1
|
Feng Y, Zhang Y, Huang K, Li S, Cao H, Guan X. Application of fat replacers in low-fat starch-based foods: Type, formulation and action mechanism on food quality. Int J Biol Macromol 2025; 309:142855. [PMID: 40216144 DOI: 10.1016/j.ijbiomac.2025.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Fat is an essential component in the processing of starch-based products. However, excessive fat intake is not beneficial to human health. Therefore, the development of fat replacers (FRs) and healthy and delicious low-fat starch-based products has become a research focus. The regulation mechanisms of fat on the quality of starch-based products, and types and formulations of FRs used in starch-based products were summarized. Based on the interaction with starch, the regulation mechanism of FRs on the quality of starch-based products and main quality evaluation parameters of low-fat starch-based products formed by these FRs were discussed. Oil-free systems (particles, polymers, hydrocolloids) and oil-containing systems (emulsions, emulsion gels, oleogels) are the main FRs used in starch-based foods. Their formulations depend mainly on the interaction between the components (polysaccharides, proteins and fats). Regulation mechanisms of FRs on the quality of starch-based products are mainly due to that their addition changes the structure, physicochemical and functional properties of starch. Microstructure, textural, rheological and tribological properties, sensory evaluation, fat digestion and calories, and nutrition are main elements of quality evaluation of low-fat starch-based products containing FRs. Next, it is necessary to systematically explore the regulation mechanism of FRs with different structures and properties on the quality of starch-based products based on molecular simulation and machine learning. More interdisciplinary collaborations, such as molecular chemistry, nutrition and nanotechnology, need to be used to guide the design of FRs and the development of low-fat starch-based products.
Collapse
Affiliation(s)
- Yao Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
2
|
Egea MB, Fernandes SS. Unlocking the Potential of Chia Intake in the Management of Metabolic Syndrome and its Risk Conditions: A Narrative Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:90. [PMID: 40100517 DOI: 10.1007/s11130-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Metabolic syndrome is the occurrence of at least three of the five conditions diabetes, overweight and obesity, triglyceridemia, hypercholesterolemia, and hypertension. Dietary interventions have been one of the first lines of treatment indicated for improving conditions related to metabolic syndrome. The growing interest in plant-based diets and foods with health-promoting qualities has increased significantly. Due to its excellent nutritional and bioactive value, chia seeds have a significant market share, characterized by their high content of proteins, essential fatty acids, fiber, vitamins, minerals, phenolic compounds, and antioxidants. These constituents promote potential positive effects on improving health, especially blood pressure, and reducing oxidative stress and the inflammatory state installed by metabolic syndrome and its risk conditions. However, the ten studies in humans that were reviewed generally showed no effect on anthropometric parameters and biochemical parameters related to glucose and lipid homeostasis. Thus, although chia seeds have a high potential to combat metabolic syndrome, this review found few studies, highlighting a gap in the area and a possible future topic for researchers.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil.
| |
Collapse
|
3
|
Ma ZF, Fu C, Lee YY. The Modulatory Role of Bioactive Compounds in Functional Foods on Inflammation and Metabolic Pathways in Chronic Diseases. Foods 2025; 14:821. [PMID: 40077524 PMCID: PMC11899172 DOI: 10.3390/foods14050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic diseases are major contributors to global morbidity and mortality. More than 70% of deaths worldwide are caused by chronic diseases, including cardiovascular diseases (CVDs), obesity, type 2 diabetes, and cancer. These diseases are characterised by chronic low-grade inflammation and metabolic dysregulation. Incorporating functional foods into daily diet has been suggested as a complementary strategy to promote health and lower the risk of non-communicable diseases. Functional foods, known as foods that confer health benefits beyond basic nutrition, have been reported to exhibit preventive and therapeutic benefits such as anti-inflammatory properties for human health. Therefore, the aim of this state-of-the-art review will synthesise the findings from recent and high-quality studies that investigated the modulatory role of some commonly reported bioactive active compounds, such as polyphenols, omega-3 fatty acids, probiotics, and prebiotics, in inflammation and metabolic pathways.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Centre for Public Health and Wellbeing, School of Health and Social Wellbeing, College of Health, Science and Society, University of the West of England, Bristol BS16 1QY, UK
| | - Caili Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 15200, Malaysia
| |
Collapse
|
4
|
Petka K, Topolska K. Vegetable-Enriched Brownies: A Healthier Twist on a Classic Treat. Nutrients 2025; 17:184. [PMID: 39796618 PMCID: PMC11723092 DOI: 10.3390/nu17010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES In response to concerns about high-fat and low-fiber diets, this study modified a traditional brownie recipe by replacing butter with plant-based ingredients, including sweet potatoes, red beans, beetroot, zucchini, pumpkin, lentils, and spinach. The goal was to increase vegetable consumption while identifying the best vegetable fat replacer using sensory and instrumental analyses. METHODS Chemical analyses were conducted to measure dry matter, protein, fat, ash, and dietary fiber, alongside texture, color, and sensory evaluations. RESULTS The butter replacement led to a significant reduction in fat content, up to three-fold, and a decrease in caloric value by 57% while increasing dietary fiber and ash levels. Sweet potato brownies (SPB) had the highest fiber and ash content, while zucchini brownies (ZB) exhibited improved texture due to greater moisture retention. Sensory assessments showed that classic brownies (CB) ranked highest in appearance, taste, and texture, while lentil (LB) and spinach brownies (SB) had lower acceptability. CONCLUSIONS Incorporating plant-based ingredients into brownies significantly improves their nutritional profile but can affect sensory attributes. Further optimization is needed to balance nutritional benefits with consumer preferences, offering a promising approach to increasing vegetable intake through a popular dessert.
