1
|
Zhang S, Guo Y, Zhu S, Guo L, Pan X, Xu J, Dong F, Zheng Y, Wu X. From field to table: Reducing residual toxicity and risk of four pesticides via washing and blanching of cowpea (Vigna unguiculata (L.) Walp.). Food Chem 2025; 474:143082. [PMID: 39904083 DOI: 10.1016/j.foodchem.2025.143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The presence of acetamiprid, chlorantraniliprole, thiamethoxam, and cyromazine residues in cowpea raises significant health concerns. This study evaluated pesticide residues through field tests and examined the effects of washing, blanching, and frying on residue removal. Washing for 20-60 s reduced residues by 17.6 % to 67.3 %, while blanching for 1-5 min eliminated 42.5 % to 70.9 %. Conversely, frying increased residues of cyromazine, chlorantraniliprole, and acetamiprid (PF > 1). Notably, washing for 40 s followed by blanching for 2 min effectively removed residues. For cowpea samples exposed to high doses, this combination significantly lowered thiamethoxam, acetamiprid, and chlorantraniliprole levels below the maximum residue limit (MRL). Density functional theory and toxicity estimation software tool analyses indicate that this method also reduces toxicity by degrading parent compounds into less-toxic metabolites. Moreover, even with recommended practices, cyromazine residues exceeded MRLs, highlighting the need for reevaluation. The washing-blanching combination ensures the safety of cowpea consumption.
Collapse
Affiliation(s)
- Shuangwei Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yajing Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Shanshan Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, PR China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
2
|
Cui K, Wang J, Guan S, Liang J, Fang L, Ding R, Li T, Dong Z, Ma G, Wu X, Zheng Y. Residue changes, degradation, processing factors and their relation between physicochemical properties of pesticides in peanuts during multiproduct processing. Food Chem 2024; 452:139535. [PMID: 38728890 DOI: 10.1016/j.foodchem.2024.139535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
This study systematically investigates the residue changes, processing factors (PFs), and relation between the physicochemical properties of pesticides during peanut processing. Results revealed that peeling, washing, and boiling treatments removed partial or substantial pesticide residues from peanuts with PFs of 0.29-1.10 (most <1). By contrast, pesticides appeared to be partially concentrated during roasting, stir-frying, and deep-frying peanuts with PFs of 0.16-1.25. During oil pressing, 13 of the 28 pesticides were concentrated in the peanut oil (PF range: 1.06-2.01) and 25 of the pesticides were concentrated in the peanut meal (1.07-1.46). Physicochemical parameters such as octanol-water partition coefficient, degradation point, molecular weight, and melting point showed significant correlations with PFs during processing. Notably, log Kow exhibited strong positive correlations with the PFs of boiling, roasting, and oil pressing. Overall, this study describes the fate of pesticides during multiproduct processing, providing guidance to promote the healthy consumption of peanuts for human health.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Cui K, Wang J, Ma G, Guan S, Liang J, Fang L, Ding R, Li T, Dong Z, Wu X, Zheng Y. Residue levels, processing factors and risk assessment of pesticides in ginger from market to table. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134268. [PMID: 38608592 DOI: 10.1016/j.jhazmat.2024.134268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 μg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
4
|
Meng Z, Liu D, Li S, Xu Z, Deng Q, Liu Y. A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products. Food Res Int 2023; 173:113322. [PMID: 37803633 DOI: 10.1016/j.foodres.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.
