and 20:4 were observed only in the dairy milk. LC-MS data showed common masses that may indicate the presence of mono- and diacyl glycerols and several lysophospholipids among the different types of milk. Conclusions: This study shows the advantage of using NMR, GC-MS, and LC-MS to differentiate the lipids among different milk types and compare them on one platform.
Collapse
Affiliation(s)
| | | | | | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA; (B.W.); (S.P.W.R.H.); (D.A.)
| |
Collapse
|
3
|
Blasi F, Pellegrino RM, Alabed HB, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Detailed analysis of polar lipids and comparison with bovine milk. Food Res Int 2025; 200:115493. [PMID: 39779134 DOI: 10.1016/j.foodres.2024.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
In this work, the lipidomic analysis on polar components of almond, coconut, and soy beverages was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A comparison with bovine milk was also performed. A total of 30 subclasses of polar lipids, belonging mainly to glycerophospholipids and sphingolipids, and a total of 572 molecular species were identified. Coconut showed various kinds of sphingolipids, belonging to hexosylceramides and sulfatides. Soy is particularly rich in molecular species of phospholipids. Fatty acids with chain length from 16 to 18 were the most common in almond. Numerous species of sphingomyelins were found in bovine milk, differently from plant-based beverages. Furthermore, a principal component analysis based on the polar lipid data was applied to discriminate samples, with 21 molecular species identified as biomarkers. This research opens interesting perspectives on vegetable beverages as bovine milk alternatives, especially in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
4
|
Chu Y, Wang J, Xie J. Effects of interactions between microorganisms and lipids on inferior volatile compound production during cold storage of grouper ( Epinephelus coioides). Food Chem X 2025; 25:102183. [PMID: 39897979 PMCID: PMC11786894 DOI: 10.1016/j.fochx.2025.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
The interaction between microorganisms, proteins, and lipids plays a critical role in the odor production of fish. To explore the specific impact of the interaction between lipids and microorganisms on the overall odor of grouper, this study excluded the influence of proteins and assessed lipid (POV and TBARS) and microbial characteristics (biofilm mass and ATP content) in lipid solutions. The Results showed that microbial growth and lipid oxidation mutually promote each other. Lipidomics analysis identified 44 differential lipids, and microbial diversity analysis pinpointed five key microorganisms (Carnobacterium, Pseudomonas, Gluconacetobacter, Vagococcus, and Shewanella). Furthermore, 20 key volatile compounds (VOCs) related to odor changes in the grouper lipid solution were identified using HS-SPME-GC-MS. Correlation network analysis revealed potential microbial and lipid contributions to VOC categories, including alcohols, aldehydes, ketones, and nitrogen- and sulfur-containing compounds. This study provides new insights into the roles of microorganisms and lipids in flavor formation, offering valuable knowledge for improving seafood quality control.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Liu K, Chen M, Huang G, Su C, Tang W, Li N, Yang J, Wu X, Si B, Zhao S, Zheng N, Zhang Y, Wang J. Variations in the milk lipidomic profile of lactating dairy cows fed the diets containing alfalfa hay versus alfalfa silage. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:261-271. [PMID: 39640557 PMCID: PMC11617287 DOI: 10.1016/j.aninu.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 12/07/2024]
Abstract
Alfalfa is primarily stored as silage or hay in livestock production. Previous research has shown that the storage method of grass significantly influences milk composition. This study aimed to investigate milk production performance and lipid composition in dairy cows fed diets consisting of alfalfa hay or alfalfa silage as roughage. Forty-two mid-lactation Holstein dairy cows were selected and randomly divided into three groups, each receiving a total mixed ration consisting of alfalfa hay (AH), 50% alfalfa silage + 50% alfalfa hay (AHAS), or alfalfa silage (AS). The results showed that milk fat content (P = 0.049) and milk fat yield (P < 0.001) were significantly higher in the AH and AHAS groups compared to the AH group. With increased supplementation of alfalfa silage in the diet, ω-3 polyunsaturated fatty acid content increased significantly (P < 0.001), while ω-6 polyunsaturated fatty acid content (P = 0.007) and the ratio of ω-6 to ω-3 polyunsaturated fatty acids decreased (P < 0.001). The contents of sphingomyelins, phosphatidylserines, phosphatidylethanolamines, and phosphatidylglycerols in the AHAS and AS samples were higher than in the AH samples, although the differences were not statistically significant. Additionally, the content of phosphatidylcholines was significantly higher in the AS group compared to the AH group (P = 0.032). In conclusion, feeding dairy cows a diet consisting of alfalfa silage can increase the major phospholipid content and polyunsaturated fatty acid composition in raw milk, which is more conducive to human health. These findings provide valuable insights into the benefits of alfalfa silage for dairy cows.
Collapse
Affiliation(s)
- Kaizhen Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuanyou Su
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenhao Tang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiyong Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boxue Si
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Liu YH, Liu TT, Niu JQ, Zhang XS, Xu WS, Song S, Wang Z. Characterization of phospholipidome in milk, yogurt and cream, and phospholipid differences related to various dairy processing methods. Food Chem 2024; 454:139733. [PMID: 38805923 DOI: 10.1016/j.foodchem.2024.139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Milk phospholipids have multiple health benefits, but the deficiency of detailed phospholipid profiles in dairy products brings obstacles to intake calculation and function evaluation of dairy phospholipids. In present study, 306 phospholipid molecular species were identified and quantified among 207 milk, yogurt and cream products using a HILIC-ESI-Q-TOF MS and a HILIC-ESI-QQQ MS. The phospholipid profiles of five mammals' milk show that camel milk contains the most abundant phosphatidylethanolamine, phosphatidylserine and sphingomyelin; cow, yak and goat milk have similar phospholipidomes, while buffalo milk contains abundant phosphatidylinositol. Fewer plasmalogens but more lyso-glycerolphospholipids were found in ultra-high-temperature (UHT) sterilized milk than in pasteurized milk, and higher proportions of lyso-glycerolphospholipid/total phospholipid were observed in both cream and skimmed/semi-skimmed milk than whole milk, indicating that UHT and skimming processes improve glycerolphospholipid degradation and phospholipid nutrition loss. Meanwhile, more diacyl-glycerolphospholipids and less of their degradation products make yogurt a better phospholipid resource than whole milk.
