1
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
2
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Pourmohammadi K, Abedi E. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Sci Nutr 2021; 9:3988-4006. [PMID: 34262753 PMCID: PMC8269544 DOI: 10.1002/fsn3.2344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Poor water solubility, emulsifying, and foaming properties of gluten protein have limited its applications. Gluten is structured by covalent (disulfide bonds) and noncovalent bonds (hydrogen bonds, ionic bonds, hydrophobic bonds) which prone to alteration by various treatments. Enzyme modification has the ability to alter certain properties of gluten and compensate the deficiencies in gluten network. By hydrolyzing mechanisms and softening effects, hydrolytic enzymes affect gluten directly and indirectly and improve dough quality. The present review investigates the effects of some hydrolytic enzymes (protease and peptidase, alcalase, xylanase, pentosanase, and cellulase) on the rheological, functional, conformational, and nutritional features of gluten and dough. Overall, protease, peptidase, and alcalase directly affect peptide bonds in gluten. In contrast, arabinoxylan, pentosan, and cellulose are affected, respectively, by xylanase, pentosanase, and cellulase which indirectly affect gluten proteins. The changes in gluten structure by enzyme treatment allow gluten for being used in variety of purposes in the food and nonfood industry.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| | - Elahe Abedi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| |
Collapse
|
4
|
Lambrecht MA, Monge-Morera M, Godefroidt T, Vluymans N, Deleu LJ, Goos P, Schymkowitz J, Rousseau F, Delcour JA. Hydrothermal Treatments Cause Wheat Gluten-Derived Peptides to Form Amyloid-like Fibrils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1963-1974. [PMID: 33544593 DOI: 10.1021/acs.jafc.0c05868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formation of amyloid fibrils (i.e., protein structures containing a compact core of ordered β-sheet structures) from food proteins can improve their techno-functional properties. Wheat gluten is the most consumed cereal protein by humans and extensively present in food and feed systems. Hydrolysis of wheat gluten increases the solubility of its proteins and brings new opportunities for value creation. In this study, the formation of amyloid-like fibrils (ALFs) from wheat gluten peptides (WGPs) under food relevant processing conditions was investigated. Different hydrothermal treatments were tested to maximize the formation of straight ALFs from WGPs. Thioflavin T (ThT) fluorescence measurements and transmission electron microscopy (TEM) were performed to study the extent of fibrillation and the morphology of the fibrils, respectively. First, the formation of fibrils by heating solutions of tryptic WGPs [degrees of hydrolysis 2.0% (DH 2) or 6.0% (DH 6)] was optimized using a response surface design. WGP solutions were incubated at different pH values, times, and temperatures. DH 6 WGPs had a higher propensity for fibrillation than did DH 2 WGPs. Heating DH 6 WGPs at 2.0% (w/v) for 38 h at 85 °C and pH 7.0 resulted in optimal fibrillation. Second, trypsin, chymotrypsin, thermolysin, papain, and proteinase K were used to produce different DH 6 WGPs. After enzyme inactivation and subsequent heating at optimal fibrillation conditions, chymotrypsin and proteinase K DH 6 WGPs produced small worm-like fibrils, whereas fibrils prepared from trypsin DH 6 WGPs were long and straight. The surface hydrophobicity of the peptides was key for fibrillation. Third, peptides from the wheat gluten components gliadin and glutenin fractions formed smaller and worm-like fibrils than did WGPs. Thus, the peptides of both gluten protein fractions jointly contribute to gluten fibrillation.