Collapse
Affiliation(s)
- Ziwei Meng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Zhiyi Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
5
|
Li Z, Wu Y, Li Z, Yu B, Mao X, Shi G. A lateral flow immunoassay method for the rapid detection of acetochlor and alachlor in vegetable oil by sensitivity enhancement by using dimethyl-β-cyclodextrin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5087-5094. [PMID: 37747357 DOI: 10.1039/d3ay01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Acetochlor is an endocrine disruptor. The acetochlor residue is strongly lipophilic and can be enriched into products during the manufacturing process. In this study, we found that dimethyl-β-cyclodextrin (DM-β-CD) solution could decrease the apparent oil/water partition coefficient (Koil-w) of acetochlor and increase the sensitivity of fluorescence lateral flow immunoassay (LFIA) for acetochlor simultaneously. Based on this, a simple LFIA method for the determination of acetochlor and alachlor residues in vegetable oil was established. The detection process only involves vortex mixing of an oil sample and dimethyl-β-cyclodextrin solution in a 1 : 3 (V/V) ratio, loading the water phase onto the immunoassay strips and reading the results. Under optimized conditions, the LOD for acetochlor in oil was 3.53 ng g-1, and the working range was 12.03-2000.00 ng g-1. The recoveries of spiked samples ranged from 91.69% ± 1.12% to 112.23% ± 2.20%. Meanwhile, the cross reactivity for alachlor was 108.22%, while for other investigated acetochlor analogues it was less than 1%, and the recoveries of alachlor were from 92.90% ± 8.03% to 113.53% ± 3.40%, which indicate that this method can detect acetochlor and alachlor simultaneously. Compared with the traditional detection method, the pre-treatment process of the proposed method is "green" and simple, and can be applied to the on-site rapid detection of acetochlor and alachlor in vegetable oil and can provide inspiration for the detection of other lipophilic pollutants.
Collapse
Affiliation(s)
- Zepeng Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuxiang Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Zijing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Binger Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xinyi Mao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Zhang J, Jiang W, Jia Z, Zhang W, Zhang T, Wei M. Stereoselective behavior and residues of the imazalil during strawberry growth and strawberry wine production. J Food Prot 2023; 86:100006. [PMID: 36916581 DOI: 10.1016/j.jfp.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Imazalil is a chiral fungicide widely used to protect strawberries against gray mold, which may pose threats to food safety. This study aims to investigate the stereoselective behavior of imazalil during strawberry growth and strawberry wine production. A method was proposed and validated for the extraction and quantitative analysis of imazalil residues in strawberry, strawberry pomace, and strawberry wine by using ultra-high performance liquid chromatography-tandem mass spectrometry. The method exhibited mean recoveries ranging from 86.2% to 119.7% with relative standard deviations of 0.1-11.3%. The dissipation curve of imazalil during strawberry growth followed the first-order kinetic model with a half-life ranging from 6.5 to 7.1 days. Significant enantioselectivity of imazalil was observed in strawberry grown under field conditions and strawberry wine production process, with enantiomeric fraction values ranging from 0.51 (2 h) to 0.42 (27d) and from 0.48 (0d) to 0.52 (10d), respectively. (+)-imazalil was preferentially degraded in strawberry under field conditions, while (-)-imazalil was preferentially degraded during the fermentation process. The processing factor was lower than 1 for each procedure, indicating that the wine-making process can reduce imazalil residue in strawberry. These findings may facilitate a more accurate risk assessment of imazalil and provide important guidance for the safe and efficacious use of imazalil in agriculture.