Collapse
Affiliation(s)
- Katarzyna Petka
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 21 Mickiewicz Av., 31-120 Krakow, Poland
| | | |
Collapse
|
5
|
Fernandes SS, Egea MB, de Las Mercedes Salas-Mellado M, Segura-Campos MR. Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:20. [PMID: 39714741 DOI: 10.1007/s11130-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 12/24/2024]
Abstract
Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties. Thus, the objective was to add chia oil nanoemulsion prepared with chia mucilage, in total replacement of water and soybean oil in crackers, and to evaluate the physical-chemical, technological, and sensory properties. The cracker with chia oil nanoemulsion showed a 73.2% reduction in lipid content compared to the control cracker, and no difference in protein and fiber content. The developed cracker presented expansion, firmness, fracture, and luminosity factors as the control cracker. Regarding antioxidant activity, the cracker with nanoemulsion showed greater activity. Sensorially, the developed crackers did not show a significant difference in appearance, flavor, and texture from the control cracker, and the purchase intention was positive. Also, the developed crackers were healthier, with a lower total lipid content, and higher antioxidant activity.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Myriam de Las Mercedes Salas-Mellado
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil
| | - Maira Rubi Segura-Campos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México
| |
Collapse
|
6
|
Geng S, Wang Y, Liu B. Fabrication, characterization and application of Pickering emulsion gels stabilized by defatted grape seed powder. Food Chem X 2024; 22:101476. [PMID: 38813458 PMCID: PMC11134537 DOI: 10.1016/j.fochx.2024.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The feasibility of defatted grape seed powder (DGSP) stabilizing Pickering emulsion gels as butter substitute was investigated. The Pickering emulsion gel was constructed using DGSP through high-speed homogenization, and the effects of particle concentration (c) and oil-phase (Medium chain triglyceride) volume fraction (φ) on its structure and properties were investigated. Its application as a butter substitute was also evaluated. The results showed that DGSP had various particle shapes, a wide particle size distribution (3-130 μm), and a three-phase contact angle of 128.9 ± 2.3°. The O/W Pickering emulsion gels with φ ≥ 60% could be obtained at c ≥ 2%. The droplet diameter was negatively correlated with c and positively correlated with φ, while the gel strength was positively related to c and φ. The resulting emulsion gel demonstrated solid-like viscoelastic behavior and pseudoplasticity, and had the potential to serve as a butter substitute. The results can promote the application of grape seeds in food.
Collapse
Affiliation(s)
- Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuxiang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
7
|
Aswathy VP, Bains A, Sridhar K, Chawla P, Sharma M, Ali N, Malik A, Goksen G. Nano polysaccharides derived from aloe vera and guar gum as a potential fat replacer for a promising approach to healthier cake production. Int J Biol Macromol 2024; 267:131431. [PMID: 38593896 DOI: 10.1016/j.ijbiomac.2024.131431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/25/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.
Collapse
Affiliation(s)
- V P Aswathy
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| |
Collapse
|
8
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2365-2387. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Santos NC, Almeida RLJ, de Andrade EWV, Gomes JP, de Medeiros MDFD, Pedrini MRDS. Breads formulated with avocado pulp powder as a fat substitute: Quality parameters and in vitro inhibition activities. J Food Sci 2024; 89:2110-2123. [PMID: 38450774 DOI: 10.1111/1750-3841.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
The aim of the current study was to evaluate the influence of increasing contents (5%-25%) of avocado pulp powder (APP) produced by foam-mat drying (FMD) as a substitute for hydrogenated vegetable fat in bread on its nutritional composition, physical properties, α-amylase, α-glucosidase, and lipase inhibition, total phenolic content, antioxidant activity, color, structure, and x-ray diffraction patterns. The increase in the APP content decreased the values of lipids, carbohydrates, energy, firmness, and specific volume of breads. The inhibition of lipase activity showed a pronounced increase, while the total phenolic content and antioxidant activity were significantly elevated. The color parameters a* and b* were higher in the breads with added APP. The crystalline structure transitioned from type A to type V with 15% APP incorporation. Taken together, these results suggest that APP has potential to act as a healthier substitute for saturated fats in breads, paving the way to develop creative and innovative solutions for the functionalization of bakery food products.
Collapse
Affiliation(s)
- Newton Carlos Santos
- Bioprocess Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
- Laboratory of Food Technology, Chemical Engineering Department, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
| | - Raphael Lucas Jacinto Almeida
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
| | | | - Josivanda Palmeira Gomes
- Laboratory of Processing and Storage of Agricultural Products, Agricultural Engineering Department, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Maria de Fátima Dantas de Medeiros
- Laboratory of Food Technology, Chemical Engineering Department, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
| | - Márcia Regina da Silva Pedrini
- Bioprocess Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
| |
Collapse
|
10
|
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024; 29:440. [PMID: 38257357 PMCID: PMC10819138 DOI: 10.3390/molecules29020440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Collapse
Affiliation(s)
- Caroline Senna
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Luiza Soares
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Km 01, Rural Area, Rio Verde 75901-970, Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| |
Collapse
|
11
|
Miśkiewicz K, Rosicka-Kaczmarek J, Kowalska G, Maher A, Oracz J. Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks). Molecules 2024; 29:306. [PMID: 38257219 PMCID: PMC10820551 DOI: 10.3390/molecules29020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
In the literature, there are few reports indicating hydrocolloids as a factor capable of reducing the amount of acrylamide formed in food. Therefore, the aim of the study was to examine the ability of soluble oat fiber to reduce the amount of acrylamide formed in the process of obtaining rusks. The effect of the concentration of β-glucans in oat fiber preparations at 20% and 30% and the amount of preparations used at 10%, 15%, and 20% was investigated. On the basis of the obtained test results, it was shown that the most optimal concentration of oat fiber preparation in rusks recipe is at 15%, regardless of the content of β-glucan in it. This concentration makes it possible to reduce the amount of acrylamide formed in baked goods and rusks by ~70% and ~60%, respectively, while maintaining the desired physical and chemical properties of the product. In addition, it was shown that the browning index and water activity strongly correlate with the content of acrylamide in rusks, which makes them good markers of this compound in rusks. The use of hydrocolloids in the form of oat fiber preparations with different contents of β-glucan as a tool for reducing the amount of acrylamide in rusks, at the same time, offers the possibility of enriching these products with a soluble dietary fiber with health properties.