Collapse
Affiliation(s)
- Marlies A Lambrecht
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Margarita Monge-Morera
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Thibault Godefroidt
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Nele Vluymans
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Peter Goos
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, B-3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3001 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, B-3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3001 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Allred LK, Nye-Wood MG, Colgrave ML. Analysis of Gluten in Dried Yeast and Yeast-Containing Products. Foods 2020; 9:foods9121790. [PMID: 33276528 PMCID: PMC7761069 DOI: 10.3390/foods9121790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Yeast are commonly used in the preparation of foods and beverages such as beer and bread and may also be used on their own as a source of nutrients and flavoring. Because of the historical connection of yeast to products made from wheat and barley, consumers maintaining a gluten-free diet can have concerns about the safety of yeast ingredients. Analyzing the safety of yeast and yeast-containing products presents some difficulties, as the yeast organisms actively degrade any gluten in the product, raising questions on the appropriateness of detection by traditional antibody-based methods. This study examines a variety of yeast and yeast-containing products by competitive ELISA and liquid chromatography-mass spectrometry for the estimated level of gluten proteins. While samples such as yeast extracts and nutritional yeast contained gluten levels below the 20 mg/kg (or parts per million, ppm) threshold defined by Codex Alimentarius, one baking yeast and a nutritional yeast supplement sample contained higher levels of gluten. This study demonstrates that both competitive ELISA and liquid chromatography-mass spectrometry provide similar results in the detection of wheat and barley gluten in yeast-containing products.
Collapse
Affiliation(s)
- Laura K. Allred
- Gluten Intolerance Group of North America, Auburn, WA 98092, USA
- Correspondence:
| | - Mitchell G. Nye-Wood
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; (M.G.N.-W.); (M.L.C.)
| | - Michelle L. Colgrave
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; (M.G.N.-W.); (M.L.C.)
| |
Collapse
|
6
|
Gaiani F, Graziano S, Boukid F, Prandi B, Bottarelli L, Barilli A, Dossena A, Marmiroli N, Gullì M, de’Angelis GL, Sforza S. The Diverse Potential of Gluten from Different Durum Wheat Varieties in Triggering Celiac Disease: A Multilevel In Vitro, Ex Vivo and In Vivo Approach. Nutrients 2020; 12:3566. [PMID: 33233787 PMCID: PMC7699868 DOI: 10.3390/nu12113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.
Collapse
Affiliation(s)
- Federica Gaiani
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, University of Parma, via Gramsci 14, 43126 Parma, Italy;
- Interdepartmental Center Biopharmanet-tec, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy;
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
| | - Fatma Boukid
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Food and Drug, Parco Area delle Scienze, University of Parma, 27/A-43124 Parma, Italy
| | - Barbara Prandi
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Food and Drug, Parco Area delle Scienze, University of Parma, 27/A-43124 Parma, Italy
| | - Lorena Bottarelli
- Interdepartmental Center Biopharmanet-tec, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy;
- Department of Medicine and Surgery, Unit of Pathological Anatomy, University Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Amelia Barilli
- Department of Medicine and Surgery, Unit of General Pathology, University of Parma, Via Volturno 39, 43125 Parma, Italy;
| | - Arnaldo Dossena
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Food and Drug, Parco Area delle Scienze, University of Parma, 27/A-43124 Parma, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Food and Drug, Parco Area delle Scienze, University of Parma, 27/A-43124 Parma, Italy
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, University of Parma, via Gramsci 14, 43126 Parma, Italy;
- Interdepartmental Center Biopharmanet-tec, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy;
| | - Stefano Sforza
- Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze, University of Parma, 43124 Parma, Italy; (S.G.); (F.B.); (B.P.); (A.D.); (N.M.)
- Department of Food and Drug, Parco Area delle Scienze, University of Parma, 27/A-43124 Parma, Italy
| |
Collapse
|
7
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Mass spectrometry of in-gel digests reveals differences in amino acid sequences of high-molecular-weight glutenin subunits in spelt and emmer compared to common wheat. Anal Bioanal Chem 2020; 412:1277-1289. [PMID: 31927602 DOI: 10.1007/s00216-019-02341-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
High-molecular-weight glutenin subunits (HMW-GS) play an important role for the baking quality of wheat. The ancient wheats emmer and spelt differ in their HMW-GS pattern compared to modern common wheat and this might be one reason for their comparatively poor baking quality. The aim of this study was to elucidate similarities and differences in the amino acid sequences of two 1Bx HMW-GS of common wheat, spelt and emmer. First, the sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) system was optimized to separate common wheat, spelt and emmer Bx6 and Bx7 from other HMW-GS (e.g., 1Ax and 1By) in high concentrations. The in-gel digests of the Bx6 and Bx7 bands were analyzed by untargeted LC-MS/MS experiments revealing different UniProtKB accessions in spelt and emmer compared to common wheat. The HMW-GS Bx6 and Bx7, respectively, of emmer and spelt showed differences in the amino acid sequences compared to those of common wheat. The identities of the peptide variations were confirmed by targeted LC-MS/MS. These peptides can be used to differentiate between Bx6 and Bx7 of spelt and emmer and Bx6 and Bx7 of common wheat. The findings should help to increase the reliability and curation status of wheat protein databases and to understand the effects of protein structure on the functional properties. Graphical abstract.