Collapse
Affiliation(s)
- Jia Zhang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China; Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China
| | - Wei Jiang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China; Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China
| | - Zhihang Jia
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China; Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China
| | - Wenjie Zhang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China
| | - Ting Zhang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China
| | - Meng Wei
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221000, China; Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| |
Collapse
|
7
|
Duan L, An X, Pan X, Li R, Wang K, Guo L, Zhang B, Dong F, Xiang W, Wu X, Xu J, Zheng Y. Residual levels of five pesticides in peanut oil processing and chips frying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2494-2499. [PMID: 34689325 DOI: 10.1002/jsfa.11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pesticide contamination in oil crops and processed products is an important food safety concern. The study was aimed to investigate the pesticide residue changes in press processing of peanut oil and frying of chips. RESULTS Five pesticides - chlorpyrifos, deltamethrin, methoxyfenozide, azoxystrobin and propargite - which are often applied during growth period in peanut plants, were selected to investigate their residue changes in cold press processing of peanut oil and frying of potato chips. Results showed that the residues of the five pesticides were decreased by 3.1-42.6% during air-drying before oil pressing. The residues of chlorpyrifos, deltamethrin, methoxyfenozide and propargite in peanut oil were 2.05-3.63 times higher than that in peanut meal after cold pressing of the oil, except for azoxystrobin having a slightly lower residue in peanut oil, with 0.92 times that in peanut meal. The processing factors of the five pesticides in peanut oil ranged from 1.17 to 2.73 and were highly related to the log Kow of the pesticides. The higher the log Kow , the more easily was the pesticide partitioned in the peanut oil. Besides, as frying time increase during preparation of chips, the concentration of pesticides in peanut oil decreased gradually by 6.7-22.1% compared to the first frying. In addition, 0.47-11.06% of the pesticides were transferred to the chips through frying with contaminated oil. CONCLUSION This is first report showing that pesticides can transfer from contaminated oil to chips. There exists a potential dietary health risk by using pesticide-contaminated oil for frying chips. This work could provide basic data for accurate dietary risk assessment of pesticide residues in peanut oil and its frying products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifang Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
López-Ruiz R, Marín-Sáez J, Prestes OD, Romero-González R, Garrido Frenich A. Critical Evaluation of Analytical Methods for the Determination of Anthropogenic Organic Contaminants in Edible Oils: An Overview of the Last Five Years. Crit Rev Anal Chem 2022; 53:1733-1747. [PMID: 35175888 DOI: 10.1080/10408347.2022.2040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Anthropogenic contaminants, as pesticides, polycyclic aromatic hydrocarbons (PAHs) and monochloropropanediols (MCPDs), have become important to be controlled in edible oils, since their regular occurrence. In fact, alerts from the Rapid Alert System for Food and Feed (RASFF) in oils normally include these compounds. From a critical point of view, tools used to control these compounds in the last 5 years will be discussed, including sample preparation, analysis and current regulations. Extraction and analysis methods will be discussed next, being liquid-liquid extraction (LLE) and QuEChERS, with or without clean-up step, as well as chromatographic methods coupled to different analyzers (mainly mass spectrometry), the most commonly used for extraction and analysis respectively. Occurrence in samples will also be reviewed and compared with the legal maximum residue limits (MRLs), observing that 4%, 20% and 60% of the analyzed samples exceed the legal limits for pesticides, MCPDs and PAHs respectively.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jesús Marín-Sáez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Osmar D Prestes
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| |
Collapse
|
9
|
Zhang J, Li M, Kong Z, Bai T, Quan R, Gao T, Duan L, Liu Y, Fan B, Wang F. Model prediction of herbicide residues in soybean oil: Relationship between physicochemical properties and processing factors. Food Chem 2022; 370:131363. [PMID: 34656023 DOI: 10.1016/j.foodchem.2021.131363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