Collapse
Affiliation(s)
- Yue-Han Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing-Qi Niu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xue-Song Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wei-Sheng Xu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100000, China.
| | - Zhu Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
7
|
Lu W, Li Y, Ge L, Wang H, Liu T, Zhao Q, Mao Z, Liang J, Wang P, Chen K, Xue J, Shen Q. Comprehensive lipidomics study of basa catfish and sole fish using ultra-performance liquid chromatography Q-extractive orbitrap mass spectrometry for fish authenticity. Curr Res Food Sci 2024; 9:100812. [PMID: 39139808 PMCID: PMC11321432 DOI: 10.1016/j.crfs.2024.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The authenticity of fish products has become a widespread issue in markets due to substitution and false labeling. Lipidomics combined with chemometrics enables the fraudulence identification of food through the analysis of a large amount of data. This study utilized ultra-high-performance liquid chromatography (UHPLC)-QE Orbitrap MS technology to comprehensively analyze the lipidomics of commercially available basa catfish and sole fish. In positive and negative ion modes, a total of 779 lipid molecules from 21 lipid subclasses were detected, with phospholipid molecules being the most abundant, followed by glycerides molecules. Significant differences in the lipidome fingerprinting between the two fish species were observed. A total of 165 lipid molecules were screened out as discriminative features to distinguish between basa catfish and sole fish, such as TAG(16:0/16:0/18:1), PC(14:0/22:3), and TAG(16:1/18:1/18:1), etc. This study could provide valuable insights into authenticating aquatic products through comprehensive lipidomics analysis, contributing to quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yunyan Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ting Liu
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
8
|
Wang DH, Qi L, Yang T, Dai C, Brenna JT, Wang Z. Omega-3 Long-Chain Polyunsaturated Fatty Acids in Nonseafood and Estimated Intake in the USA: Quantitative Analysis by Covalent Adduct Chemical Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15311-15320. [PMID: 38943596 DOI: 10.1021/acs.jafc.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LCPUFA) play critical roles in human development and health. Their intake is often effectively estimated solely based on seafood consumption, though the high intake of terrestrial animal-based foods with minor amounts of LCPUFA may be significant. Covalent adduct chemical ionization (CACI) tandem mass spectrometry is one approach for de novo structural and quantitative analysis of minor unsaturated fatty acids (FA), for which standards are unavailable. Here, CACI-MS and MS/MS are used to identify and quantify minor omega-3 LCPUFA of terrestrial animal foods based on the application of measured response factors (RFs) to various FA. American mean intakes of pork, beef, chicken, and eggs contribute 20, 27, 45, and 71 mg/day of docosahexaenoic acid (DHA), respectively. The estimated intake of omega-3 DHA, eicosapentaenoic acid, and docosapentaenoic acid from nonseafood sources is significant, at 164, 103, and 330 mg/day, greater than most existing estimates of omega-3 LCPUFA intake.
Collapse
Affiliation(s)
- Dong Hao Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Lerong Qi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuanshun Dai
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Zhen Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
9
|
Cui Y, Lu W, Xue J, Ge L, Yin X, Jian S, Li H, Zhu B, Dai Z, Shen Q. Machine learning-guided REIMS pattern recognition of non-dairy cream, milk fat cream and whipping cream for fraudulence identification. Food Chem 2023; 429:136986. [PMID: 37516053 DOI: 10.1016/j.foodchem.2023.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The illegal adulteration of non-dairy cream in milk fat cream during the manufacturing process of baked goods has significantly hindered the robust growth of the dairy industry. In this study, a method based on rapid evaporative ionization mass spectrometry (REIMS) lipidomics pattern recognition integrated with machine learning algorithms was established. A total of 26 ions with importance were picked using multivariate statistical analysis as salient contributing features to distinguish between milk fat cream and non-dairy cream. Furthermore, employing discriminant analysis, decision trees, support vector machines, and neural network classifiers, machine learning models were utilized to classify non-dairy cream, milk fat cream, and minute quantities of non-dairy cream adulterated in milk fat cream. These approaches were enhanced through hyperparameter optimization and feature engineering, yielding accuracy rates at 98.4-99.6%. This artificial intelligent method of machine learning-guided REIMS pattern recognition can accurately identify adulteration of whipped cream and might help combat food fraud.
Collapse
Affiliation(s)
- Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuelian Yin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haihong Li
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou 311113, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyuan Dai
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
10
|
Stemler CD, Geisslitz S, Cutignano A, Scherf KA. Lipidomic insights into the reaction of baking lipases in cakes. Front Nutr 2023; 10:1290502. [PMID: 38192645 PMCID: PMC10773883 DOI: 10.3389/fnut.2023.1290502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Lipases are promising improvers of cake batter and baking properties. Their suitability for use in various cake formulations cannot be predicted yet, because the reactions that lead to macroscopic effects need to be unravelled. Therefore, the lipidome of three different cake recipes with and without lipase treatment was assessed by ultra high performance liquid chromatography-mass spectrometry before and after baking. By comparing the reaction patterns of seven different lipases in the recipes with known effects on texture, we show that lipase substrate specificity impacts baking quality. Key reactions for the recipes were identified with the help of principal component analysis. In the eggless basic cake, glyceroglycolipids are causal for baking improvement. In pound cake, lysoglycerophospholipids were linked to textural effects. Lipase substrate specificity was shown to be dependent on the recipe. Further research is needed to understand how recipes can be adjusted to achieve optimal lipase substrate specificity for desirable batter and baking properties.
