1
|
Gao S, Zhang Y, Wang R, Li F, Zhang Y, Zhu S, Wei H, Zhao L, Fu Y, Ye F. Fabrication and characterization of betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers: A potential edible antibacterial and antioxidant packaging material. Food Chem 2025; 481:144059. [PMID: 40157098 DOI: 10.1016/j.foodchem.2025.144059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Active food packaging made from edible materials was considered as a promising alternative to traditional food packaging. Betulin (BE) is a natural active ingredient extracted from the bark of the birch tree, which has anti-inflammation, antibacterial and antioxidant properties. However, the low solubility of BE in water limits its application in active food packaging. In this research, in order to expand the application range of BE, an innovative potentially antimicrobial and antioxidant packaging material was developed. Betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers (BE/HPβCD-IC-NF) with a stoichiometric ratio of 1:2 was prepared by electrospinning. Scanning electron microscopy results showed a smooth surface with no beads on the free-standing BE/HPβCD-IC-NF. The results of NMR hydrogen spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy proved that the BE was successfully encapsulated in the cavity of HPβCD. Meanwhile, the results of thermogravimetric analysis and phase solubility studies proved that the BE/HPβCD-IC-NF enhanced the aqueous solubility and thermal stabilization of BE. Fast dissolving experiment proved that the BE/HPβCD-IC-NF was disintegrated rapidly in water. Furthermore, the free radical scavenging activity and antimicrobial test demonstrated that BE/HPβCD-IC-NF has antioxidant properties and good antimicrobial properties, respectively. Meanwhile, in vivo antimicrobial tests on strawberries proved that BE/HPβCD-IC-NF has an effective effect on the preservation and stabilization of fruits. In conclusion, BE/HPβCD-IC-NF prepared in this study can effectively improve thermal stability, aqueous solubility, antibacterial and antioxidant activity of BE, which provides potential for its application in the field of active food packaging.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ruichi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Zhu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hailan Wei
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Tang T, Zhong W, Tang P, Dai R, Guo J, Gao Z. Linalool combats Saprolegnia parasitica infections through direct killing of microbes and modulation of host immune system. eLife 2025; 13:RP100393. [PMID: 40183210 PMCID: PMC11970904 DOI: 10.7554/elife.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.
Collapse
Affiliation(s)
- Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Puyu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Rongsi Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| |
Collapse
|
3
|
Machado BG, Passos FRS, Antoniolli ÂR, Menezes Pereira EW, Santos TKB, Monteiro BS, de Souza Siqueira Lima P, Matos SS, Duarte MC, de Souza Araújo AA, da Silva Almeida JRG, Oliveira Júnior RG, Coutinho HDM, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Enhancing orofacial pain relief: α-phellandrene complexed with hydroxypropyl-β-cyclodextrin mitigates orofacial nociception in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4513-4524. [PMID: 39495266 DOI: 10.1007/s00210-024-03561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Orofacial pain affects 10-15% of adults and can severely impact quality of life. Despite ongoing treatment challenges, monoterpene alpha-phellandrene (PHE) shows potential therapeutic benefits. This study aimed to develop and evaluate an inclusion complex of PHE with hydroxypropyl-beta-cyclodextrin (PHE-HPβCD) for treating orofacial pain. The PHE-HPβCD complex was created using physical mixing and characterized by differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC) to determine encapsulation efficiency. The complex exhibited a 70.45% encapsulation efficiency. Male Swiss mice were used in models of orofacial pain induced by formalin, cinnamaldehyde, glutamate, and corneal nociception by hypertonic saline. Additionally, cytokine levels (TNF-α and IL-1β) were measured in the upper lip tissue of mice subjected to the formalin model. Both PHE and PHE-HPβCD showed significant antinociceptive effects at a 50 mg/kg dose during formalin-induced pain, reducing both neurogenic and inflammatory phases of pain. PHE-HPβCD also reduced TNF-α and IL-1β levels. For cinnamaldehyde and glutamate-induced nociception, both treatments reduced pain behavior, but only PHE-HPβCD decreased eye wipes in corneal nociception. These results suggest that PHE, especially in complexed form, alleviates orofacial pain by potentially modulating pain-related receptors (TRPA1 and TRPV1), mediators, like glutamate, and reducing pro-inflammatory cytokines. Further research is needed to explore the precise mechanisms of PHE in chronic orofacial pain models, but the study indicates promising avenues for new pain treatments.