The distribution and processing factors (PFs) of herbicides in cold-/hot-pressed soybean samples (n = 3) were studied on the laboratory scale. The hot-pressing process was found to have a significant effect on herbicide degradation in soybean samples. Specifically, for highly water-soluble pesticides with pKow > 2 in soybean oil, the PF values were generally > 1. Nonlinear curve fitting revealed that the PFs of herbicides in soybean oil were positively correlated with their octanol-water partition coefficients, but negatively correlated with their water solubility and melting points. A principal component analysis confirmed the dominant parameters among the herbicide PFs during soybean oil production. Using the physicochemical parameters of pesticides, the developed multiple linear regression model gave a fitting accuracy of ≥0.80 for predicting the theoretical PF values of pesticides in soybean oil products (0.39 < RMSE < 0.58). Thus, this model may be applicable for safety risk assessments and establishing maximum residue limits for pesticides in processed products.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Tiecheng Bai
- Southern Xinjiang Research Center for Information Technology in Agriculture, Tarim University, Alaer 843300, PR China
| | - Rui Quan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tengfei Gao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lifang Duan
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Fengzhong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
10
|
Research on a high-sensitivity asymmetric metamaterial structure and its application as microwave sensor. Sci Rep 2022; 12:1255. [PMID: 35075165 PMCID: PMC8786826 DOI: 10.1038/s41598-022-05255-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
In this paper, an Asymmetric Electric Split-Ring Resonator (AESRR) metamaterial structure is proposed to explore the interaction between metamaterials and electromagnetic waves with the influence of Fano resonance on electromagnetic properties. With the symmetry of basic electric Split-Ring Resonator (eSRR) being broken, a new Fano resonant peak appears at around 11.575 GHz and this peak is very sensitive to the dielectric environment. Based on the proposed high sensitivity of AESRR, a microwave sensor based on a 13 × 13 arrays of AESRR was designed and verified using printed circuit board (PCB) technology. T-shape channel was integrated to the sensor by grooving in the FR-4 substrate which improved the integration and provided the feasibility of liquids detection. Seven organic liquids and four dielectric substrates are measured by this sensor. The measured results show the transmission frequency shifts from 11.575 to 11.150 GHz as the liquid samples permittivity changes from 1 to 7 and the transmission frequency shifts from 11.575 to 8.260 GHz as the solid substrates permittivity changes from 1 to 9. The results have proven the improved sensitivity and the larger frequency shift ∆f on material under test (MUTs) compared with the conventional reported sensor. The relative permittivity of liquid samples and solid samples can be obtained by establishing approximate models in CST, respectively. Two transcendental equations derived from measured results are proposed to predict the relative permittivity of liquid samples and solids samples. The accuracy and reliability of measured results and predicted results are numerically verified by comparing them with literature values. Thus, the proposed sensor has many advantages, such as low-cost, high-sensitivity, high-robustness, and extensive detecting range, which provided a great potential to be implemented in a lab-on-a-chip sensor system in the future.
Collapse
|
11
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
12
|
Marques JMG, da Silva MV. Estimation of chronic dietary intake of pesticide residues. Rev Saude Publica 2021; 55:36. [PMID: 34190889 PMCID: PMC8225320 DOI: 10.11606/s1518-8787.2021055002197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To estimate the maximum theoretical daily intake of pesticides potentially consumed, chronically, by the Brazilian population. METHOD By using data from the food consumption section of the 2008-2009 Household Budget Survey to characterize the population diet, a database was built to group the foods based on the NOVA classification. Considering the maximum residue limit values of each pesticide authorized in the country until 2016, the limits of all consumed foods were added and multiplied by the amount consumed, resulting in the maximum theoretical intake index, which was compared with the acceptable daily intake. RESULTS The results show that, of the 283 pesticides considered in the database, 71 (25%) compounds had estimates of zero intake, 144 compounds (50.8%) reached acceptable daily intake values and 68 compounds (24%) showed median intake that exceeded the acceptable daily value. The pesticide intake estimation according to the different regions of the country showed a variation in the amount of compounds that exceeded the acceptable daily intake (48 to 69 substances) due to the different consumption patterns. The categories of products that most exceeded the limits were the insecticides, herbicides and fungicides. CONCLUSION The application of this methodology is valid for the first step in risk assessment, but the resulting values may be different from the actual exposure since they do not include other factors, such as the combined use of pesticides or unauthorized products. The importance of developing research on specific national food consumption data in a systematic way is emphasized, which generates data and analyses that allow a detailed risk assessment.