Collapse
Affiliation(s)
- Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, 90-537 Lodz, Poland; (K.M.); (G.K.); (J.O.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, 90-537 Lodz, Poland; (K.M.); (G.K.); (J.O.)
| | - Gabriela Kowalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, 90-537 Lodz, Poland; (K.M.); (G.K.); (J.O.)
| | - Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska Street 171/173, 90-924 Lodz, Poland;
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, 90-537 Lodz, Poland; (K.M.); (G.K.); (J.O.)
| |
Collapse
|
12
|
Gao H, Wang Z, Dai Y, Zeng J, Li W. Effects of chia seed gum on the physicochemical properties of frozen dough and the quality of dumplings. Int J Biol Macromol 2023; 253:127280. [PMID: 37806419 DOI: 10.1016/j.ijbiomac.2023.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
This study was designed to investigate the properties of chia seed gum (CSG) and its use in frozen dough. The CSG prepared by vacuum freeze-drying had the lowest water separation (4.22 ± 0.11 %) after three freeze-thaw cycles and the best color among the samples. The addition of 0.4 % to 1.0 % CSG significantly increased the peak, trough and final viscosity and decreased the breakdown and setback of the flour. The water absorption and cooking stability of the dough increased with increasing CSG content. The addition of 0.8 %-1.0 % CSG significantly increased the content of strongly bound water in dough during frozen storage. The CSG improved the texture of dough, and there were no significant differences in hardness, springiness, cohesiveness or chewiness of dough with 0.8 %-1.0 % CSG during frozen storage for 30 days. The cooking loss rate and the cracking rate of the dumpling wrappers with 0.8 % CSG were reduced by 2.31 % and 21.34 %, respectively. In conclusion, CSG can be used to improve the quality of wheat dough and its products and has promising applications in flour products.
Collapse
Affiliation(s)
- Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Xinxiang Key Laboratory of Development and Quality Control of Frozen Flour Products, Xinxiang 453003, China; Grain Deep Processing Product Quality Improvement Engineering Technology Research Center of Henan Province, Xinxiang 453003, China.
| | - Zhaojun Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yunfei Dai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Xinxiang Key Laboratory of Development and Quality Control of Frozen Flour Products, Xinxiang 453003, China; Grain Deep Processing Product Quality Improvement Engineering Technology Research Center of Henan Province, Xinxiang 453003, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
da Silva FT, Dos Santos FN, Fonseca LM, de Souza EJD, Dos Santos Hackbart HC, da Silva KG, Biduski B, Gandra EA, Dias ARG, Zavareze EDR. Oleogels based on germinated and non-germinated wheat starches and orange essential oil: Application as a hydrogenated vegetable fat replacement in bread. Int J Biol Macromol 2023; 253:126610. [PMID: 37652330 DOI: 10.1016/j.ijbiomac.2023.126610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to produce oleogels based on non-germinated and germinated wheat starches with orange essential oil, apply them to replace hydrogenated vegetable fat in bread, and assess the antifungal action. The oleogels were prepared using sunflower oil, wheat starches, beeswax, water, and orange essential oil (OEO). They were evaluated to determine the volatile compounds, oil binding capacity, texture profile, storage stability for 20 days, thermogravimetric analysis, and functional groups. The breads were evaluated by their moisture content, specific volume, texture profile, volatile compounds, and microbiological contamination during 15 days of storage. The oleogels showed high storage stability, were fully intact after 20 days of storage, and had a high oil binding capacity (∼100 %). The oleogels with OEO presented increased adhesiveness and reduced hardness compared to the ones without essential oil. The oleogels with OEO based on germinated wheat starch released a high amount of volatile compounds. Substituting saturated vegetable fat with oleogels in bread formulation resulted in decreased hardness and maintained specific volume. Furthermore, incorporating OEO oleogels in the bread led to reduced growth of total mesophiles and fungi.
Collapse
Affiliation(s)
- Francine Tavares da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Felipe Nardo Dos Santos
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | | | | | - Kátia Gomes da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland
| | - Eliezer Avila Gandra
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
14
|
Xiao Z, Yan C, Jia C, Li Y, Li Y, Li J, Yang X, Zhan X, Ma C. Structural characterization of chia seed polysaccharides and evaluation of its immunomodulatory and antioxidant activities. Food Chem X 2023; 20:101011. [PMID: 38144771 PMCID: PMC10740084 DOI: 10.1016/j.fochx.2023.101011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
This study aims to extract an active heteropolysaccharide Chia seed polysaccharide (CSP-A) and further purified by DEAE Sepharose Fast Flow and Sepharose CL-6B chromatographic column, characterize its structure, and evaluate its antioxidant and immunomodulatory activities. Structural analysis revealed that CSP-A was composed of d-mannose, d-glucuronic acid and d-xylose in a molar ratio of 1:3:4 with molecular weight of 1.688 × 105 Da, owning 4 sugar residues of β-d-Manp-(1→, →4)-α-d-GlcpA-(1→, →2,4)-β-d-Xylp-(1→, and → 4)-β-d-Manp-(1 →. Congo red assay and microscopic characteristics showed that CSP-A in its solution may possess a helical conformation. In vitro experiments showed that CSP-A had moderate DPPH· and OH· scavenging activities. CSP-A also enhanced the phagocytosis ability of RAW 264.7 cells and prompted the release of NO, TNF-α, IL-6 and IL-1β from RAW 264.7 cells, which indicated CSP-A had immune regulation effect. This experiment provides scientific basis for further utilization and development of chia seeds, a kind of functional food.
Collapse
Affiliation(s)
- Zhijun Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changyang Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yuanlin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinxin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueyan Zhan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhua Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
15
|
Ahmadinia F, Mohtarami F, Esmaiili M, Pirsa S. Investigation of physicochemical and sensory characteristics of low calorie sponge cake made from flaxseed mucilage and flaxseed flour. Sci Rep 2023; 13:20949. [PMID: 38016994 PMCID: PMC10684601 DOI: 10.1038/s41598-023-47589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
This research aimed to extract flaxseed mucilage (FM) and investigate its rheological properties (static and dynamic tests) compared with animal oil. In the next stage, the D-optimal design was applied to investigate the effect of FM (0-60%) and FF (0-30%) replacements with animal oil and cake flour, respectively on the sponge cake's physicochemical, textural, and sensory properties. According to the flow behavior test, FM showed Newtonian behavior while animal oil had pseudoplastic behavior. The results of the dynamic test showed with an increase in frequency, the loss modulus (G״) and storage modulus (G') of samples increased. However, G' was higher than G״ in all samples. By replacement of FM and FF, the moisture content, water activity, antioxidant capacity, crumb hardness, and cohesiveness of the samples increased while springiness, crust hardness, and specific volume decreased (P < 0.05). Lightness of samples with replacement of FF decreased (P < 0.05). The overall acceptance score was enhanced with an increase in FM substitution while it was decreased with the replacement of FF (P < 0.05). The amounts of fat, calories, and peroxide values were decreased in sponge cake with the incorporation of FF and FM (P < 0.05). In general, the substitution of FM (60%) and FF (28%) in the cake formulation as an optimized sample to make new products with low-calorie content is possible without significant decreases in product quality.