Collapse
Affiliation(s)
| | | | | | - Erik W Menezes Pereira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Brenda Souza Monteiro
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Blaj DA, Peptu CA, Balan-Porcarasu M, Peptu C, Tuchilus CG, Ochiuz L. Polymer-Free Electrospinning of β-Cyclodextrin-Oligolactide for Magnolol and Honokiol Pharmaceutical Formulations. Pharmaceutics 2025; 17:130. [PMID: 39861776 PMCID: PMC11768894 DOI: 10.3390/pharmaceutics17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from Magnolia obovata and Magnolia Officinalis trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. Methods: To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives. MALDI MS and NMR were employed for the structural assessment of the β-CDLA derivatives. This polymer-free electrospinning technique utilizes the high solubility of β-CDLA to incorporate MG and HK into fibrous webs. The morphology of the resulting fibers is established by SEM and further characterized using FTIR and NMR spectroscopy to confirm the successful incorporation of MG and HK. The antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, while the antimicrobial activity was evaluated against several standard microorganisms (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans). Results: The MG and HK electrospun formulations were prepared using highly concentrated feed solutions in dimethylformamide (180% w/v). The resulting β-CDLA fibers, with diameters above 400 nm and an active compound content of 7% wt., exhibited enhanced long-term antioxidant activity and improved antimicrobial efficacy, including notable activity against Escherichia coli. Conclusions: This study demonstrates the potential of MG and HK-loaded β-CDLA fibrous formulations as delivery systems with prolonged antioxidant activity and notable antibacterial efficacy, providing a promising platform for biomedical applications.
Collapse
Affiliation(s)
- Diana-Andreea Blaj
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | - Catalina A. Peptu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Mihaela Balan-Porcarasu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | | | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Shan Y, Li J, Nie M, Li D, Zhang Y, Li Y, Wang L, Liu L, Wang F, Tong LT. A comprehensive review of starch-based technology for encapsulation of flavor: From methods, materials, and release mechanism to applications. Carbohydr Polym 2025; 348:122816. [PMID: 39562091 DOI: 10.1016/j.carbpol.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
Encapsulation of flavor and aroma compounds in appropriate materials and forms has long been an important issue. Encapsulation of flavor in inexpensive, stable, and widely used starch-based materials could preserve or mask characteristic aroma compounds, improve flavor thermal and oxidative stability, control release, and increase bioavailability. However, several technical challenges still hinder the application of starch-based encapsulated flavor complexes in the food industry. This study comprehensively and systematically the encapsulation technology of starch-based materials, the properties and applications of starch-based materials, and the flavor release mechanism of encapsulated compounds, aiming to provide insights into the rational design of starch-encapsulated flavor. While choosing flavor encapsulation materials for industries, starch, cyclodextrins, maltodextrin, octenyl succinic anhydride starches, and porous starch are worthy of consideration. On this basis, future research directions for the nutritional value of starch-encapsulated flavor compounds and their application in the food industry are proposed. To elucidate the release mechanisms and application efficiencies of various starch-based flavor complexes, it is necessary to investigate the conformational interactions as well as applications in various food and gastrointestinal systems.
Collapse
Affiliation(s)
- Yimeng Shan
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dezhi Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Zhang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China.
| |
Collapse
|
6
|
Blaj DA, Peptu CA, Danu M, Harabagiu V, Peptu C, Bujor A, Ochiuz L, Tuchiluș CG. Enrofloxacin Pharmaceutical Formulations through the Polymer-Free Electrospinning of β-Cyclodextrin-oligolactide Derivatives. Pharmaceutics 2024; 16:903. [PMID: 39065598 PMCID: PMC11279624 DOI: 10.3390/pharmaceutics16070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Enrofloxacin (ENR), a member of the fluoroquinolone class of antibiotics, is widely used in veterinary medicine to treat bacterial infections. Like many antibiotics, ENR has limited water solubility and low bioavailability. To address these challenges, drug formulations using solid dispersions, nanosuspensions, surfactants, cocrystal/salt formation, and inclusion complexes with cyclodextrins may be employed. The approach described herein proposes the development of ENR formulations by co-electrospinning ENR with custom-prepared cyclodextrin-oligolactide (CDLA) derivatives. This method benefits from the high solubility of these derivatives, enabling polymer-free electrospinning. The electrospinning parameters were optimized to incorporate significant amounts of ENR into the CDLA nanofibrous webs, reaching up to 15.6% by weight. The obtained formulations were characterized by FTIR and NMR spectroscopy methods and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study indicates that the presence of CDLA derivative does not inhibit the antibacterial activity of ENR, recommending these formulations for further development.