Collapse
Affiliation(s)
- Jacqueline Mary Gerage Marques
- Universidade de São PauloEscola Superior de Agricultura Luiz de QueirozPrograma de Pós-Graduação em ciência e tecnologia de alimentosPiracicabaSPBrasilUniversidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. Programa de Pós-Graduação em ciência e tecnologia de alimentos. Piracicaba, SP, Brasil
| | - Marina Vieira da Silva
- Universidade de São PauloEscola Superior de Agricultura Luiz de QueirozDepartamento de Agroindústria, Alimentos e NutriçãoPiracicabaSPBrasilUniversidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. Departamento de Agroindústria, Alimentos e Nutrição. Piracicaba, SP, Brasil
| |
Collapse
|
13
|
Bai A, Liu S, Chen A, Chen W, Luo X, Liu Y, Zhang D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem 2021; 359:129983. [PMID: 33964658 DOI: 10.1016/j.foodchem.2021.129983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The fate of eighteen pesticides in field-collected rice samples during Chinese Baijiu production was systematically studied. The results indicated that steeping decreased flonicamid residue by 73.2% due to its high water-solubility and low octanol/water partition coefficient. The steaming step reduced pesticide residues by 32.0%-75.3% through evaporation or thermal degradation. After steaming, the pesticide residues were further reduced by 39.8-74.2% in fermentation which might be caused by biological degradation. In addition, distillation was shown to be most effective, responsible for greater than 90% losses of the remaining pesticide residues. The processing factors (PFs) were generally lower than 1 for different processes and the whole procedure. These results revealed that the procedure of Chinese Baijiu production could dramatically decrease residues of all the eighteen pesticides. Overall, this study provide important references for monitoring pesticide residue levels during the production of Chinese Baijiu from rice, and ensuring proper risk assessment from pesticide contamination.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
14
|
Macii F, Detti R, Bloise FR, Giannarelli S, Biver T. Spectroscopic Analysis of the Binding of Paraquat and Diquat Herbicides to Biosubstrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2412. [PMID: 33801256 PMCID: PMC7967551 DOI: 10.3390/ijerph18052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Rebecca Detti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Francesca Rita Bloise
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (F.M.); (R.D.); (F.R.B.); (S.G.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
15
|
Sheng EZ, Tan YT, Lu YX, Xiao Y, Li ZX. Sensitive Time-Resolved Fluorescence Immunoassay for Quantitative Determination of Oxyfluorfen in Food and Environmental Samples. Front Chem 2021; 8:621925. [PMID: 33490042 PMCID: PMC7817953 DOI: 10.3389/fchem.2020.621925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023] Open
Abstract
The direct and indirect competition time-resolved fluorescence immunoassays (dc-TRFIA, ic-TRFIA) were established by combining the autofluorescence properties of lanthanide europium (Eu) with the monoclonal antibody of oxyfluorfen. The purified Eu antibody was optimized and the conditions such as the working concentration of the Eu antibody, monoclonal antibody, and working buffer were optimized. In the optimal condition, the IC50 of dc-TRFIA was 10.27 ng/mL, the lowest detection limit IC10 was 0.071 ng/mL, the detection range (IC10-IC90) was 0.071-1074.3 ng/mL, and the detection range (IC10-IC90) and IC50 of ic-TRFIA were 0.024-504.6 and 2.76 ng/mL, respectively. The comparison showed that the sensitivity and detection limit of ic-TRFIA were superior to dc-TRFIA. The cross reaction (CR) tests showed that the CR with other oxyfluorfen structure analogs was <0.02%, except that there was a certain CR with the benzofluorfen (CR = 11.58) and the bifenox (CR = 8.23%). The average recoveries of ic-TRFIA were 74.6-108.3%, and the RSDs were between 2.1 and 10.9%, in the addition recovery test with five substrates. The results of the correlation test with the real samples of GC-ECD showed that they were highly correlated (y = 0.975x - 0.4446, R 2 = 0.9901), which proved that the TRFIA method established in this study had high reliability and accuracy and could be used in environment and agricultural products for rapid detection of oxyfluorfen residues.