Collapse
|
9
|
Lexhaller B, Colgrave ML, Scherf KA. Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography-Tandem Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:1530. [PMID: 31921226 PMCID: PMC6923249 DOI: 10.3389/fpls.2019.01530] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 05/24/2023]
Abstract
The consumption of wheat, rye, and barley may cause adverse reactions to wheat such as celiac disease, non-celiac gluten/wheat sensitivity, or wheat allergy. The storage proteins (gluten) are known as major triggers, but also other functional protein groups such as α-amylase/trypsin-inhibitors or enzymes are possibly harmful for people suffering of adverse reactions to wheat. Gluten is widely used as a collective term for the complex protein mixture of wheat, rye or barley and can be subdivided into the following gluten protein types (GPTs): α-gliadins, γ-gliadins, ω5-gliadins, ω1,2-gliadins, high- and low-molecular-weight glutenin subunits of wheat, ω-secalins, high-molecular-weight secalins, γ-75k-secalins and γ-40k-secalins of rye, and C-hordeins, γ-hordeins, B-hordeins, and D-hordeins of barley. GPTs isolated from the flours are useful as reference materials for clinical studies, diagnostics or in food analyses and to elucidate disease mechanisms. A combined strategy of protein separation according to solubility followed by preparative reversed-phase high-performance liquid chromatography was employed to purify the GPTs according to hydrophobicity. Due to the heterogeneity of gluten proteins and their partly polymeric nature, it is a challenge to obtain highly purified GPTs with only one protein group. Therefore, it is essential to characterize and identify the proteins and their proportions in each GPT. In this study, the complexity of gluten from wheat, rye, and barley was demonstrated by identification of the individual proteins employing an undirected proteomics strategy involving liquid chromatography-tandem mass spectrometry of tryptic and chymotryptic hydrolysates of the GPTs. Different protein groups were obtained and the relative composition of the GPTs was revealed. Multiple reaction monitoring liquid chromatography-tandem mass spectrometry was used for the relative quantitation of the most abundant gluten proteins. These analyses also allowed the identification of known wheat allergens and celiac disease-active peptides. Combined with functional assays, these findings may shed light on the mechanisms of gluten/wheat-related disorders and may be useful to characterize reference materials for analytical or diagnostic assays more precisely.
Collapse
Affiliation(s)
- Barbara Lexhaller
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Katharina A. Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
10
|
Li H, Bose U, Stockwell S, Howitt CA, Colgrave M. Assessing the Utility of Multiplexed Liquid Chromatography-Mass Spectrometry for Gluten Detection in Australian Breakfast Food Products. Molecules 2019; 24:molecules24203665. [PMID: 31614625 PMCID: PMC6832297 DOI: 10.3390/molecules24203665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Coeliac disease (CD) is an autoimmune disorder triggered by the ingestion of gluten that is associated with gastrointestinal issues, including diarrhea, abdominal pain, and malabsorption. Gluten is a general name for a class of cereal storage proteins of wheat, barley, and rye that are notably resistant to gastrointestinal digestion. After ingestion, immunogenic peptides are subsequently recognized by T cells in the gastrointestinal tract. The only treatment for CD is a life-long gluten-free diet. As such, it is critical to detect gluten in diverse food types, including those where one would not expect to find gluten. The utility of liquid chromatography-mass spectrometry (LC-MS) using cereal-specific peptide markers to detect gluten in heavily processed food types was assessed. A range of breakfast products, including breakfast cereals, breakfast bars, milk-based breakfast drinks, powdered drinks, and a savory spread, were tested. No gluten was detected by LC-MS in the food products labeled gluten-free, yet enzyme-linked immunosorbent assay (ELISA) measurement revealed inconsistencies in barley-containing products. In products containing wheat, rye, barley, and oats as labeled ingredients, gluten proteins were readily detected using discovery proteomics. Panels comprising ten cereal-specific peptide markers were analyzed by targeted proteomics, providing evidence that LC-MS could detect and differentiate gluten in complex matrices, including baked goods and milk-based products.