Collapse
Affiliation(s)
- Diana-Andreea Blaj
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Cătălina Anișoara Peptu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Maricel Danu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Alexandra Bujor
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lăcrămioara Ochiuz
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | |
Collapse
|
7
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
8
|
Mohsen M, Abdel Gaber SA, Shoueir KR, El-Kemary M, Abo El-Yazeed WS. Synthesis of Cross-Linked and Sterilized Water-Soluble Electrospun Nanofiber Biomatrix of Streptomycin-Imbedded PVA/CHN/β-CD for Wound Healing. ACS OMEGA 2024; 9:10058-10068. [PMID: 38463317 PMCID: PMC10918800 DOI: 10.1021/acsomega.3c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The diagnosis and prognosis of chronic wounds are demanding and require objective assessment. Because of their potential medicinal applications, the syntheses of biopolymeric chitosan (CHN) structure and PVA-based mixed electrospun nanofibers with biomimetic features were thoroughly investigated. This study created different formulas, including a guest molecule and capping agent, using supporting PVA as a vehicle. CHN was used as a biomodifier, and beta-cyclodextrin (ß-CD) as a smoother and more efficiently entraps streptomycin (STP) compared with the silver sheet wound dressing. The relevant analyses showed that the size distribution increased with the incorporation of PVA, CHN, and ß-CD to 120.3, 161.9, and 192.02 nm. The webs boosted particle size and released content stability to 96.4% without compromising the nanofiber structure. Examining the synergistic effects of the PVA/CHN/STP/ß-CD nanoformulation against pathogenic strains of S. aureus, P. aeruginosa, and Aspergillus niger, clean zones were 47 ± 3.4, 45 ± 3.0, and 49 ± 3.7 mm were produced. PVA/CHN/STP/ß-CD formula exhibited a 98.9 ± 0.6% cell viability and wound closure of 100% at 72 h. The results reveal that the PVA/CHN/STP/ß-CD formula is promising for medical applications, especially in wound healing, compared with the silver sheet.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Wafaa S Abo El-Yazeed
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura ,Egypt
| |
Collapse
|
9
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, Gardikis K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1274. [PMID: 37765082 PMCID: PMC10535610 DOI: 10.3390/ph16091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins have gained significant and established attention as versatile carriers for the delivery of bioactive compounds derived from natural sources in various applications, including medicine, food and cosmetics. Their toroidal structure and hydrophobic cavity render them ideal candidates for encapsulating and solubilizing hydrophobic and poorly soluble compounds. Most medicinal, food and cosmetic ingredients share the challenges of hydrophobicity and degradation that can be effectively addressed by various cyclodextrin types. Though not new or novel-their first applications appeared in the market in the 1970s-their versatility has inspired numerous developments, either on the academic or industrial level. This review article provides an overview of the ever-growing applications of cyclodextrins in the delivery of bioactive compounds from natural sources and their potential application benefits.
Collapse
Affiliation(s)
- Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Eleni Panagiotidou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Sophia Athanasopoulou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Konstantinos Gardikis
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| |
Collapse
|
11
|
Xue Y, Liao Y, Wang H, Li S, Gu Z, Adu-Frimpong M, Yu J, Xu X, Smyth HDC, Zhu Y. Preparation and evaluation of astaxanthin-loaded 2-hydroxypropyl-beta-cyclodextrin and Soluplus® nanoparticles based on electrospray technology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3628-3637. [PMID: 36840513 DOI: 10.1002/jsfa.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-β-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION 2-hydroxypropyl-β-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Youwu Liao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Haiqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Zhengqing Gu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Hugh D C Smyth
- College of Molecular Pharmaceutics & Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
A strategy to maintain the organoleptic quality of flavor-β-cyclodextrin inclusion complexes: Characteristics aroma reconstruction of Osmanthus absolute. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
de Souza Araújo IJ, Patel T, Bukhari A, Sanz CK, Fenno JC, Ribeiro JS, Bottino MC. Natural monoterpenes-laden electrospun fibrous scaffolds for endodontic infection eradication. Odontology 2023; 111:78-84. [PMID: 35731305 DOI: 10.1007/s10266-022-00722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023]
Abstract
This investigation aimed to synthesize poly(D,L-lactide) (PLA)-based fibrous scaffolds containing natural essential oils (i.e., linalool and citral) and determine their antimicrobial properties and cytocompatibility as a clinically viable cell-friendly disinfection strategy for regenerative endodontics. PLA-based fibrous scaffolds were fabricated via electrospinning with different concentrations of linalool and citral. The micromorphology and average diameter of the fibers was investigated through scanning electron microscopy (SEM). The chemical composition of the scaffolds was inferred by Fourier-transform infrared spectroscopy (FTIR). Antimicrobial efficacy against Enterococcus faecalis and Actinomyces naeslundii was also evaluated by agar diffusion and colony-forming units (CFU) assays. The scaffolds' cytocompatibility was determined using dental pulp stem cells (DPSCs). Statistical analyses were performed and the significance level was set at α = 5%. Linalool and citral's incorporation in the PLA fibrous scaffolds was confirmed in the FTIR spectra. SEM images indicate no morphological changes upon inclusion of the essential oils, except the reduced diameter of 40% linalool-laden fibers (p < 0.05). Importantly, significant antimicrobial properties were reported for citral-containing scaffolds for CFU/mL counts (p < 0.05), while only 20% and 40% linalool-laden scaffolds reduced CFU/mL (p < 0.05). Meanwhile, the inhibition halos were verified in a concentration-dependent manner for all monoterpenes-laden scaffolds. Citral- and linalool-laden PLA-based fibrous scaffolds showed acceptable cytocompatibility. The incorporation of natural monoterpenes did not alter the scaffolds' fibrous morphology, promoted antimicrobial action against endodontic pathogens, and preserved DPSCs viability. Linalool- and citral-laden electrospun scaffolds hold promise as naturally derived antimicrobial therapeutics for applications in regenerative endodontics.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA
| | - Tamannaben Patel
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA
| | - Amal Bukhari
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA
| | - Carolina K Sanz
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Metallurgical and Materials Engineering Program-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Sabaghi M, Tavasoli S, Taheri A, Jamali SN, Faridi Esfanjani A. Controlling release patterns of the bioactive compound by structural and environmental conditions: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228026. [PMID: 36432127 PMCID: PMC9695913 DOI: 10.3390/molecules27228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3-4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1-5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug's mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action.