Collapse
Affiliation(s)
- Fariba Ahmadinia
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Forogh Mohtarami
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Mohsen Esmaiili
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Bakr AF, Farag MA. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS OMEGA 2023; 8:24680-24694. [PMID: 37483202 PMCID: PMC10357562 DOI: 10.1021/acsomega.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
The number of hypercholesterolemic people is increasing rapidly worldwide, with elevated lipid profiles representing a major risk factor of coronary heart diseases. Dietary intervention was shown to improve the lipid profile, thus enhancing the quality of life. Dietary fiber is a nondigestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber, and is classified according to its water solubility properties as either soluble (SDF) or insoluble dietary fiber (IDF). Consumption of SDF is associated with several health benefits such as reduced lipid levels, lower blood pressure, improved blood glucose control, improved immune function, and reduced inflammation. SDF has been shown to lower blood cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums (gum arabic and guar gum), pectin, and inulin.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Pathology
Department, Faculty of Veterinary Medicine, Cairo University, Gamaa Street, 12211 Giza, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr el Aini Street, P.O. Box 11562, 12613 Cairo, Egypt
| |
Collapse
|
18
|
Lira MM, Oliveira Filho JGD, Sousa TLD, Costa NMD, Lemes AC, Fernandes SS, Egea MB. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res Int 2023; 169:112822. [PMID: 37254398 DOI: 10.1016/j.foodres.2023.112822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
The increase in the preference for vegan and vegetarian diets is directly related to changing eating habits and the need for plant-based alternatives to animal-based products, which are better for health, due to the high content of essential amino acids and lipid profile rich in polyunsaturated fatty acids, and have lower environmental impacts. In this scenario, there is a growing demand for plant-based foods, making it necessary to find new plant-based ingredients for application in foods and beverages. Flaxseed, chia seed, and Barbados gooseberry contain mucilage, a component with potential application in plant-based products. These hydrocolloids can be used as gelling agents, texture modifiers, stabilizers, and emulsifiers in solid and semi-solid foods. This review presents the extraction, characterization, and application of flaxseed, chia seed, and Barbados gooseberry mucilage for use in plant-based foods. It was found that mucilage composition varies due to the extraction method used, extraction conditions, and geographic location of the seed or leaf. However, applications in plant-based foods are currently limited, mainly focused on applying chia mucilage in bakery products and packaging. Research on applying flaxseed and Barbados gooseberry mucilage to plant-based products is limited, though it has been shown to have potential applications in packaging. Mucilage may also increase the nutritional profile of the product and provide better technological, functional, and sensory characteristics. Therefore, because of mucilage's excellent functional and technological properties, it is a promising candidate to act as an ingredient in plant-based food products.
Collapse
Affiliation(s)
- Michelle Monteiro Lira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Josemar Gonçalves de Oliveira Filho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú Km 1, 14800-903 Araraquara, São Paulo, Brazil
| | - Tainara Leal de Sousa
- Federal University of Goiás (UFG), Agronomy Department, Agronomy School, Street 235, s/n - East University Sector, CEP 74605-450 Goiânia/GO, Brazil
| | - Nair Mota da Costa
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil.
| |
Collapse
|
19
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
20
|
Mutlu S, Kopuk B, Palabiyik I. Effect of Cold Atmospheric Pressure Argon Plasma Jet Treatment on the Freeze-Dried Mucilage of Chia Seeds ( Salvia hispanica L.). Foods 2023; 12:foods12081563. [PMID: 37107358 PMCID: PMC10137730 DOI: 10.3390/foods12081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, the effects of the treatment of chia seeds with a cold atmospheric pressure plasma jet (CP) using argon as a working gas for different times (30, 60, and 120 s) on the rheological, structural, and microstructural properties of the freeze-dried mucilages at -54 °C were investigated. All mucilage gels showed pseudoplastic flow behavior, and CP treatment of chia seeds increased the viscosity of mucilages, probably due to the cross-linking between polymer molecules. The dynamic rheological analysis revealed that all mucilages were elastic gels and that CP treatment improved the elastic properties in a treatment time-dependent manner. Large amplitude oscillatory shear (LAOS) results showed that freeze-dried mucilages showed Type I strain-thinning behavior. Similar to small amplitude oscillatory shear (SAOS) results, CP treatment has affected and improved the large deformation behavior of mucilages depending on treatment time. Meanwhile, Fourier transform infrared spectroscopy (FTIR) revealed the incorporation of hydroxyl groups onto the surface and the formation of C-O-C glycosidic bonds during plasma treatment. Scanning electron microscope (SEM) micrographs showed the formation of denser structures with CP treatment time. Regarding color properties, CP treatment decreased the lightness values of mucilages. Overall, this study showed that CP is an effective way to modify both the SAOS and LAOS properties of freeze-dried chia mucilage and improve viscosity.