Collapse
Affiliation(s)
- Haili Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China.
| | - Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Sally Stockwell
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Crispin A Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia.
| | - Michelle Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Edith Cowan University, School of Science, 270 Joondalup Dr, Joondalup WA 6027, Australia.
| |
Collapse
|
11
|
Boukid F, Prandi B, Faccini A, Sforza S. A Complete Mass Spectrometry (MS)-Based Peptidomic Description of Gluten Peptides Generated During In Vitro Gastrointestinal Digestion of Durum Wheat: Implication for Celiac Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1481-1490. [PMID: 31049870 DOI: 10.1007/s13361-019-02212-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 05/29/2023]
Abstract
Resistance of gluten to gastrointestinal digestion is involved in immune-mediated adverse reactions to wheat, since several peptides produced by the incomplete digestion are able to trigger, in predisposed individuals, the immune response responsible, for instance, of celiac disease (CD) and other adverse reactions. Even if several peptides have been identified, an exhaustive description of the peptidome generated by wheat digestion is lacking. To this end, in the present work, durum wheat proteins were fractionated, digested, and then subjected to various proteomic techniques, including single stage and multiple stage mass spectrometry (MS) (SDS-PAGE, UPLC/ESI-MS, UPLC/ESI-MS/MS, and LTQ-Orbitrap). Based on SDS-PAGE, although proteins were severely degraded after in vitro gastrointestinal digestion, some differences were observed among protein profile of the different digests. Through untargeted UPLC techniques, 227 peptide sequences were identified, with only few sequences shared by the different digests. In particular, 9 gluten peptides involved in CD were identified. Based on target proteomic, the quantification of these peptides revealed significant (p ≤ 0.05) differences among the different extracts. Taken together, all the proteomic tools confirmed that gluten digestion is closely related to the matrix regardless of wheat genotype.
Collapse
Affiliation(s)
- Fatma Boukid
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 23/A, Parma, 43124, Italy
| | - Barbara Prandi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
- Department of Human Sciences and Promotion of Quality of Life, Telematic University San Raffaele Roma, via Val Cannuta, 247, Rome, Italy.
| | - Andrea Faccini
- Interdepartmental Centre for Measurements, University of Parma, Parco Area Delle Scienze 23/A, 43124, Parma, Italy
| | - Stefano Sforza
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 23/A, Parma, 43124, Italy
| |
Collapse
|
12
|
Tanner GJ, Colgrave ML, Blundell MJ, Howitt CA, Bacic A. Hordein Accumulation in Developing Barley Grains. FRONTIERS IN PLANT SCIENCE 2019; 10:649. [PMID: 31156692 PMCID: PMC6532529 DOI: 10.3389/fpls.2019.00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/30/2019] [Indexed: 05/14/2023]
Abstract
The temporal pattern of accumulation of hordein storage proteins in developing barley grains was studied by enzyme-linked immunosorbent assay (ELISA), western blot and liquid chromatography tandem mass spectrometry (LC-MS/MS). Hordein accumulation was compared to the pattern seen for two abundant control proteins, serpin Z4 (an early accumulator) and lipid transferase protein (LTP1, a late accumulator). Hordeins were detected from 6 days post-anthesis (DPA) and peaked at 30 DPA. Changes in fresh weight indicate that desiccation begins at 20 DPA and by 37 DPA fresh weight had decreased by 35%. ELISA analysis of hordein content, expressed on a protein basis, increased to a maximum at 30 DPA followed by a 17% decrease by 37 DPA. The accumulation of 39 tryptic and 29 chymotryptic hordein peptides representing all classes of hordein was studied by LC-MS/MS. Most peptides increased to a maximum at 30 DPA, and either remained at the maximum or did not decrease significantly. Only five tryptic peptides, members of the related B1- and γ1-hordeins decreased significantly by 21-51% at 37 DPA. Thus, the concentration of some specific peptides was reduced while remaining members of the same family were not affected. The N-terminal signal region was removed by proteolysis during co-translation. In addition to a suite of previously characterized hordeins, two novel barley B-hordein isoforms mapping to wheat low molecular weight glutenins (LMW-GS-like B-hordeins), and two avenin-like proteins (ALPs) sharing homology with wheat ALPs, were identified. These identified isoforms have not previously been mapped in the barley genome. Cereal storage proteins provide significant nutritional content for human consumption and seed germination. In barley, the bulk of the storage proteins comprise the hordein family and the final hordein concentration affects the quality of baked and brewed products. It is therefore important to study the accumulation of hordeins as this knowledge may assist plant breeding for improved health outcomes (by minimizing triggering of detrimental immune responses), nutrition and food processing properties.