Collapse
Affiliation(s)
- En Ze Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yu Ting Tan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu Xiao Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yue Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhen Xi Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Cui Y, Ke R, Gao W, Tian F, Wang Y, Jiang G. Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14594-14602. [PMID: 33186497 DOI: 10.1021/acs.jafc.0c05227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organochlorine pesticides (OCPs), chemicals frequently used in agriculture, are a group of highly toxic and persistent organic pollutants. This study assesses the distribution and congener profiles of residual OCPs in 11 types of vegetable oils collected from Chinese markets. All samples were extracted using the modified QuEChERS method prior to analysis by gas chromatography-triple quadrupole mass spectrometry. The sesame oil samples had the highest concentration of OCPs, within the range of 15.30-59.38 ng/g, whereas the peanut oil samples had the lowest OCP concentrations, within the range of 10.83-35.65 ng/g. The possible effect of the processing technology on the pesticide residues in these vegetable oils was also evaluated. It was found that the pressing method leaves more OCPs in vegetable oils than the aqueous extraction and cold-pressing, but the result for leaching was not obvious. In light of the obtained results, it was estimated that the average daily intake of different pesticides is between 0.01 and 2.20 ng/kg bw/day for urban and rural households. Hence, it can be affirmed that, given the amount of the concentration of OCPs detected in the vegetable oils collected from Chinese markets, there are no obvious health risks for urban and rural households by intake.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhui Ke
- Chinese National Research Institute of Food & Fermentation Industries Co., Ltd, Beijing 100016, China
| | - Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feifei Tian
- Shimadzu Global COE for Application & Technical Development, Beijing 100020, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Kong Z, Quan R, Fan B, Liao Y, Chen J, Li M, Dai X. Stereoselective behaviors of the fungicide triadimefon and its metabolite triadimenol during malt storage and beer brewing. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123238. [PMID: 32947687 DOI: 10.1016/j.jhazmat.2020.123238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The stereoselective behaviors of triadimefon (TF) and its metabolite triadimenol (TN) during barley storage and beer brewing were studied by supercritical fluid chromatography-tandem mass spectrometry to shed light on potential security risks. Matrix-matched calibration curves were constructed for barley and beer, with determination coefficients (r2) ≥ 0.9991. Average recoveries of 77.2-107.5 % and relative standard deviations within 15.0 % were observed. The degradation of the TF enantiomers during storage followed pseudo-first-order kinetics, and S-TF was degraded in preference to R-TF with the half-life ranges 18.5-36.5 d and 20.4-69.3 d, respectively. During beer brewing, the TF enantiomers (enantiomer fraction, 0.44-0.56) were selectively metabolized into TN stereoisomers (diastereomer fraction, 0.43-0.58). The total pesticide content of beer was 93.3 % lower than that of raw grain, whereby the TF content declined by up to 100 % and the TN stereoisomers were reduced by 35.1 %. The processing factors of all the brewing steps were less than one, illustrating that beer consumption is safer after its commercial processing. Furthermore, the TF enantiomers showed different behaviors upon fermentation by two yeast strains. Thus, this work is a useful reference for assessing the food safety risk posed by individual pesticide enantiomers and their contribution to environmental pollution.
Collapse
Affiliation(s)
- Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Rui Quan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yonghong Liao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
18
|
Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chem 2020; 331:127090. [DOI: 10.1016/j.foodchem.2020.127090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
|
19
|
Li Z. A coupled ODE-diffusion modeling framework for removing organic contaminants in crops using a simple household method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115071. [PMID: 32599328 DOI: 10.1016/j.envpol.2020.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Organic contaminants are frequently detected in fresh crops and can cause severe damage to human health. To help control this risk, we introduce a diffusion-based model framework for estimating the removal efficiency for organic contaminants in fresh crops using a simple water soaking method. The framework was developed based on the diffusion coefficient of the organic contaminants, and its application indicates that the removal factor (RF) for organic contaminants has an inverse-exponential relationship with log Kow (Kow is the octanol-water partition coefficient), which thermodynamically restricts the removal efficiency for chemicals with large steady state log Kow. Additionally, the diffusion coefficient of the chemical in water affects the kinetic removal efficiency. For example, the RF simulated for glyphosate, which has a relatively high diffusion coefficient, is 0.592 (61.9% of the steady state RF) after soaking for 1 h, while the RF of lindane is 0.224, which is only 25.0% of the steady state RF. However, if a refreshing method is applied, the RF of lindane can be significantly improved even if more potatoes are used in the water bowl, and this has been demonstrated theoretically with the refreshing function. Model validation indicates that the macro properties of crops, e.g., the active area through which crop tissues interact with water, have a larger impact on the results than do the micro-properties of crops and the physiochemical properties of the organic contaminants. Comparison of our results with those of other studies shows that the simulated ranges for some pesticides compare well with experimental data collected using other household washing methods. However, for other pesticides such as HCB and DDT, the simulated results and current studies are inconsistent due to physical interactions between the water and crop tissues not considered in our model.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 510275, China.