Collapse
Affiliation(s)
- Sebnem Mutlu
- Edirne Food Control Laboratory Directorate, 22100 Edirne, Türkiye
| | - Berkay Kopuk
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Ibrahim Palabiyik
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| |
Collapse
|
21
|
Goksen G, Demir D, Dhama K, Kumar M, Shao P, Xie F, Echegaray N, Lorenzo JM. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int J Biol Macromol 2023; 230:123146. [PMID: 36610576 DOI: 10.1016/j.ijbiomac.2023.123146] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Current trends are shifting away from using synthetic compounds in favor of discovering new natural component sources that will allow them to create goods that are healthful, environmentally friendly, sustainable, and profitable. The food industry, in light of these trends, has opted to look for safe natural ingredients that will allow the production of low-fat, artificial-additive-free, gluten-free, prebiotic, and fortified foods. Similarly, the pharmaceutical and medical industries have attempted to apply natural ingredients to address the challenges related to biomaterials more efficiently than synthetic ingredients. Against this background, plant mucilage has proven to be a polysaccharide with excellent health features and technological properties, useful for both food and biomedical applications. Many studies have shown that its inclusion in different food matrices improves the quality of the products obtained under appropriate reformulations. At the same time, plant mucilage has been indicated to be a very interesting matrix in biomedical field especially tissue engineering applications since it has been emerged to favor tissue regeneration with its highly biocompatible structure. This concise review discusses the most recent advances of the applications of plant mucilage in different foods as well as its recent use in biomedical field. In this context, firstly, a general definition of mucilage was made and information about plant-based mucilage, which is frequently used, about the plant parts they are found in, their content and how they are obtained are presented. Then, the use of mucilage in the food industry including bakery products, meat emulsions, fermented dairy products, ice cream, and other foods is presented with case studies. Afterwards, the use of plant mucilage in the biomedical field, which has attracted attention in recent years, especially in applications with tissue engineering approach such as scaffolds for tissue regeneration, wound dressings, drug delivery systems and pharmaceutical industry was evaluated.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
22
|
Silva Zamora R, Baldelli A, Pratap-Singh A. Characterization of selected dietary fibers microparticles and application of the optimized formulation as a fat replacer in hazelnut spreads. Food Res Int 2023; 165:112466. [PMID: 36869479 DOI: 10.1016/j.foodres.2023.112466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The present work demonstrates the application of the spray drying technique to produce microparticulates of different dietary fibers with particle sizes<10 µm. It examines their role as potential fat replacers for hazelnut spread creams. Optimization of a dietary fiber formulation containing inulin, glucomannan, psyllium husk, and chia mucilage to obtain high viscosity, water holding capacity, and oil holding capacity was conducted. Microparticles containing 46.1, 46.2, and 7.6 weight percentages of chia seed mucilage, konjac glucomannan, and psyllium husk showed a spraying yield of 83.45 %, a solubility of 84.63 %, and viscosity of 40.49 Pas. When applied to hazelnut spread creams, microparticles substituted palm oil by 100 %; they produced a product with a total unsaturated and saturated fat reduction of 41 and 77 %, respectively. An increase in dietary fibers of 4 % and a decrease in total calories of 80 % were also induced when compared with the original formulation. Hazelnut spread with dietary fiber microparticles were preferred by 73.13 % of the panelist in the sensory study due to an enhancement in brightness. The demonstrated technique could be used to increase the fiber content while decreasing the fat content in some commercial products, such as peanut butter or chocolate cream.
Collapse
Affiliation(s)
- Rocio Silva Zamora
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
23
|
Ribeiro AEC, Oliveira AR, Silva ACMD, Garcia MC, Ribeiro KDO, Caliari M, Soares Júnior MS. High fiber content snack bars made with maize biomass flour, rice flakes and oat flakes: Physicochemical properties and sensory acceptance. FOOD SCI TECHNOL INT 2023; 29:181-191. [PMID: 35253452 DOI: 10.1177/10820132221085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to assess physicochemical properties and sensory acceptance of snack bars (SBs) made with different levels of maize biomass flour (MBF), rice flakes (RF) and oat flakes (OF). A simplex design was used, with 6 mixtures and 2 repetitions. The different levels of MBF, RF and OF used in the SBs influenced all physicochemical properties evaluated (moisture, water activity, specific volume, hardness and instrumental color). SB4 (containing 14.85:5:10.85% of MBF:RF:OF, respectively) and SB6 (containing 14:8:8% of MBF:RF:OF, respectively) were the closest to the desirable formulation according to the desirability diagram for the physicochemical properties of the SBs. SB1 (containing 20:5:5% of MBF:RF:OF, respectively) was also selected for sensory analysis as it showed the highest MBF content among all formulations. None SBs presented a microbiological risk. The SB6 presented the highest sensory acceptance and purchase intent, highlighting its rich content of dietary fiber (16.45 ± 0.1 g/100 g) and protein (7.04 ± 0.02 g/100 g) besides its low-calorie characteristic (1421.22 kJ/100 g/339.68 kcal/100 g). The development of SBs using MBF is feasible in relation to their physicochemical and sensory properties, which can stimulate the sustainable production of new goods from this by-product.
Collapse
Affiliation(s)
- Alline Emannuele Chaves Ribeiro
- Agronomy Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Rural Development Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | - Aryane Ribeiro Oliveira
- Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | | | - Marina Costa Garcia
- Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | | | - Márcio Caliari
- Rural Development Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| | - Manoel Soares Soares Júnior
- Agronomy Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil.,Food Engineering Department, Agronomy School, 488655Federal University of Goiás, Goiânia/GO, Brazil
| |
Collapse
|
24
|
Ang ME, Cowley JM, Yap K, Hahn MG, Mikkelsen D, Tucker MR, Williams BA, Burton RA. Novel constituents of Salvia hispanica L. (chia) nutlet mucilage and the improved in vitro fermentation of nutlets when ground. Food Funct 2023; 14:1401-1414. [PMID: 36637177 DOI: 10.1039/d2fo03002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both β-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.
Collapse
Affiliation(s)
- Main Ern Ang
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Kuok Yap
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Deirdre Mikkelsen
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia.,School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Barbara A Williams
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
25
|
Calderón de la Barca AM, Porras-Loaiza MAP, Pineda-Díaz EA, González-Ríos H, Heredia-Sandoval NG, Islas-Rubio AR. Wheat-Free and Nutritious Bread and 'Coricos' Made with Mesoamerican Ancestral Corn, Amaranth, Sweet Potato and Chia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:591-598. [PMID: 35987934 DOI: 10.1007/s11130-022-01005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
People with wheat-related disorders require wheat-free and good quality baked goods. We prepared wheat-free bread and cookies (coricos) with flour blends of corn, amaranth, orange sweet potato and chia. Sweet potato flour or puree and amaranth flour were prepared and their properties evaluated. Blends were optimized for dough hardness and cohesiveness by response surface methodology, with a central composite rotatory design. Bread was prepared with optimal blends plus 1.2% chia mucilage, and alternatively used sweet potato puree. The optimized blend was 57:34:9 (corn:amaranth:sweet potato flours). Coricos were made with the blend instead of only corn as traditionally. Chemical composition, texture profile, fiber, and gluten content of the products were analyzed. The breads' crust was uniform, crunchy and golden, and the crumb was homogeneous, with 41% specific volume and 60% size of the wheat bread. Coricos presented a darker golden color than those of 100% corn. Protein content was similar (~ 12% d.w.) between the blend and wheat breads, with better chemical score for the blend one. Blend bread and coricos had 2-4% more dietary fiber and higher content of bioactive compounds than their wheat or corn counterparts. Blend bread was comparable to its counterpart in chewiness while coricos were softer. Gluten content was < 20 ppm in blend products; therefore, in addition to nutritional quality, they are safe for people with wheat-related disorders.