Collapse
|
16
|
Li L, Xia L, Xiao F, Xiao Y, Liu L, Jiang S, Wang H. Colorimetric active carboxymethyl chitosan/oxidized sodium alginate-Oxalis triangularis ssp. papilionacea anthocyanins film@gelatin/zein-linalool membrane for milk freshness monitoring and preservation. Food Chem 2022; 405:134994. [DOI: 10.1016/j.foodchem.2022.134994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
17
|
Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, Zafar H, Mascarenhas-Melo F, Raza F, Mazzola PG, Veiga F. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds – pharmaceutical applications. Colloids Surf B Biointerfaces 2022; 218:112758. [DOI: 10.1016/j.colsurfb.2022.112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
|
18
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Rajamohan R, Subramania A, Lee YR. Polymer-mediated electrospun nanofibrous mats on supramolecular assembly of nortriptyline in the β-cyclodextrin medium for antibacterial study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1256-1268. [PMID: 35263238 DOI: 10.1080/09205063.2022.2048453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
With the thought and strong hope of uniqueness and challenging characteristic highlights and importance of nanofibrous mats (NFMs) along with cyclodextrins (CDs) that having a significant opportunity, chances and handling a vital role in hostile to bacterial activities. For the most part, CDs are utilized to upgrade the antibacterial activity through the improvement of solubility, stability, and etc., to any molecule which can bring inside the CDs cavity via the formation of inclusion complexes. Polymer-mediated electrospun nanofibrous mats (PAN NFMs) are utilized as a nanocarrier for antibacterial activity in this article, utilizing nortriptyline (NP) as a reference molecule. As a result, NP forms an inclusion complex with β-Cyclodextrin (β-CD). As a result, the PAN NFMs are able to absorb it, thereby consolidating the complex NP on the nanofibrous surface. Additionally, the soaking of PAN NFMs in NP solution without β-CD was performed for comparison. To characterize the nanofibrous mats of NP/PAN and NP:β-CD-ICs/PAN NFMs, UV absorption, FTIR, Raman, XRD, and SEM techniques were used. The antibacterial activity of NP and NP:β-CD-ICs have been tried against positive control antibiotics by the disc diffusion method. Thus, the action has been improved for NP:β-CD-ICs/PAN NFMs over NP/PAN NFMs because of the solubility upgraded for the NP by the complexation of β-CD.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| | - Angaiah Subramania
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| |
Collapse
|
20
|
Rajaram R, Angaiah S, Lee YR. Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2075871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajamohan Rajaram
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| | - Subramania Angaiah
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| |
Collapse
|
21
|
Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wang X, Hu X, Li S, Shi W, Li S, Zhang Y. Preparation of antibacterial nanofibers by electrospinning polyvinyl alcohol containing a luteolin hydroxypropyl-β-cyclodextrin inclusion complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj04922d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanofibers have exhibited excellent water solubility, significant antibacterial effects and effective concentration in vitro release.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Xiaona Hu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Shiqing Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Wenhui Shi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Shujing Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yuxi Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| |
Collapse
|
23
|
Shi L, Zhou J, Guo J, Gladden I, Kong L. Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydr Polym 2021; 274:118596. [PMID: 34702447 DOI: 10.1016/j.carbpol.2021.118596] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
The linear component of starch, especially amylose, is capable of forming inclusion complex (IC) with various small molecules. It could significantly modify the structure and properties of starch, and it could bring beneficial effects when bioactive compounds can be encapsulated. This review discusses the formation and characterization of the starch-guest IC and focuses on the recent developments in the use of starch ICs for the encapsulation and controlled release of bioactive guest compounds. A great number of guest compounds, such as lipids, aroma compounds, pharmaceuticals, and phytochemicals, were studied for their ability to be complexed with starch and/or amylose and some of the formed ICs were evaluated for the chemical stability improvement and the guest release regulation. Starch-guest ICs has a great potential to be a delivery system, as most existing studies demonstrated the enhancement on guest retention and the possibility of controlled release.
Collapse
Affiliation(s)
- Linfan Shi
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingyi Zhou
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jiayue Guo
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Isabella Gladden
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
24
|
Native Cyclodextrins and Their Derivatives as Potential Additives for Food Packaging: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclodextrins (CDs) have been used by the pharmaceutical and food industries since the 1970s. Their cavities allow the accommodation of several hydrophobic molecules, leading to the formation of inclusion complexes (ICs) increasing the guest molecules’ stability, allowing their controlled release, enhancing their water solubility and biodisponibility. Due to these, CDs and their ICs have been proposed to be used as potential allies in food packaging, especially in active packaging. In this review, we present the many ways in which the CDs can be applied in food packaging, being incorporated into the polymer matrix or as a constituent of sachets and/or pads aiming for food preservation, as well as the diverse polymer matrices investigated. The different types of CDs, natives and derivatives, and the several types of compounds that can be used as guest molecules are also discussed.