| |
Collapse
|
20
|
Liu T, Peng J, Pan L, Zhou D, Sun K, Tu S, Tu K. Effects of shiitakes household processing on the residues of six pesticides. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tan Liu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
- College of Food Science and Light Industry Nanjing Tech University Nanjing People’s Republic of China
| | - Jing Peng
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Leiqing Pan
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Dandan Zhou
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Ke Sun
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Sicong Tu
- Medical Sciences Division University of Oxford Oxford UK
- Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Kang Tu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| |
Collapse
|
21
|
Chiarello M, Jiménez-Medina ML, Marín Saéz J, Moura S, Garrido Frenich A, Romero-González R. Fast analysis of glufosinate, glyphosate and its main metabolite, aminomethylphosphonic acid, in edible oils, by liquid chromatographycoupled with electrospray tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1376-1384. [PMID: 31287383 DOI: 10.1080/19440049.2019.1631493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
A method has been developed for the rapid, specific, accurate, precise and sensitive determination of glufosinate, glyphosate and its major metabolite, aminomethylphosphonic acid, in edible oils, by liquid chromatography coupled to tandem mass spectrometry. Oils were extracted with acidified water (1% formic acid), and the extracts were directly injected into an LC using a Hypercarb column as the stationary phase. The analytes were eluted by a mobile phase of methanol and water containing 1% acetic acid, and they were ionised by electrospray ionisation in negative ion mode. The method was validated and limits of quantification ranged from 5 μg kg-1 (aminomethylphosphonic acid) to 10 μg kg-1 (glyphosate and glufosinate). Three concentrations (10, 50 and 100 μg kg-1) were selected to perform recovery studies. Mean recoveries ranged from 81.4% to 119.4%. Intra and inter-day precision were lower than 19%. Different edible oils were analysed, and no residues of the studied herbicides were detected above limits of quantification.
Collapse
Affiliation(s)
- Marilda Chiarello
- Research Group ''Analytical Chemistry of Contaminants'', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3 , Almería , Spain
- LBIOP-Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxais do Sul , Caxais do Sul , Brazil
| | - María Luisa Jiménez-Medina
- Research Group ''Analytical Chemistry of Contaminants'', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3 , Almería , Spain
| | - Jesús Marín Saéz
- Research Group ''Analytical Chemistry of Contaminants'', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3 , Almería , Spain
| | - Sidnei Moura
- LBIOP-Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxais do Sul , Caxais do Sul , Brazil
| | - Antonia Garrido Frenich
- Research Group ''Analytical Chemistry of Contaminants'', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3 , Almería , Spain
| | - Roberto Romero-González
- Research Group ''Analytical Chemistry of Contaminants'', Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3 , Almería , Spain
| |
Collapse
|
22
|
Ma Y, Zhan L, Yang H, Qin M, Chai S, Cao Z, Mou R, Chen M. Dissipation of two field-incurred pesticides and three degradation products in rice (Oryza sativa L.) from harvest to dining table. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4602-4608. [PMID: 30891755 DOI: 10.1002/jsfa.9699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND High levels of harmful pesticide residues in rice can cause undesirable side effects and are a source of great concern to consumers. Reduction of pesticide residues to provide rice security has thus became an urgent problem. RESULTS In this study, the effects of commercial and home processing on removal of chlorpyrifos and carbosulfan residues from rice, and the formation of metabolites during processing, were studied. The results showed that 3,5,6-trichloro-2-pyridinol (0.87 mg kg-1 ) and carbofuran (0.43 mg kg-1 ) were the predominant components detected in paddy rice. All detected residues were primarily deposited on the rice hull and bran. Washing twice followed by high-pressure cooking was able to further decrease residues in polished rice with the processing factor value <0.25. Following application of pesticides at the recommended rate and twice the recommended rate, with a preharvest interval of 28 days, changes in residues from harvest to dining table based on efficient processing techniques were investigated. The final residues dropped to below maximum residue levels after washing twice followed by high-pressure cooking. CONCLUSION This simple cooking process thus reduces the risk of dietary exposure, and it is recommended that it is adopted by all consumers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Youning Ma