Collapse
Affiliation(s)
- Charlotte Dorothea Stemler
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabrina Geisslitz
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (Napoli), Italy
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
11
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Blasi F, Maria Pellegrino R, Br Alabed H, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Comprehensive characterization of triacylglycerol class and comparison with bovine milk. Food Res Int 2023; 172:113147. [PMID: 37689910 DOI: 10.1016/j.foodres.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 09/11/2023]
Abstract
Nowadays, plant-based milk consumption, as part of a healthy diet, is continuously increasing. In this paper, for the first time a lipidomic analysis on molecular species of triacylglycerol (TG) fraction of plant-based beverages (almond, soy, coconut) was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 557 TG molecular species was measured, showing significantly different profiles between milk alternatives, compared with bovine milk. The most abundant TG molecular species were TG 18:1_18:1_18:1 and 18:1_18:1_18:2 for almond, TG 18:2_18:2_18:2 and 16:0_18:2_18:2 for soy, TG 12:0_10:0_12:0 and 12:0_12:0_14:0 for coconut. Unconventional fatty acids were detected in almond and soy. The main TG with ethereal linkage were TG-O 56:2, TG-O 56:4, and TG-O 56:5, while the main oxygenated TG was TG 54:5;1O. A total of 30 molecular species were identified as biomarkers for milk differentiation by principal component analysis, providing an interesting support for milk authentication and detection of adulteration on a larger sampling.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
13
|
Yeo J, Kang J, Kim H, Moon C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods 2023; 12:3177. [PMID: 37685110 PMCID: PMC10486615 DOI: 10.3390/foods12173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
With the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods. Further, it summarizes the wide applications of MS-based lipidomics in food science, such as for assessing food processing methods, detecting food adulteration, and measuring lipid oxidation in foods. Thus, MS-based lipidomics may be a useful method for identifying the action of individual lipid species in foods.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.K.); (H.K.); (C.M.)
| | | | | | | |
Collapse
|
14
|
Shui S, Wu Y, Chen X, Li R, Yang H, Lu B, Zhang B. Spectrophotometric- and LC/MS-Based Lipidomics Analyses Revealed Changes in Lipid Profiles of Pike Eel ( Muraenesox cinereus) Treated with Stable Chlorine Dioxides and Vacuum-Packed during Chilled Storage. Foods 2023; 12:2791. [PMID: 37509883 PMCID: PMC10379090 DOI: 10.3390/foods12142791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Spectrophotometric- and liquid chromatography/mass spectrometry (LC/MS)-based lipidomics analyses were performed to explore the changes of lipid profiles in pike eel (Muraenesox cinereus) under stable chlorine dioxides (ClO2) and vacuum-packed treatment during chilled storage. The peroxide value (PV) and malondialdehyde (MDA) content in ClO2 treated and vacuum-packaged (VP) samples were significantly reduced compared to simple-packaged (SP) samples during whole chilled storage. The LC/MS-based lipidomics analyses identified 2182 lipid species in the pike eel muscle classified into 39 subclasses, including 712 triglycerides (TGs), 310 phosphatidylcholines (PCs), 153 phosphatidylethanolamines (PEs), and 147 diglycerides (DGs), among others. Further, in comparison with fresh pike eel (FE) muscle, 354 and 164 higher and 420 and 193 lower abundant levels of differentially abundant lipids (DALs) were identified in SP samples and VP samples, respectively. Compared with the VP batch, 396 higher and 404 lower abundant levels of DALs were identified in the SP batch. Among these, PCs, PEs, TGs, and DGs were more easily oxidized/hydrolyzed, which could be used as biomarkers to distinguish FE, SP, and VP samples. This research provides a reference for controlling lipid oxidation in fatty fish.
Collapse
Affiliation(s)
- Shanshan Shui
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Zhejiang Marine Development Research Institute, Zhoushan 316022, China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaonan Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ruixue Li
- Comprehensive Technical Service Center of Zhoushan Customs, Zhoushan 316000, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316022, China
| | - Baiyi Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
15
|
Olías R, Delgado-Andrade C, Padial M, Marín-Manzano MC, Clemente A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023; 12:2665. [PMID: 37509757 PMCID: PMC10379384 DOI: 10.3390/foods12142665] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The global market for plant-based drinks is experiencing rapid growth driven by consumer demand for more sustainable diets, including vegetarian and vegan options. Soy beverages in particular are gaining popularity among individuals with lactose intolerance and milk protein allergies. They are considered an excellent source of high-quality protein, vitamin B, unsaturated fatty acids, and beneficial phytochemicals such as phytosterols, soy lecithins, and isoflavones. This review presents a comprehensive market survey of fifty-two soy beverages available in Spain and other European countries. The predominant category among those evaluated was calcium and vitamin-fortified drinks, accounting for 60% of the market. This reflects the need to address the nutritional gap compared to cow's milk and meet essential dietary requirements. The review covers the technological aspects of industrial soy milk production, including both traditional methods and innovative processing techniques. Additionally, it analyzes multiple studies and meta-analyses, presenting compelling evidence for the positive effects of soy beverages on various aspects of health. The review specifically examines the contributions of different components found in soy beverages, such as isoflavones, proteins, fiber, and oligosaccharides. Moreover, it explores controversial aspects of soy consumption, including its potential implications for growth, puberty, fertility, feminization, and the thyroid gland.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Clemente
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, San Miguel 101, Armilla, E-18100 Granada, Spain
| |
Collapse
|
16
|
Tan Y, Hao J, Jiang Y, Sun X, Cheng J. Lipidomics of Sannen goat milk subjected to pasteurization and spray drying based on LC-ESI-MS/MS. Food Res Int 2023; 169:112841. [PMID: 37254416 DOI: 10.1016/j.foodres.2023.112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to evaluate the effects of pasteurization and spray drying on goat milk lipids by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and multiple variable statistics. A total of 1061 lipids assigned to 29 subclasses in raw and thermal-treated groups were identified. One hundred and 85 different lipids (DLs) (VIP ≥ 1 and |Log2FC| ≥ 1.0) were selected from pairwise comparisons of goat milk by different treatments. Glycerophospholipids were the most affected subclasses by thermal processes, especially by spray drying. Five potential lipid markers [(DG (16:1_18:0), TG (18:1_22:1_18:2), Cer (t17:2/31:0), LPC (0:0/20:0), and LPS (20:0/0:0] were used to distinguish different treated goat milk. Moreover, glycerophospholipid metabolism was the primary pathway of DLs. These results would provide more details of lipid profiles in thermally treated (pasteurization and spray drying) goat milk.