Collapse
|
25
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
26
|
β-Cyclodextrin functionalized polyurethane nano fibrous membranes for drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Electrospinning of glutelin-hordein incorporated with Oliveria decumbens essential oil: Characterization of nanofibers. Colloids Surf B Biointerfaces 2021; 208:112058. [PMID: 34419808 DOI: 10.1016/j.colsurfb.2021.112058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
In this study, electrospinning of hordein and glutelin extracted from barley was carried out. Different ratios of the glutelin-hordein blends (25:75, 30:70, 35:65) were tested and the operation parameters including voltage, ejection flow rate and needle-to-collector distance were optimized. According to the scanning electron microscope images, the glutelin-hordein 25:75 blend generated at the voltage of 15 kV, the needle-to-collector distance of 150 mm and the ejection rate of 1 mL/h was selected for the fabrication of uniform nanofibers. The apparent viscosity at the ejection point was decreased with increasing the glutelin concentration from 25 to 35 %. Moreover, the Oliveria decumbens essential oil (ODEO) with different loading concentrations (2-4 % (v/v)) was incorporated into the protein blend. Fourier-transform infrared spectra demonstrated the occurrence of the interactions of proteins the ODEO. The encapsulation efficiency of ODEO in the nanofibers was 79.30 %. The presence of ODEO led to inhibition the growth of Staphylococcus aureus, Escherichia coli and Bacillus cereus in a synthetic medium. The optimal nanofibers showed high antioxidnat activity. The results herein showed the possibility of the production of electrospun nanofibers using barley proteins with promising (bio)functionalities for the active food packaging applications.
Collapse
|
28
|
Yurtdaş-Kırımlıoğlu G. Spray dried nanospheres for inclusion complexes of cefpodoxime proxetil with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin: improved dissolution and enhanced antibacterial activity. Drug Dev Ind Pharm 2021; 47:1261-1278. [PMID: 34606394 DOI: 10.1080/03639045.2021.1989452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of the current research was the development hard cellulose capsules containing cefpodoxime proxetil (CEF) (BCS-Class II) encapsulated nanospheres of inclusion complexes with β-CD, HP-β-CD and M-β-CD for efficient antibacterial therapy. SIGNIFICANCE The reason for this phenomenon is to bring an innovative approach to effective oral antimicrobial therapy with hard cellulose capsules containing spray dried nanospheres of CEF with β-CD, HP-β-CD and M-β-CD by means of increased solubility, dissolution rate and improved antibacterial efficiency with lower oral dose. METHODS Phase solubility analyses was performed to evaluate the drug/CD interaction, involving the stoichiometry and apparent stability constant. Following the preparation of inclusion complexes by spray-drying method, complexes were characterized for physical, solid-state and microbiological analyses. In vitro dissolution from hard cellulose capsules containing CEF and CEF/β-CD, CEF/HP-β-CD and CEF/M-β-CD complexes were performed. RESULTS According to AL type phase solubility curves, complexes were formulated as 1:1 molar ratio. The solubility of pure CEF was determined as 0.241 ± 0.002 mg mL-1, the solubility of inclusion complexes increased solubility from 3 to 5 times. The strong host-guest interaction was confirmed for CEF/HP-β-CD and CEF/M-β-CD complexes with SEM, DSC, FT-IR and 1H-NMR analyses. Inclusion complexes were more efficient on bacterial cells (2-4 fold) than pure CEF both Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Hard-cellulose capsules filled with inclusion complexes exhibited significantly faster release than unprocessed CEF. CONCLUSION Hard-cellulose capsules containing CEF/HP-β-CD and CEF/M-β-CD complexes appear to be superior alternative to commercially available CEF tablets for effective antibacterial therapy.
Collapse
|
29
|
Rezazadeh N, Kianvash A. Preparation, characterization, and antibacterial activity of chitosan/silicone rubber filled zeolite, silver, and copper nanocomposites against
Pseudomonas aeruginosa
and methicillin‐resistant
Staphylococcus aureus
. J Appl Polym Sci 2021. [DOI: 10.1002/app.50552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nader Rezazadeh
- Department of Polymer Engineering, Ahar Branch Islamic Azad University Ahar Iran
| | - Abbas Kianvash
- Department of Materials Engineering University of Tabriz Tabriz Iran
| |
Collapse
|
30
|
Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr Polym 2021; 269:118292. [PMID: 34294318 DOI: 10.1016/j.carbpol.2021.118292] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yaqi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
31
|
Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L. Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl-β-cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5871-5881. [PMID: 34013730 DOI: 10.1021/acs.jafc.1c01351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, flexible and self-standing hydroxypropyl-β-cyclodextrin/difenoconazole inclusion complex (HPβCD/DZ-IC) nanofibers were prepared by polymer-free electrospinning, which exhibited potential to be a new fast-dissolving pesticide formulation. Scanning electron microscopy and optical microscopy were applied to evaluate the morphology of nanofibers, which showed that the resulting HPβCD/DZ-IC nanofibers were bead-free and uniform. In addition, the proton nuclear magnetic resonance (1H NMR) spectrum suggested a stoichiometric ratio of 1:0.9 (HPβCD/DZ). Other characterization methods, such as UV-vis absorption, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), were applied in this study. On the one hand, UV-vis absorption, fluorescence spectroscopy, FT-IR, XRD, and TGA provided useful information for the successful formation of an inclusion complex; on the other hand, the results of TGA indicated the thermal stability of DZ was enhanced after the formation of inclusion complexes. Besides, the phase solubility test could explain the increased water solubility of the nanofibers of inclusion complexes formed by DZ and HPβCD. The results of molecular docking studies demonstrated the most favorable binding interactions when HPβCD combined with DZ. The dissolution test and the antifungal performance test exhibited the characteristics of fast dissolution and the excellent antifungal performance of HPβCD/DZ-IC nanofibers, respectively.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