Collapse
Affiliation(s)
| | | | - E Abraham Pineda-Díaz
- Centro de Investigación en Alimentación Y Desarrollo, A.C. Hermosillo, Sonora, México
| | | | | | - Alma R Islas-Rubio
- Centro de Investigación en Alimentación Y Desarrollo, A.C. Hermosillo, Sonora, México
| |
Collapse
|
26
|
Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:485-494. [PMID: 36083408 DOI: 10.1007/s11130-022-01011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil
| | | | - Roberta Fontanive Miyahira
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil.
| |
Collapse
|
27
|
Chia Seed Hydrogel as a Solid Fat Replacer and Structure Forming Agent in Gluten-Free Cookies. Gels 2022; 8:gels8120774. [PMID: 36547298 PMCID: PMC9777616 DOI: 10.3390/gels8120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gluten-free cookies based on rice and chickpea flour with reduced-fat and increased protein content compared with conventional commercial gluten-free cookies were developed and used as a base for further vegetable fat replacement with chia seed hydrogel. Rheological properties of chia seed hydrogel revealed that 8% gels exhibited the optimal properties as a fat substitute. Designed cookie samples were characterized for their chemical composition, fatty acid profile, mineral content, physical, textural and color parameters, and sensory properties. All gluten-free cookies developed in this study could be labeled as "a source of iron and potassium", while those with chia seed hydrogel and cocoa powder could bear the additional claim "high in zinc and magnesium". Fat replacement with chia seed hydrogel resulted in a more favorable fatty acid composition with a PUFA/SFA ratio over 0.40 and nonsignificant changes in the cookies' hardness, weight, eccentricity, and specific volume, indicating that the chia seed hydrogel addition did not disturb the cookie structure and texture. The results of the sensory analysis confirmed that it is possible to apply chia seed hydrogel to produce reduced-fat cookies with sensory properties comparable to their full-fat counterpart and available commercial samples, and they are more appealing than commercial reduced-fat gluten-free cookies.
Collapse
|
28
|
Quispe-Sanchez L, Mestanza M, Goñas M, Gill ERA, Oliva-Cruz M, Chavez SG. Physical, functional and sensory properties of bitter chocolates with incorporation of high nutritional value flours. Front Nutr 2022; 9:990887. [PMID: 36204381 PMCID: PMC9531265 DOI: 10.3389/fnut.2022.990887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the growing demand for healthy food products, the industry is seeking to incorporate inputs with high nutritional potential to traditional products. The objective of this research was to evaluate the effect of incorporating Lepidium meyenii, Chenopodium pallidicaule, Amaranthus caudatus, Sesamum indicum and Salvia hispanica flours on the physical, chemical, rheological, textural and thermal characteristics, and the degree of sensory acceptance of dark chocolate bars (65% cocoa). To this end, chocolate bars were made with the incorporation of five flours in four doses (1, 2, 3 and 4%), obtaining 20 different formulations compared with a control treatment (without flour addition). It was found that as flour incorporation levels increased, viscosity, antioxidants and particle size of the chocolates increased, but hardness and pH decreased. The addition of the flours also affected the acceptability and microstructure of the chocolate bars. The incorporation of up to 4% of the flours studied improved the degree of acceptance of the chocolates. Consequently, the incorporation of grain flours with high nutritional value can enhance the characteristics of dark chocolates, becoming a technological alternative for the chocolate industry.
Collapse
Affiliation(s)
- Luz Quispe-Sanchez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- *Correspondence: Luz Quispe-Sanchez,
| | - Marilu Mestanza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Elizabeth Renee Ambler Gill
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- College of Life Sciences and Agriculture COLSA, University of New Hampshire, Durham, NC, United States
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| |
Collapse
|
29
|
Adamczyk G, Krystyjan M, Kuźniar P, Kowalczewski PŁ, Bobel I. An Insight into Pasting and Rheological Behavior of Potato Starch Pastes and Gels with Whole and Ground Chia Seeds. Gels 2022; 8:gels8090598. [PMID: 36135310 PMCID: PMC9498488 DOI: 10.3390/gels8090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
With regard to technological innovations, we applied chia (oilseeds) as a stabilizer additive in a normal and waxy potato starch sample to obtain stable starch-based gels during 20 days of storage. The aim of this study was to investigate the 5% w/w normal and waxy potato starch pastes (hot samples) and gels (cold samples) with the addition of 1% w/w whole and ground chia seeds properties as pasting and flow properties of pastes and textural properties of gels. The pasting process using a viscograph showed that normal and waxy potato starch with the addition of chia had a different pasting characteristic. The addition of chia seeds had a greater effect on the properties of normal potato starch than waxy potato starch. From a rheological point of view, starch pastes without chia were less theologically stable as they showed bigger areas of hysteresis loops. Minor changes in the hardness of gels were obtained in normal starch gels with chia seeds during 20 days of storing compared to the samples without chia seeds, whereas in the waxy starch gels, the effect was the opposite.