Collapse
Affiliation(s)
- Yixuan Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Junli Hao
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Jiang
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jianjun Cheng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
17
|
Ren W, Sun M, Shi X, Wang T, Wang Y, Wang C, Li M. Progress of Mass Spectrometry-Based Lipidomics in the Dairy Field. Foods 2023; 12:foods12112098. [PMID: 37297344 DOI: 10.3390/foods12112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Lipids play important biological roles, such as providing essential fatty acids and signaling. The wide variety and structural diversity of lipids, and the limited technical means to study them, have seriously hampered the resolution of the mechanisms of action of lipids. With advances in mass spectrometry (MS) and bioinformatic technologies, large amounts of lipids have been detected and analyzed quickly using MS-based lipidomic techniques. Milk lipids, as complex structural metabolites, play a crucial role in human health. In this review, the lipidomic techniques and their applications to dairy products, including compositional analysis, quality identification, authenticity identification, and origin identification, are discussed, with the aim of providing technical support for the development of dairy products.
Collapse
Affiliation(s)
- Wei Ren
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Tianqi Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yonghui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
18
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Study of Yak Colostrum Nutritional Content Based on Foodomics. Foods 2023; 12:foods12081707. [PMID: 37107501 PMCID: PMC10137867 DOI: 10.3390/foods12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The utilization of yak milk is still in a primary stage, and the nutrition composition of yak colostrum is not systematically characterized at present. In this study, the lipids, fatty acids, amino acids and their derivatives, metabolites in yak colostrum, and mature milk were detected by the non-targeted lipidomics based on (ultra high performance liquid chromatography tandem quadrupole mass spectrometer) UHPLC-MS, the targeted metabolome based on gas chromatography-mass spectrometer (GC-MS), the targeted metabolome analysis based on UHPLC-MS, and the non-targeted metabolome based on ultra high performance liquid chromatography tandem quadrupole time of flight mass spectrometer (UHPLC-TOF-MS), respectively. Meanwhile, the nutrition composition of yak colostrum was compared with the data of cow mature milk in the literatures. The results showed that the nutritive value of yak colostrum was higher by contrast with yak and cow mature milk from the perspective of the fatty acid composition and the content of Σpolyunsaturated fatty acids (PUFAs), Σn-3PUFAs; the content of essential amino acid (EAA) and the ratio of EAA/total amino acid (TAA) in yak colostrum were higher than the value in yak mature milk; and the content of functional active lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), lyso-phosphatidylcholine (LPC), lyso-phosphatidylglycerol (LPG), lyso-phosphatidylinositol (LPI), sphingomyelin (SM), ganglioside M3 (GM3), ganglioside T3 (GT3), and hexaglycosylceramide (Hex1Cer) in yak colostrum, was higher than the value of yak mature milk. Moreover, the differences of nutritive value between yak colostrum and mature milk were generated by the fat, amino acids and carbohydrate metabolism that were regulated by the ovarian hormone and referencesrenin-angiotensin-aldosterone system in yaks. These research results can provide a theoretical basis for the commercial product development of yak colostrum.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| |
Collapse
|
19
|
Tan Y, Liu J, Yang Y, Wang X, Sun X, Cheng J. Effect of homogenization on lipid profiling in Saanen goat milk based on UHPLC-QTOF-MS lipidomics. Food Chem 2023; 420:136140. [PMID: 37080112 DOI: 10.1016/j.foodchem.2023.136140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Homogenization might change the lipid composition of goat milk. This study aimed to investigate the lipid profiles, and identify different lipids (DLs) of raw goat milk (RGM) and homogenized goat milk (HGM) using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and multivariate statistics. Fifty-six DLs (VIP ≥ 1 and |Log2FC| ≥ 1.0) were identified from 1057 lipids assigned to 29 subclasses in RGM and HGM. Notably, there were many phosphatidylcholines (PCs) decreased after homogenization, while lysophosphatidylcholines (LPCs) were opposite. Our results provide more details on the impact of homogenization on goat milk lipids.
Collapse
Affiliation(s)
- Yixuan Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiafei Liu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Yang
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xufeng Wang
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jianjun Cheng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
The detection of goat milk adulteration with cow milk using a combination of voltammetric fingerprints and chemometrics analysis. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
21
|
Sun Q, Wang Y, Cai Q, Pang T, Lan W, Li L. Comparative analysis of lipid components in fresh Crassostrea Hongkongensis (raw) and its dried products by using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Front Nutr 2023; 10:1123636. [PMID: 36969805 PMCID: PMC10037998 DOI: 10.3389/fnut.2023.1123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
The lipids of the oyster (Crassostrea hongkongensis) have a special physiological activity function, which is essential to maintain human health. However, comprehensive research on their lipids species and metabolism is not so common. In our study, based on the high-performance liquid chromatography/quadrupole time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted lipidomics research of Crassostrea hongkongensis fresh and dried products was determined. Meanwhile, we analyzed its lipid outline, screened the differences between the lipid molecules of Crassostrea hongkongensis fresh and dried products, and determined the lipid metabolic pathway. Results showed that 1,523 lipid molecules were detected, in which polyunsaturated fatty acids mostly existed in such lipids as phosphoglyceride. Through the multivariate statistical analysis, according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239 different lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST), 36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG), the differential lipid molecules were analyzed to mainly determine the role of the glycerin phospholipid metabolic pathway. As a whole, the results of this study provide the theoretical basis for the high-value utilization of oysters and are helpful to the development of oysters' physiological activity functions and deep utilization.