32
|
Wilk S, Benko A. Advances in Fabricating the Electrospun Biopolymer-Based Biomaterials. J Funct Biomater 2021; 12:26. [PMID: 33923664 PMCID: PMC8167588 DOI: 10.3390/jfb12020026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers formed into a fibrous morphology through electrospinning are of increasing interest in the field of biomedicine due to their intrinsic biocompatibility and biodegradability and their ability to be biomimetic to various fibrous structures present in animal tissues. However, their mechanical properties are often unsatisfactory and their processing may be troublesome. Thus, extensive research interest is focused on improving these qualities. This review article presents the selection of the recent advances in techniques aimed to improve the electrospinnability of various biopolymers (polysaccharides, polynucleotides, peptides, and phospholipids). The electrospinning of single materials, and the variety of co-polymers, with and without additives, is covered. Additionally, various crosslinking strategies are presented. Examples of cytocompatibility, biocompatibility, and antimicrobial properties are analyzed. Special attention is given to whey protein isolate as an example of a novel, promising, green material with good potential in the field of biomedicine. This review ends with a brief summary and outlook for the biomedical applicability of electrospinnable biopolymers.
Collapse
Affiliation(s)
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicz 30 Avenue, 30-059 Krakow, Poland;
| |
Collapse
|
33
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
34
|
Hu X, Wang X, Han L, Li S, Zhou W. Antioxidant and antimicrobial polyvinyl alcohol electrospun nanofibers containing baicalein-hydroxypropyl-β-cyclodextrin inclusion complex. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Aidana Y, Wang Y, Li J, Chang S, Wang K, Yu DG. Fast Dissolution Electrospun Medicated Nanofibers for Effective Delivery of Poorly Water-Soluble Drugs. Curr Drug Deliv 2021; 19:422-435. [PMID: 33588728 DOI: 10.2174/1567201818666210215110359] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications are approached in various ways through electrospun medicated nanofibers. The fast-dissolving oral drug delivery system (DDS) among them is one of the most promising routes in the near future for commercial applications. METHODS Related papers are investigated, including the latest research results, on electrospun nanofiber-based fast-dissolution DDSs. RESULTS Several relative topics have been concluded: 1) the development of electrospinning, ranging from 1-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) Selection of appropriate polymer matrices and drug carriers for filament formation; 3) Types of poorly water-soluble drugs ideal for fast oral delivery; 4) The methods for evaluating fast-dissolving nanofibers; 5) The mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) the important issues for further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems. Conclusions & Perspectives: The unique properties of electrospun-medicated nanofibers can be used as oral fast dissolving DDSs of poorly water-soluble drugs. However, some significant issues need to be investigated, such as scalable productions and solid dosage form conversions.
Collapse
Affiliation(s)
- Yrysbaeva Aidana
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Yibin Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Jie Li
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Shuyue Chang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Ke Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093. China
| |
Collapse
|
36
|
Electrospun egg white/polyvinyl alcohol fiber dressing to accelerate wound healing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02422-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Liu Y, Wang D, Sun Z, Liu F, Du L, Wang D. Preparation and characterization of gelatin/chitosan/3-phenylacetic acid food-packaging nanofiber antibacterial films by electrospinning. Int J Biol Macromol 2020; 169:161-170. [PMID: 33309663 DOI: 10.1016/j.ijbiomac.2020.12.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
In this study, antibacterial nanofiber films were prepared by electrospinning gelatin, chitosan, and 3-phenyllactic acid (PLA). The addition of PLA improved the microstructures of the nanofibers, and the nanofiber films (GCP-1 and GCP-2) had uniform and continuous structures with a diameter range of 40--70 nm when the PLA concentrations in the polymers were 1% and 2%. Under acidic conditions, chitosan and PLA interacted and formed hydrogen bonds, which decreased the crystallinity of the nanofiber films. The GCP-2 nanofiber film had the best thermal stability, water stability, and water vapor permeability. Compared with the control GCP-0 film, the four nanofiber films with PLA (GCP-1, GCP-2, GCP-3, and GCP-4) had more effective antibacterial effects, and GCP-2 film reduced approximately 4 log CFU/mL of Salmonella enterica Enteritidis and Staphylococcus aureus in 30 min. Results suggested that the GCP-2 nanofiber film mat can be used as an active food packaging.