- China National Rice Research Institute, Hangzhou, China
| | - Liwei Zhan
- Zhe Jiang Wu Wang Nong Seeds Co., Ltd, Hangzhou, China
| | - Huan Yang
- China National Rice Research Institute, Hangzhou, China
| | - Meiling Qin
- China National Rice Research Institute, Hangzhou, China
| | | | - Zhaoyun Cao
- China National Rice Research Institute, Hangzhou, China
| | - Renxiang Mou
- China National Rice Research Institute, Hangzhou, China
| | - Mingxue Chen
- China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
23
|
Zhang X, Ruan C, Haq TU, Chen K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. SENSORS 2019; 19:s19040787. [PMID: 30769942 PMCID: PMC6412270 DOI: 10.3390/s19040787] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 12/02/2022]
Abstract
This paper describes a low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants. The proposed sensor was fabricated and tested to effectively identify different liquids commonly used in daily life and determine the concentrations of various ethanol–water mixtures at by measuring the resonant frequency of the CCSR. Using acrylic paint, a square channel was drawn at the most sensitive position of the microwave sensor to ensure accuracy of the experiment. To estimate the dielectric constants of the liquids under test, an approximate model was established using a High-Frequency Simulator Structure (HFSS). The results obtained agree very well with the existing data. Two parabolic equations were calculated and fitted to identify unknown liquids and determine the concentrations of ethanol–water mixtures. Thus, our microwave sensor provides a method with high sensitivity and low consumption of material for liquid monitoring and determination, which proves the feasibility and broad prospect of this low-cost system in industrial application.
Collapse
Affiliation(s)
- Xingyun Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| | - Cunjun Ruan
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
- Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China.
| | - Tanveer Ul Haq
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| | - Kanglong Chen
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
24
|
Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, Tan CP. Comparison assessment between SIM and MRM mode in the analysis of 3-MCPD ester, 2-MCPD ester and glycidyl ester. Food Res Int 2018; 121:553-560. [PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) < 5% for 2-, 3-MCPD ester at 0.5 mg/kg and GE at 1.2 mg/kg. Quantification of 22 food samples from different category were performed by repeated injections in both detection modes. Briefly, the contaminants from crude palm oil, mustard and olive oil were present in minute amount which below the LOD or LOQ in both detection modes. Sample from chocolate and infant formula products showed certain level of MCPD esters and GE, and their detection was more precisely quantitated based on MRM mode. Besides, margarine products showed a higher level of contaminations due to the high fat content in these products. MRM mode detection was proven to provide precise data with low RSD % in different food matrices. MRM mode detection was robust and selective for MCPD esters and GE analyses, it should be applied to determine the concentration of MCPD esters and GE contaminations in food.
Collapse
Affiliation(s)
- Kok Ming Goh
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Yu Hua Wong
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - May Yen Ang
- Shimadzu Malaysia CSC (Customer Support Centre) Analytical Laboratory, Shimadzu Malaysia Sdn Bhd, No.6 Lorong Teknologi 3/4A, Nouvelle Industrial Park 2, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Samuel Chao Ming Yeo
- ADSC (Application Development and Support Centre) Shimadzu Asia Pacific, Shimadzu Asia Pacific Pte Ltd, 79 Science Park Drive, #02-01/08, Cintech IV, Singapore 118264, Singapore
| | - Faridah Abas
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
25
|
Razzaghi N, Ziarati P, Rastegar H, Shoeibi S, Amirahmadi M, Conti GO, Ferrante M, Fakhri Y, Mousavi Khaneghah A. The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran. Food Chem Toxicol 2018; 120:32-40. [DOI: 10.1016/j.fct.2018.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/24/2018] [Accepted: 07/01/2018] [Indexed: 12/01/2022]
|
26
|
Moreno-González D, Alcántara-Durán J, Addona SM, Beneito-Cambra M. Multi-residue pesticide analysis in virgin olive oil by nanoflow liquid chromatography high resolution mass spectrometry. J Chromatogr A 2018; 1562:27-35. [DOI: 10.1016/j.chroma.2018.05.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/14/2023]
|