Collapse
Affiliation(s)
- Qunzhao Sun
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- College of Marine Science, Beibu Gulf University, Qinzhou, China
| | - Yunru Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qiuxing Cai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Qiuxing Cai
| | - Tingcai Pang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Weibing Lan
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Laihao Li
| |
Collapse
|
22
|
Wei H, Yang D, Mao J, Zhang Q, Cheng L, Yang X, Li P. Accurate quantification of TAGs to identify adulteration of edible oils by ultra-high performance liquid chromatography-quadrupole-time of flight-tandem mass spectrometry. Food Res Int 2023; 165:112544. [PMID: 36869531 DOI: 10.1016/j.foodres.2023.112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Edible oils play important roles in biological functions, and triacylglycerols (TAGs) in edible oils are complex mixtures. This makes accurate TAGs quantitation quite difficult that bring economically motivated food adulteration. Herein, we demonstrated a strategy for accurate quantification of TAGs in edible oils, which could be applied in identification of olive oil adulteration. The results showed that the proposed strategy could significantly improve the accuracy of TAG content determination, reduce the relative error of fatty acids (FAs) content determination, and present a wider accurate quantitative range than that of gas chromatography-flame ionization detection. Most important, this strategy coupled with principal component analysis could be used to identify adulteration of high-priced olive oil with cheaper soybean oils, rapeseed oils or camellia oils at a lower concentration of 2%. These findings indicated that the proposed strategy could be regarded as a potential method for edible oils quality and authenticity analysis.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dandan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
23
|
Analysis of milk with liquid chromatography–mass spectrometry: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractAs a widely consumed foodstuff, milk and dairy products are increasingly studied over the years. At the present time, milk profiling is used as a benchmark to assess the properties of milk. Modern biomolecular mass spectrometers have become invaluable to fully characterize the milk composition. This review reports the analysis of milk and its components using liquid chromatography coupled with mass spectrometry (LC–MS). LC–MS analysis as a whole will be discussed subdivided into the major constituents of milk, namely, lipids, proteins, sugars and the mineral fraction.
Collapse
|
24
|
Wu D, Zhang L, Zhang Y, Shi J, Tan CP, Zheng Z, Liu Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023; 12:foods12030600. [PMID: 36766129 PMCID: PMC9914114 DOI: 10.3390/foods12030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Infant formulas (IFs) are prevalent alternatives for human milk (HM), although their comparative lipid profiles have not been fully investigated. We adopted lipidomics to analyze and compare in-depth the lipid patterns of HM and IFs. The results indicated that the distribution of fatty acids (FAs) and the structure of triacylglycerols varied substantially in the analyzed samples. A total number of 425 species were identified during the analysis. HM was abundant in triacylglycerols that contained unsaturated and long-chain FAs (>C13), while triacylglycerols in IFs were mainly comprised of saturated and medium-chain FAs (C8-C13). Higher levels of sphingomyelin were observed in HM. Furthermore, HM and IF1 contained 67 significantly differential lipids (SDLs), and 73 were identified between HM and IF2. These SDLs were closely associated with nine metabolic pathways, of which the most significant was the glycerophospholipid metabolism. The results shed light on the differences between the lipid profiles of human and infant formula milks, and provide support for designing Chinese infant formula.
Collapse
Affiliation(s)
- Danjie Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi 214023, China
- Correspondence: (L.Z.); (Y.L.)
| | - Yan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (L.Z.); (Y.L.)
| |
Collapse
|
25
|
Liu Y, Qiao W, Liu Y, Zhao J, Liu Q, Yang K, Zhang M, Wang Y, Liu Y, Chen L. Quantification of phospholipids and glycerides in human milk using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. Front Chem 2023; 10:1101557. [PMID: 36700070 PMCID: PMC9868747 DOI: 10.3389/fchem.2022.1101557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Human milk lipids, which are an important source of energy and affect growth and development of infants, require a comprehensive method for its qualitative and quantitative analysis. This work describes a method for the analysis of phospholipids, glycerides, free fatty acids and gangliosides in human milk by ultra-performance liquid chromatography using a C18 column with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). The lipids were extracted by liquid-liquid extraction and phospholipids were separated by solid phase extraction (SPE). The chromatographic columns with two different specifications (4.6 mm × 150 mm, and 3 mm × 50 mm) were used to detect phospholipids and glycerides in human milk, respectively. The sphingolipids and glycerides were analyzed in positive ion mode, and the glycerophospholipids and free fatty acids were analyzed in negative ion mode. Both internal and external standards were used for absolute quantification in this experiment. 483 species of lipids, including phospholipids, glycerides, free fatty acids and gangliosides, in human milk were analyzed using UPLC-Q-TOF-MS with high sensitivity and good linearity, with coefficient of correlation above 0.99, the relative standard deviation of accuracy and precision less than 10%. The results in a large number of human milk samples showed that this method was suitable for qualitative and quantitative analysis of lipids in human milk, even for other mammalian milk and infant formulae.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China,*Correspondence: Lijun Chen,
| |
Collapse
|
26
|
Comparison of Workflows for Milk Lipid Analysis: Phospholipids. Foods 2022; 12:foods12010163. [PMID: 36613379 PMCID: PMC9818897 DOI: 10.3390/foods12010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Milk is a rich source of lipids, with the major components being triglycerides (TAG) and phospholipids (mainly phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI)). Liquid chromatography-mass spectrometry (LC-MS) is the predominant technique for lipid identification and quantification across all biological samples. While fatty acid (FA) composition of the major lipid classes of milk can be readily determined using tandem MS, elucidating the regio-distribution and double bond position of the FA remains difficult. Various workflows have been reported on the quantification of lipid species in biological samples in the past 20 years, but no standard or consensus methods are currently available for the quantification of milk phospholipids. This study will examine the influence of several common factors in lipid analysis workflow (including lipid extraction protocols, LC stationary phases, mobile phase buffers, gradient elution programmes, mass analyser resolution and isotope correction) on the quantification outcome of bovine milk phospholipids. The pros and cons of the current LC-MS methods as well as the critical problems to be solved will also be discussed.