Collapse
Affiliation(s)
- Yini Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Debao Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
38
|
Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2020; 337:108966. [PMID: 33202297 DOI: 10.1016/j.ijfoodmicro.2020.108966] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
39
|
Coban O, Aytac Z, Yildiz ZI, Uyar T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf B Biointerfaces 2020; 197:111391. [PMID: 33129100 DOI: 10.1016/j.colsurfb.2020.111391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
Electrospun nanofibers incorporated with inclusion complex (IC) of niclosamide (NIC) and hydroxypropyl-beta-cyclodextrin (HPβCD) (NIC-HPβCD-IC) was produced from pH-responsive polymer (Eudragit® L100, EUD), which disintegrates at pH values higher than 6, (EUD-NIC-HPβCD-IC-NF) for targeted delivery of NIC to the colon. Pristine EUD nanofibers (EUD-NF), only NIC loaded (EUD-NIC-NF) and physical mixture of NIC and HPβCD loaded EUD nanofibers (EUD-NIC-HPβCD-NF) were also produced as reference. SEM images revealed the bead-free and uniform morphology of nanofibers. XRD, TGA, and DSC were also performed for both NIC-HPβCD-IC and electrospun nanofibers and it was seen that there are some NIC molecules, which cannot make IC. Dissolution studies were carried out for 240 min at pH 1.2 and pH 7 simulating stomach and colon, respectively. EUD-NIC-NF released almost 53 % of NIC in 120 min, whereas EUD-NIC-HPβCD-NF (15 %) and EUD-NIC-HPβCD-IC-NF (8 %) released at most 15 % of NIC in 120 min. Then, remained NIC in the nanofibers released into the colon for the next 120 min. The slight difference in the release of NIC into stomach from EUD-NIC-HPβCD-NF and EUD-NIC-HPβCD-IC-NF might be due to the uncomplexed NIC molecules in EUD-NIC-HPβCD-IC-NF. More importantly, EUD-NIC-HPβCD-IC-NF was quite effective for preventing the release of NIC in the stomach in contrast to EUD-NIC-NF, which has already released more than half amount of NIC in 120 min. In conclusion, this study might open new areas for developing targeted delivery systems by the combination of nanofibers and CD-ICs for hydrophobic drugs such as NIC.
Collapse
Affiliation(s)
- Ozlem Coban
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
40
|
Rezaeinia H, Ghorani B, Emadzadeh B, Mohebbi M. Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111115. [DOI: 10.1016/j.msec.2020.111115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
|
41
|
Electrospun PCL Fiber Mats Incorporating Multi-Targeted B and Co Co-Doped Bioactive Glass Nanoparticles for Angiogenesis. MATERIALS 2020; 13:ma13184010. [PMID: 32927805 PMCID: PMC7557727 DOI: 10.3390/ma13184010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Vascularization is necessary in tissue engineering to keep adequate blood supply in order to maintain the survival and growth of new tissue. The synergy of biologically active ions with multi-target activity may lead to superior angiogenesis promotion in comparison to single-target approaches but it has been rarely investigated. In this study, polycaprolactone (PCL) fiber mats embedded with B and Co co-doped bioactive glass nanoparticles (BCo.BGNs) were fabricated as a tissue regeneration scaffold designed for promoting angiogenesis. BCo.NBGs were successfully prepared with well-defined spherical shape using a sol-gel method. The PCL fiber mats embedding co-doped bioactive glass nanoparticles were fabricated by electrospinning using benign solvents. The Young’s moduli of the nanoparticle containing PCL fiber mats were similar to those of the neat fiber mats and suitable for scaffolds utilized in soft tissue repair approaches. The mats also showed non-cytotoxicity to ST-2 cells. PCL fiber mats containing BCo.BGNs with a relatively high content of B and Co promoted the secretion of vascular endothelial growth factor to a greater extent than PCL fiber mats with a relatively low B and Co contents, which demonstrates the potential of dual ion release (B and Co) from bioactive glasses to enhance angiogenesis in soft tissue engineering.
Collapse
|
42
|
Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chem 2020; 317:126397. [DOI: 10.1016/j.foodchem.2020.126397] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023]
|
43
|
Hu J, Liu S, Deng W. Dual responsive linalool capsules with high loading ratio for excellent antioxidant and antibacterial efficiency. Colloids Surf B Biointerfaces 2020; 190:110978. [PMID: 32203910 DOI: 10.1016/j.colsurfb.2020.110978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Linalool is a main component in different naturally derived essential oils, and widely used in household, personal care, food and therapeutic formulations. However, the application is limited due to its high volatility and low stability. In this study, an effective encapsulation with high loading ratio was built up together with thermal-redox dual responsiveness and controlled release properties. The emulsified linalool droplets were modified with carbon-carbon double bonds, followed by the precipitation polymerization with thermal sensitive monomer, N-vinyl caprolactam. The average size and the loading ratio of the prepared linalool capsules were 1.4 μm and 50.41 wt%. The linalool capsules exhibited thermal-redox dual responsive properties and the antioxidant-antibacterial performance. Especially, responding to the stimuli mimicking practical circumstance, the synthesized capsules presented excellent bacteria inhibiting effect. This work may open a new path for fragrance and essential oil encapsulation, enlarging them as the green biological antibacterial agents in different applications.