Collapse
Affiliation(s)
- Gregory J. Tanner
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle L. Colgrave
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, St Lucia, QLD, Australia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Malcolm J. Blundell
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, ACT, Australia
| | - Crispin A. Howitt
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, ACT, Australia
| | - Antony Bacic
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Pei J, Wei S, Pei Y, Wu H, Wang D. Role of Dietary Gluten in Development of Celiac Disease and Type I Diabetes: Management Beyond Gluten-Free Diet. Curr Med Chem 2019; 27:3555-3576. [PMID: 30963964 DOI: 10.2174/0929867326666190409120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/22/2022]
Abstract
Gluten triggers Celiac Disease (CD) and type I diabetes in genetically predisposed population of human leukocyte antigen DQ2/DQ8+ and associates with disorders such as schizophrenia and autism. Application of a strict gluten-free diet is the only well-established treatment for patients with CD, whereas the treatment for patients with celiac type I diabetes may be depend on the timing and frequency of the diet. The application of a gluten-free diet in patients with CD may contribute to the development of metabolic syndrome and nonalcoholic fatty liver disease and may also lead to a high glycemic index, low fiber diet and micronutrient deficiencies. The alteration of copper bioavailability (deficient, excess or aberrant coordination) may contribute to the onset and progress of related pathologies. Therefore, nutrient intake of patients on a gluten-free diet should be the focus of future researches. Other gluten-based therapies have been rising with interest such as enzymatic pretreatment of gluten, oral enzyme supplements to digest dietary gluten, gluten removal by breeding wheat varieties with reduced or deleted gluten toxicity, the development of polymeric binders to suppress gluten induced pathology.
Collapse
Affiliation(s)
- Jinli Pei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Shuangshuang Wei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Yechun Pei
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Hao Wu
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Dayong Wang
- Hainan Province Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Hainan, 570228, China.,Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| |
Collapse
|
14
|
Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. J Proteomics 2019; 197:23-33. [DOI: 10.1016/j.jprot.2019.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
15
|
Scherf KA. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Proteomics: Tools of the Trade. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:1-22. [DOI: 10.1007/978-3-030-12298-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Li H, Byrne K, Galiamov R, Mendoza-Porras O, Bose U, Howitt CA, Colgrave ML. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chem 2018; 254:302-308. [DOI: 10.1016/j.foodchem.2018.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
|
18
|
Schalk K, Koehler P, Scherf KA. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3581-3592. [PMID: 29392950 DOI: 10.1021/acs.jafc.7b05286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| |
Collapse
|
19
|
Dawson C, Mendoza-Porras O, Byrne K, Hooper T, Howitt C, Colgrave M. Oat of this world: Defining peptide markers for detection of oats in processed food. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Charlotte Dawson
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | | | - Keren Byrne
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | - Thomas Hooper
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| | - Crispin Howitt
- CSIRO Agriculture and Food; GPO Box 1700; Canberra ACT 2601 Australia
| | - Michelle Colgrave
- CSIRO Agriculture and Food; 306 Carmody Road; St Lucia QLD 4067 Australia
| |
Collapse
|
20
|
Schalk K, Koehler P, Scherf KA. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS One 2018; 13:e0192804. [PMID: 29425234 PMCID: PMC5806900 DOI: 10.1371/journal.pone.0192804] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- * E-mail:
| |
Collapse
|
21
|
Zhang Y, He S, Simpson BK. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Abdu SB, Abdu F, Khalil WKB. Ginger Nanoparticles Modulate the Apoptotic Activity in Male Rats Exposed to Dioxin-Induced Cancer Initiation. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.946.957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|