Collapse
|
27
|
Zhang M, Fu T, Huang Q, Xing Z, Yang J, Lu W, Hu M, Han LQ, Loor JJ, Gao TY. Size, number and phospholipid composition of milk fat globules are affected by dietary conjugated linoleic acid. J Anim Physiol Anim Nutr (Berl) 2022. [DOI: 10.1111/jpn.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Menglu Zhang
- Department of Animal Production and Husbandry, College of Animal Science and Technology Henan Agricultural University Zhengzhou P.R. China
| | - Tong Fu
- Department of Animal Production and Husbandry, College of Animal Science and Technology Henan Agricultural University Zhengzhou P.R. China
| | - Qixue Huang
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Zhiyang Xing
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Jingna Yang
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Wenyan Lu
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Mingyue Hu
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Li Qiang Han
- Department of Veterinary Biotechnology, College of Veterinary Medicine Henan Agricultural University Zhengzhou P.R. China
| | - Juan J. Loor
- Department of Animal Science, Division of Nutritional Sciences University of Illinois Urbana Illinois USA
| | - Teng Yun Gao
- Department of Animal Production and Husbandry, College of Animal Science and Technology Henan Agricultural University Zhengzhou P.R. China
| |
Collapse
|
28
|
Profiling of phospholipid classes and molecular species in human milk, bovine milk, and goat milk by UHPLC-Q-TOF-MS. Food Res Int 2022; 161:111872. [DOI: 10.1016/j.foodres.2022.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
29
|
Effect of Lipids in Yak Muscle under Different Feeding Systems on Meat Quality Based on Untargeted Lipidomics. Animals (Basel) 2022; 12:ani12202814. [PMID: 36290199 PMCID: PMC9597711 DOI: 10.3390/ani12202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary With the development of living standards, consumers are paying more and more attention to meat quality and flavor. When consumers choose meat, they directly pay attention to meat quality and flavor, so the meat quality and flavor directly decide meat price and sales volume. Better meat quality and flavor are the crucial factors that increase the additional value of meat. Because of its special nutritional value and taste, yak meat is popular with consumers. The intramuscular lipids can greatly affect the meat quality and flavor, but there is no report on the effect of lipids in yak muscle on the meat quality and flavor. In this study, we studied the characterization of lipids in yak muscle under different feeding systems and further explored the key lipids affecting yak meat quality and flavor. This study can provide new insight into the improvement of yak meat quality and flavor. Abstract The effect of lipids on yak meat quality and volatile flavor compounds in yak meat under graze feeding (GF) and stall feeding (SF) was explored using untargeted lipidomics based on liquid chromatography–mass spectrometry (LC-MS) in this study. First, the volatile flavor compounds in longissimus dorsi (LD) of SF and GF yaks were detected by gas chromatography–mass spectrometry (GC-MS). In total 49 and 39 volatile flavor substances were detected in the LD of GF and SF yaks, respectively. The contents of pelargonic aldehyde, 3-hydroxy-2-butanone and 1-octen-3-ol in the LD of both GF and SF yaks were the highest among all detected volatile flavor compounds, and the leading volatile flavor substances in yak LD were aldehydes, alcohols and ketones. In total, 596 lipids were simultaneously identified in the LD of SF and GF yaks, and the leading lipids in the LD of both GF and SF yaks were sphingolipids (SPs), glycerolipids (GLs) and glycerophospholipids (GPs). Seventy-five significantly different lipids (SDLs) between GF and SF yaks were identified in the LD. The high content of TG(16:1/18:1/18:1), TG(16:0/17:1/18:1) and TG(16:0/16:1/18:1), PE(18:0/22:4) and PC(18:2/18:0) can improve the a* (redness) and tenderness of yak muscle. The changes in volatile flavor compounds in yak muscle were mainly caused by TG(18:1/18:1/18:2), TG(18:0/18:1/18:1), TG(16:0/17:1/18:1), TG(16:0/16:1/18:1), PC(18:2/18:0), TG(16:1/18:1/18:1), PI(18:0/20:4), TG(16:1/16:1-/18:1) and TG(17:0/18:1/18:1). The above results provide a theoretical basis for improving yak meat quality from the perspective of intramuscular lipids.
Collapse
|
30
|
Variations in the milk lipidomes of two dairy cow herds fed hay- or silage-based diets over a full year. Food Chem 2022; 390:133091. [DOI: 10.1016/j.foodchem.2022.133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
|
31
|
Kang M, Wang H, Shi X, Chen H, Suo R. Goat milk authentication based on amino acid ratio and chemometric analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Zhao L, Zhang J, Ge W, Wang J. Comparative Lipidomics Analysis of Human and Ruminant Milk Reveals Variation in Composition and Structural Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8994-9006. [PMID: 35849131 DOI: 10.1021/acs.jafc.2c02122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, the different lipidomes between human milk and ruminant milk were compared. The 471, 376, 467, and 87 differential lipids were identified in human versus cow, goat, sheep, and camel groups, respectively. According to multivariate statistical analysis, lipids in human and camel milk were closer but differed from other milk. The distributions of long-chain and polyunsaturated fatty acids of triglycerides (TGs), the proportions of functional TGs (OPO, OPL, and PPO), and many kinds of phospholipids (PLs) (PS, PI, GD, GM3, and Cer) in human milk were similar to those in camel milk. The similar structure of TGs and proportion of PLs in human milk to camel milk might contribute to their similar digestion and bioactivity properties. Camel milk could be considered as a new resource of lipid base for infant formula. Minor PLs should also be considered for designing formula. Our results provide a new sight for humanized lipids in infant formula.
Collapse
Affiliation(s)
- Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jinxuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
34
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
35
|
Shang J, Liu N, Cheng J, Gao W, Sun X, Guo M. Analysis and comparison of lipids in Saanen goat milk from different geographic regions in China based on UHPLC-QTOF-MS lipidomics. Food Res Int 2022; 157:111441. [PMID: 35761681 DOI: 10.1016/j.foodres.2022.111441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
The lipids in goat milk from Guangdong Province (GGM), Shaanxi Province (SGM), and Inner Mongolia Province (NGM) were analyzed and compared using untargeted lipidomics. A total of 16 lipid sub-classes and 638 lipid molecules were identified in the three groups. The main lipids were diacylglycerol (DG), triacylglycerol (TG), and glycerophosphatidylethanolamine (PE). The contents of glycerophosphatidylcholine (PC), PE, glycerophosphatidylinositol (PI), sphingomyelin (SM), glucosylceramide (GlcCer), lactosylceramide (LacCer), DG, and TG were significantly different (P < 0.05) in three groups. Moreover, 173 significantly different lipids were screened out, and 13 lipid molecules could be applied as potential lipid markers for identifying the geographic region of goat milk. In addition, the related metabolic pathways were also analyzed. A hypothetical scheme was drawn by linking the most relevant metabolic pathways. This work will provide basics for the establishment of the Saanen goat milk traceability system and provide comprehensive lipid information for the goat milk of different regions.