Collapse
Affiliation(s)
- Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418, Shanghai, PR China.
| | - Shanshan Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418, Shanghai, PR China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418, Shanghai, PR China.
| |
Collapse
|
44
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
45
|
Paimard G, Shahlaei M, Moradipour P, Karamali V, Arkan E. Impedimetric aptamer based determination of the tumor marker MUC1 by using electrospun core-shell nanofibers. Mikrochim Acta 2019; 187:5. [PMID: 31797120 DOI: 10.1007/s00604-019-3955-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023]
Abstract
An impedimetric single-shot assay is described for the determination of the proteinic breast cancer marker MUC1. The surface of a glassy carbon electrode was modified with core-shell nanofibers, multi-walled carbon nanotubes and gold nanoparticles that were covalently modified with the MUC1-binding aptamer. Detection is based on the change of the resistance of the electrode surface as measured by electrochemical impedance spectroscopy using hexacyanoferrate(II/III) as an electrochemical probe in working potential is 0.25 V. Scanning electron microscopy and cyclic voltammetry were also applied to characterize the electrode. The analytical response ranges from 5 to 115 nM of MUC1, with a detection limit of 2.7 nM. The assay was successfully applied to MUC1 determination in spiked serum samples where it gave satisfactory results. Graphical abstractAn impedimetric nanoprobe for the tumor marker MUC1 is proposed. It is based on use of electrospun honey core-shell nanofibers. The nanoprobe exhibits excellent sensitivity, good stability and a low detection limit.
Collapse
Affiliation(s)
- Giti Paimard
- Nano Drug Delivery Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohsen Shahlaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Pouran Moradipour
- Nano Drug Delivery Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Vahid Karamali
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 611551616, Iran
| | - Elham Arkan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| |
Collapse
|
46
|
Xiao Z, Hou W, Kang Y, Niu Y, Kou X. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Celebioglu A, Uyar T. Encapsulation and Stabilization of α-Lipoic Acid in Cyclodextrin Inclusion Complex Electrospun Nanofibers: Antioxidant and Fast-Dissolving α-Lipoic Acid/Cyclodextrin Nanofibrous Webs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13093-13107. [PMID: 31693349 DOI: 10.1021/acs.jafc.9b05580] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, electrospinning of nanofibers from alpha-lipoic acid/cyclodextrin inclusion complex systems was successfully performed without having any polymeric matrix. Alpha-lipoic acid (α-LA) is a natural antioxidant compound which is widely used as a food supplement. However, it has limited water solubility and poor thermal and oxidative stability. Nevertheless, it is possible to enhance its water solubility and thermal stability by inclusion complexation with cyclodextrins. Here, hydroxypropyl-beta-cyclodextrin (HP-β-CyD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CyD) were chosen as host molecules for forming inclusion complexation with α-LA. Accordingly, α-LA was inclusion complexed with HP-β-CyD and HP-γ-CyD by using very high concentrated aqueous solutions of CyD (200%, w/v) having 1/1 and 2/1 molar ratio of α-LA/CyD. Except α-LA/HP-β-CyD (1/1) solution, other α-LA/CyD solutions were turbid indicating the presence of some noncomplexed α-LA whereas α-LA/HP-β-CyD (1/1) solution was very homogeneous signifying that α-LA was fully complexed with HP-β-CyD. Even so, electrospinning was performed for all of the α-LA/HP-β-CyD (1/1 and 2/1) and α-LA/HP-γ-CyD (1/1 and 2/1) aqueous solutions, and defect-free bead-less and uniform nanofibers were successfully obtained for all of the α-LA/CyD solutions. However, the electrospinning process for α-LA/CyD (1/1) systems was much more efficient than the α-LA/CyD (2/1) systems, and we were able to produce self-standing and flexible nanofibrous webs from α-LA/CyD (1/1) systems. α-LA was efficiently preserved during the electrospinning process of α-LA/CyD (1/1) systems and the resulting electrospun α-LA/HP-β-CyD and α-LA/HP-γ-CyD nanofibers were produced with the molar ratios of ∼1/1 and ∼0.85/1 (α-LA/CyD), respectively. The better encapsulation efficiency of α-LA in α-LA/HP-β-CyD nanofibers was due to higher solubility increase and higher binding strength between α-LA and HP-β-CyD as revealed by the phase solubility test. α-LA was in the amorphous state in α-LA/CyD nanofibers and both α-LA/HP-β-CyD and α-LA/HP-γ-CyD nanofibers were dissolved very quickly in water and also when they wetted with artificial saliva. Additionally, the antioxidant activity of pure α-LA and α-LA/CyD nanofibers was comparatively evaluated using ABTS radical cation assay. α-LA/CyD nanofibers have shown significantly higher antioxidant performance compared to pure α-LA owing to improved water solubility by CyD inclusion complexation. The thermal stability enhancement of α-LA in α-LA/CyD nanofibers was achieved compared to pure α-LA under heat treatment (100 °C for 24 h). These promising results support that antioxidant α-LA/CyD nanofibers may have potential applications as orally fast-dissolving food supplements.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
48
|
Yang Y, Zhu T, Liu Z, Luo M, Yu DG, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019; 569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
|
49
|
Characterization of cellulose acetate/gum Arabic fibers loaded with extract of Viburnum opulus L. fruit. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Wang Y, Chou J, Sun Y, Wen S, Vasilescu S, Zhang H. Supramolecular-based nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:650-659. [DOI: 10.1016/j.msec.2019.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
|