Collapse
Affiliation(s)
- Greta Adamczyk
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland or
- Correspondence:
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Piotr Kuźniar
- Department of Food and Agriculture Production Engineering, Institute of Agricultural Sciences, Environment Management and Protection, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Inna Bobel
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland or
- Department of Bakery and Confectionary Goods Technologies, Educational and Scientific Institute of Food Technology, National University of Food Technologies, 68 Volodymyrska St., 01601 Kyiv, Ukraine
| |
Collapse
|
30
|
Yüncü Ö, Kavuşan HS, Serdaroğlu M. Chia ( Salvia hispanica L.) Mucilage as a Novel Fat Replacer in Beef Patties Cooked with Different Methods: Physico-Chemical, Technological, and Nutritional Perspectives. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Özlem Yüncü
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| |
Collapse
|
31
|
Grossi Bovi Karatay G, Rebellato AP, Joy Steel C, Dupas Hubinger M. Chickpea Aquafaba-Based Emulsions as a Fat Replacer in Pound Cake: Impact on Cake Properties and Sensory Analysis. Foods 2022; 11:2484. [PMID: 36010482 PMCID: PMC9407382 DOI: 10.3390/foods11162484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
This study evaluates the use of chickpea aquafaba (CA)-based emulsions as a potential substitute for palm oil (PO), using pound cake as a case study. The CA was characterized in terms of pH (6.38 ± 0.01), density (1.02 g mL-1 ± 0.01), color, total soluble solids (6.3 ± 0.2 °Bx), total solids (5.7 ± 0.2%), thermal properties through DSC, and apparent viscosity (2.5 cPa·s-1 ± 0.02 at 300 s-1). Emulsions containing 35, 30, and 25% of CA were produced and applied to cake formulation C1, C2, and C3, respectively. The cake batter was evaluated in terms of apparent density (0.87-1.04 g1 cm-3), rheology, and pH (6.6-6.8). The cakes were evaluated for specific volume, baking loss (8.9-9.5%), color, and symmetry index on day 1, and firmness, water activity (aw), and moisture content (%), after 14 days of storage. The cakes produced with the emulsions were found to have slightly higher specific volume (2.3 cm3 g-1) when compared to the control (C4) produced with PO (2.2 cm3 g-1). The moisture and aw decreased and firmness increased during storage. In terms of formulation (i.e., day 1 for C1, C2, C3, and C4), there was no significant difference for moisture. As for aw, the C4 (0.90) was significantly different from the cakes produced with emulsions (0.91-0.92). The results from the sensory evaluation, carried out with 120 panelists, showed no statistically significant difference between C3 and C4 for the attributes of aroma, color, texture, flavor, and overall impression. Based on our results, it appears that the CA-based emulsions have the potential to replace PO in pound-cake recipes, reducing total and saturated fat.
Collapse
Affiliation(s)
- Graziele Grossi Bovi Karatay
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas 13083-862, Brazil
| | | | | | | |
Collapse
|
32
|
Mohtarami F, Rashidi Z, Pirsa S. Extraction of flaxseed and
Plantago Psyllium
mucilage: Investigation of rheological properties and efficiency as a fat substitute for the production of low‐calorie cookies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Forogh Mohtarami
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Zahra Rashidi
- Afagh Higher Education Institute of Urmia Urmia Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| |
Collapse
|
33
|
Joseph C, Batra R, Selvasekaran P, Chidambaram R. Low calorie cocoa-based products: a short review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2931-2939. [PMID: 35872736 PMCID: PMC9304490 DOI: 10.1007/s13197-021-05223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 06/15/2023]
Abstract
Globally, cocoa is considered an extensively consumed flavor across the food and beverage industry. However, the majority of cocoa products have a large amount of sugar and fat content. Therefore, manufacturers of cocoa-based products are focusing on the commercialization of healthier and innovative cocoa products that contain sugar and fat. High-quality and low-calorie cocoa products can be developed using the right ingredients which can replace fat and sugar without negative impact on the product characteristics. For sugar replacement nutritive sweeteners or sugar alcohols, non-nutritive sweeteners or high potency sweeteners and low digestibility carbohydrates are generally used. For fat substitution cocoa butter equivalents, cocoa butter replacers, cocoa butter substitutes along with vegetable fat and oil replacers are used. This review discusses the effect of sugar and fat substitution on the textural and rheological properties, sensory acceptance, and calorific value of the end cocoa-based products.
Collapse
Affiliation(s)
- Cheryl Joseph
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Rishika Batra
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Pavidharshini Selvasekaran
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| |
Collapse
|
34
|
Chia seeds as functional ingredient of healthy muffins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Therdthai N. Sugar, salt and fat reduction of bakery products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:283-327. [PMID: 35595396 DOI: 10.1016/bs.afnr.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
From the health viewpoint, consumers monitor their food uptake in terms of both quality and quantity, due to awareness of the link between food ingredients and health. Accordingly, many people tend to buy healthy food products that are low in or free of sugar, salt and fat. However, in baked products, the sugar, fat and salt are needed to create unique characteristics. The role of sugar, salt and fat in baked products is discussed in this chapter to understand their functions. The understanding is necessary to design proper techniques to reduce the amount of sugar, salt and fat. Ingredients and additives that can substitute for fat, sugar and salt in bakery characteristics are reviewed in terms of their advantages and disadvantages. In addition, alternative processes to reduce the use of fat, sugar and salt are proposed in this chapter.
Collapse
Affiliation(s)
- Nantawan Therdthai
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
36
|
Stabilizing Properties of Chia Seed Mucilage on Dispersions and Emulsions at Different pHs. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ben Slima S, Ktari N, chouikhi A, Trabelsi I, Hzami A, Taktak MA, Msaddak L, Ben Salah R. Antioxidant activities, functional properties, and application of a novel Lepidium sativum polysaccharide in the formulation of cake. Food Sci Nutr 2022; 10:822-832. [PMID: 35311160 PMCID: PMC8907738 DOI: 10.1002/fsn3.2713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
A novel heteropolysaccharide, named cress water soluble polysaccharide (CWSP), was purified from Lepidium sativum seeds. Antioxidant activities and functional properties were characterized thermally using thermal gravimetric analysis (TGA), and the differential scanning calorimeter (DSC) results of CWSP were evaluated. The total antioxidant capacity and the metal chelating activities of CWSP at 3 mg/ml were equivalent to 116.34 µg ascorbic acid and 62.57%, respectively. As for the CWSP that was used for the production of cakes, it was thermally stable, and it presented high water (WHC) and oil holding (OHC) capacities and good emulsion properties. The samples were prepared with different levels of CWSP (0.1. 0.3, and 0.5%) and analyzed during 15 days of storage at room temperature. The obtained results indicated that the addition of CWSP had a significant effect on the texture profile, leading to the increase in all parameters in terms of hardness, springiness, cohesiveness, adhesiveness, and chewiness. Moreover, the reformulation samples presented higher a* and lower L* and b* than the control sample. The sensory evaluation showed that the formulation of cake with 0.3% of CWSP was the most acceptable. Therefore, CWSP was shown to be a new alternative for improving the quality attributes, indicating potent antioxidant activities on the shelf life during the storage of bakery foods.