Collapse
Affiliation(s)
- Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenhao Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life, Sciences, University of Vermont, Burlington, Vermont 05405, USA.
| |
Collapse
|
36
|
Optimizing accelerated solvent extraction combined with liquid chromatography-Orbitrap mass spectrometry for efficient lipid profile characterization of mozzarella cheese. Food Chem 2022; 394:133542. [PMID: 35759836 DOI: 10.1016/j.foodchem.2022.133542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
In this study, a novel Accelerated Solvent Extraction (ASE) procedure combined with UHPLC-Q-Orbitrap-MS was developed for detailed untargeted lipid profile of mozzarella cheese. Response Surface Methodology and Pareto front, using a Central Composite Design (CCD), were employed to define the optimised combination of extraction temperature, number of extraction cycles and mix of solvents. LipidSearch™ software was used for a reliable and accurate lipid identification. A total of 13 subclasses, including ceramides, diacylglycerols, triacylglycerols, lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, sphingomyelins, bismethyl phosphatidic acids, cholesterol ester, zymosterol ester, hexosyl ceramides were measured. The elaboration of the CCD showed that the solvents ratio was the main factor affecting the extraction efficiency. The optimised ASE method, together with the Folch extraction, synergistically contributed to a complete characterization of lipid profile of mozzarella cheese, confirming ASE technique, associated with high resolution mass spectrometry detection, as an efficient tool for Lipidomics in food science.
Collapse
|
37
|
Advancement of omics techniques for chemical profile analysis and authentication of milk. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
39
|
Optimized Identification of Triacylglycerols in Milk by HPLC-HRMS. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThis work has developed an optimized workflow for the targeted analysis of triacylglycerols (TAGs) in milk by liquid chromatography coupled with a Q-Exactive Orbitrap mass spectrometer. First, the effects of resolution (17,500; 35,000; 70,000; 140,000) and automatic gain control target (AGC, from 2×104, 2×105, 1×106, and 3×106) have been optimized with the goal to minimize the injection time, maximize the number of scans, and minimize the mass error. Then, the flow rate of the liquid chromatography system was also optimized by maximizing the number of theoretical plates. The resulting optimized parameters consisted of a flow rate of 200 μL/min, mass resolution of 35,000, and AGC target of 2×105. Such optimal conditions were applied for targeted TAG analysis of milk fat extracts. Up to 14 target triglycerides in milk fat were identified performing a data-dependent HPLC-HRMS-MS2 experiment (t-SIM-ddMS2). The findings reported here can be helpful for MS-based lipidomic workflows and targeted milk lipid analysis.
Collapse
|
40
|
Li Q, Chen G, Zhu D, Zhang W, Qi S, Xue X, Wang K, Wu L. Effects of dietary phosphatidylcholine and sphingomyelin on DSS-induced colitis by regulating metabolism and gut microbiota in mice. J Nutr Biochem 2022; 105:109004. [PMID: 35351615 DOI: 10.1016/j.jnutbio.2022.109004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/06/2021] [Accepted: 03/03/2022] [Indexed: 01/06/2023]
Abstract
Patients with inflammatory bowel diseases tend to show alteration of lipid profiles. It remains unknown whether dietary intake with specific lipids, such as phosphatidylcholine (PC) and sphingomyelin (SM), have distinguishable effects against IBD. Here, a preclinical study using dextran sulphate sodium (DSS)-induced colitis mice model was applied to explore/compare the effects by PC and SM. Results showed that PC treatment (p.o., 30 mg/kg b.w., 15 days) exerted higher inhibitory activity than the same dosage of SM supplementation on colonic tissue lesions and pro-inflammatory cytokines expressions induced by DSS. Integrative analysis of the metabolome and microbiome indicated that PC and SM supplementation could modulate endogenous tryptophan metabolism, arginine and proline metabolism, purine metabolism, bile secretion, as well as vitamin digestion and absorption, closely correlated with their regulation on the abundance of Lactobacillus, Faecalibacterium, Dubosiella, Turicibacter, and Parasutterella communities in the gut. Based on these data, PC is a more promising candidate for preventing colitis than SM. Our findings provided a scientific foundation for further clinical research to screen more efficient dietary intervention strategy for colitis prevention.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Gang Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhu
- Department of Food Science, University of Otago, Dunedin, 9016, New Zealand
| | - Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
41
|
Sun X, Shi J, Li R, Chen X, Zhang S, Xu YJ, Liu Y. SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3331-3343. [PMID: 35230101 DOI: 10.1021/acs.jafc.1c06446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycerol ester (GE) is a kind of important lipid in milk, which varies greatly depending on many factors. In this study, a novel pseudotargeted lipidomics strategy, named SWATH-MS2&1, was developed for the detection of GEs in milk and the Folch method was selected for the sample preparation. The developed method exhibited a competitive alternative to the acknowledged pseudotargeted strategy, including wider coverage (12 more GEs detected), higher repeatability (12 more GEs, whose coefficient of variation < 0.3), better linearity (5 more GEs, whose R2 > 0.8), and similar sensitivity (only 2 GEs less than P-MRM after dilution). SWATH-MS2&1 was applied in the investigation of GEs from different milk samples. The orthogonal partial least-squares difference analysis of 219 GEs identified from SWATH-MS2&1 showed satisfying differentiation of different milk samples, and 76 GEs were screened out as potential markers. Our findings demonstrated that SWATH-MS2&1 could offer an accurate method to measure a wide spectrum of GEs in milk.