Collapse
Affiliation(s)
- Sirine Ben Slima
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and MicrobiologyNational School of Engineering of Sfax (ENIS)SfaxTunisia
- Department of Life SciencesFaculty of Science of GabesGabesTunisia
| | - Aicha chouikhi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Imen Trabelsi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Amina Hzami
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | | | | | - Riadh Ben Salah
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| |
Collapse
|
38
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
39
|
LIRA GM, LOPEZ AMQ, NANES GMDF, SANTOS CFDM, RAMOS GM, Silva FGC, Guedes CKRDM, NASCIMENTO TGD. Nutritional value of Brazilian mangrove mussel (Mytella falcata) burger supplemented with refined or herb salts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
LI K, ZHANG Z, YE H, REN W, HUANG L, CHEN H. Processing optimization and quality assessment for the innovative product of canned soybean paste oyster. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.93622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Luqiang HUANG
- Fujian Normal University, China; Fujian Normal University, China; Fujian Normal University, China
| | - Huibin CHEN
- Fujian Normal University, China; Fujian Normal University, China; Fujian Normal University, China
| |
Collapse
|
41
|
DUNDAR AN, AYDIN E, YILDIZ E, PARLAK O. Effects of chia seed on chemical properties and quality characteristics of regular and low-fat crackers. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.26120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Ng FSK, Chiang JH, Ng GCF, Lee CSH, Henry CJ. Influence of inulin–konjac suspension as a fat replacer in baked muffins and its impact on textural and oxidative stability upon storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felicia Siew Kay Ng
- Clinical Nutrition Research CentreSingapore Institute of Food and Biotechnology InnovationAgency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Jie Hong Chiang
- Clinical Nutrition Research CentreSingapore Institute of Food and Biotechnology InnovationAgency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Grace Cui Fang Ng
- Clinical Nutrition Research CentreSingapore Institute of Food and Biotechnology InnovationAgency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Cheryl Si Hui Lee
- Clinical Nutrition Research CentreSingapore Institute of Food and Biotechnology InnovationAgency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research CentreSingapore Institute of Food and Biotechnology InnovationAgency for Science, Technology and Research (A*STAR) Singapore Singapore
- Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore Singapore Singapore
| |
Collapse
|
43
|
da Costa Borges V, Fernandes SS, da Rosa Zavareze E, Haros CM, Hernandez CP, Guerra Dias AR, de las Mercedes Salas-Mellado M. Production of gluten free bread with flour and chia seeds (Salvia hispânica L). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Dybka-Stępień K, Otlewska A, Góźdź P, Piotrowska M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021; 13:nu13103354. [PMID: 34684354 PMCID: PMC8539170 DOI: 10.3390/nu13103354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Plant mucilage is a renewable and cost-effective source of plant-based compounds that are biologically active, biodegradable, biocompatible, nontoxic, and environmentally friendly. Until recently, plant mucilage has been of interest mostly for technological purposes. This review examined both its traditional uses and potential modern applications in a new generation of health-promoting foods, as well as in cosmetics and biomaterials. We explored the nutritional, phytochemical, and pharmacological richness of plant mucilage, with a particular focus on its biological activity. We also highlighted areas where more research is needed in order to understand the full commercial potential of plant mucilage.
Collapse
|
45
|
Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Rashid N, Ashraf I, Kumar R, Richa R. Enrichment via chia seeds to tackle hidden hunger: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ifra Ashraf
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rohitashw Kumar
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rishi Richa
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| |
Collapse
|
47
|
Filipini G, Passos AP, Fernandes SS, Salas-Mellado MDLM. Nutritional value, technological and sensory evaluation of gluten-free bread enriched with soybean flour and coconut oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00971-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
|
49
|
Effect of the Addition of Chia Seed Gel as Egg Replacer and Storage Time on the Quality of Pork Patties. Foods 2021; 10:foods10081744. [PMID: 34441522 PMCID: PMC8391748 DOI: 10.3390/foods10081744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Two types of patties were prepared: control and with chia seeds gel instead of beaten egg. The patties were cooked in the steam-convection oven, vacuum packed and stored at 4 °C. The pork patties with chia addition were characterized by similar water activity and pH values to the control samples. They showed lower values of the b* colour parameter as well as colour saturation (C*) and hue angle values (h°) on the cross-section and lower values of colour parameters L*, a* and b* and C* on the surface than the controls. The addition of chia seeds improved the texture parameters of the tested products. Pork patties with chia seeds were softer and showed better chewiness than the control samples. Chia slowed down oxidative changes in pork patties during storage. The use of 8.0% addition of chia seeds was only slightly noticeable in taste of the pork patties and these samples received similar overall quality scores as control samples.
Collapse
|
50
|
The Effects of Hydrocolloids-Protein Mixture as a Fat Replacer on Physicochemical Characteristics of Sugar-Free Muffin Cake: Modeling and Optimization. Foods 2021; 10:foods10071549. [PMID: 34359419 PMCID: PMC8303799 DOI: 10.3390/foods10071549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to evaluate the hydrocolloids-protein mixture as a fat replacer in sugar-free low-fat muffin cakes. In this study, a hydrocolloids mixture including konjac and guar gums and soy protein isolate (SPI) was applied to the cake. The combination of gums and SPI was named as mixture of stabilizers (MOS), and the treatments were designed using Design-Expert software and the response surface methodology (RSM) in order to optimize and reduce the oil content of muffin cakes by replacing it with MOS. Evaluation of treatments characteristics were investigated on days 1 and 15 of their production. The dependent variables were moisture content, water activity, specific volume, porosity, hardness, cohesiveness, springiness, chewiness and crumb color of cakes. The results show that increasing the percentage of MOS has positive effects on the final products in comparison to oil. In other words, an increase in the MOS content resulted in an increase in the moisture content, water activity, specific volume, height, springiness, cohesiveness, chewiness and L* (lightness) values, but negative effect on hardness, a* (redness) and b* (yellowness) values. As a result of optimizing using RSM, the usage of 4.08% oil and 0.31% MOS resulted in a 62.9% reduction in oil content in comparison with the control sample. The panelists assigned the lowest score to hardness and crumb color and the highest score to overall acceptability and cohesiveness to the optimized muffin.
Collapse
|