Collapse
Affiliation(s)
- Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Wang X, Jin M, Cheng X, Hu X, Zhao M, Yuan Y, Sun P, Jiao L, Tocher DR, Betancor MB, Zhou Q. Lipidomic profiling reveals molecular modification of lipids in hepatopancreas of juvenile mud crab (Scylla paramamosain) fed with different dietary DHA/EPA ratios. Food Chem 2022; 372:131289. [PMID: 34818734 DOI: 10.1016/j.foodchem.2021.131289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Untargeted lipidomic analysis was conducted to explore how different dietary docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio and, specifically, how an optimal ratio (2.3) compared to a suboptimum ratio (0.6) impacted lipid molecular species and the positional distribution of fatty acids in hepatopancreas of mud crab. The results indicated that major category of lipid affected by dietary DHA/EPA ratio was glycerophospholipids (GPs). The optimum dietary DHA/EPA ratio increased the contents of DHA bound to the sn-2 and sn-3 positions of phosphatidylcholine (PC) and triacylglycerol, EPA bound to the sn-2 position of phosphatidylcholine and 18:2n-6 bound to the sn-2 position of phosphatidylethanolamine (PE). Increased dietary DHA/EPA ratio also led to competition between arachidonic acid (ARA) and 18:2n-6 bound to esterified sites. Appropriate dietary DHA/EPA ratio can not only improve the growth performance and nutritional quality of mud crab, but also provide higher quality products for human consumers.
Collapse
Affiliation(s)
- Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Xin Cheng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoying Hu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mingming Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
43
|
Pan Y, Liu L, Tian S, Li X, Hussain M, Li C, Zhang L, Zhang Q, Leng Y, Jiang S, Liang S. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Wang X, Zhu H, Zhang W, Zhang Y, Zhao P, Zhang S, Pang X, Vervoort J, Lu J, Lv J. Triglyceride and fatty acid composition of ruminants milk, human milk, and infant formulae. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Effects of cold treatments on lipidomics profiles of large yellow croaker (Larimichthys crocea) fillets by UPLC-Q-Exactive Orbitrap MS analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Song Y, Cai C, Song Y, Sun X, Liu B, Xue P, Zhu M, Chai W, Wang Y, Wang C, Li M. A Comprehensive Review of Lipidomics and Its Application to Assess Food Obtained from Farm Animals. Food Sci Anim Resour 2022; 42:1-17. [PMID: 35028570 PMCID: PMC8728500 DOI: 10.5851/kosfa.2021.e59] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Lipids are one of the major macronutrients essential for adequate growth and
maintenance of human health. Their structure is not only complex but also
diverse, which makes systematic and holistic analyses challenging; consequently,
little is known regarding the relationship between phenotype and mechanism of
action. In recent years, rapid advancements have been made in the fields of
lipidomics and bioinformatics. In comparison with traditional approaches, mass
spectrometry-based lipidomics can rapidly identify as well as quantify
>1,000 lipid species at the same time, facilitating comprehensive, robust
analyses of lipids in tissues, cells, and body fluids. Accordingly, lipidomics
is now being widely applied in various fields, particularly food and nutrition
science. In this review, we discuss lipid classification, extraction techniques,
and detection and analysis using lipidomics. We also cover how lipidomics is
being used to assess food obtained from livestock and poultry. The information
included herein should serve as a reference to determine how to characterize
lipids in animal food samples, enhancing our understanding of the application of
lipidomics in the field in animal husbandry.
Collapse
Affiliation(s)
- Yinghua Song
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Changyun Cai
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Yingzi Song
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Xue Sun
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Baoxiu Liu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Peng Xue
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Mingxia Zhu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Wenqiong Chai
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Yonghui Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Changfa Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Mengmeng Li
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
47
|
Zhang D, Zhao L, Wang W, Wang Q, Liu J, Wang Y, Liu H, Shang B, Duan X, Sun H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Zhang D, Guo X, Wang Q, Zhao L, Sun Q, Duan X, Cao Y, Sun H. Investigation on lipid profile of peanut oil and changes during roasting by lipidomic approach. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Wu T, Guo H, Zhang T, Sun R, Tao N, Wang X, Zhong J. LipidSearch‐based manual comparative analysis of long‐chain free fatty acids in thermal processed tilapia muscles: workflow, thermal processing effect and comparative lipid analysis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Hao Guo
- Chongqing Institute of Forensic Science Chongqing 400021 China
| | - Ting Zhang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Rui Sun
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
50
|
Tang Y, Ali MM, Sun X, Debrah AA, Wang M, Hou H, Guo Q, Du Z. Development of a high-throughput method for the comprehensive lipid analysis in milk using ultra-high performance supercritical fluid chromatography combined with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1658:462606. [PMID: 34656840 DOI: 10.1016/j.chroma.2021.462606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Milk lipids are one of the most complex materials in nature and are associated with many physiological functions, hence it is important to comprehensively characterize lipids profiles to evaluate the nutritional value of milk. A quick method was developed by ultra-high performance supercritical fluid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UHPSFC-ESI-QTOF-MS) to analyze the non-polar and polar lipids profiles of cow, goat, buffalo, human milk, and infant formulas in 7 min. All chromatographic conditions were carefully optimized and their effect on the chromatographic behavior of lipid classes and species was discussed. Under optimized conditions, 12 lipid classes (triacylglycerols, diacylglycerols, monoglyceride, fatty acids, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, sphingomyelin, lyso-phosphatidylcholine, and lyso-phosphatidylethanolamine) were separated and each class was further separated in single analysis to facilitate the identification. 250 lipid species in real samples were characterized and quantified. This result demonstrates the applicability of the UHPSFC-ESI-QTOF-MS method in the high-throughput and comprehensive lipid analysis of milk, and will hopefully help to provide nutritionists with the lipid distribution in different types of milk, as well as help in the design of more suitable infant formula for babies.
Collapse
Affiliation(s)
- Yan Tang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Mujahid Ali
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention & Control, Beijing 100013, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|