1
|
Liu S, Shao L, Dong Y, Gong J, Yang X, Li F, Xu X, Wang H. Hydrolysis of myofibrillar proteins by protease AprA secreted from Pseudomonas fragi: Preference for degrading Ala-linked peptide bonds. Food Chem 2025; 479:143756. [PMID: 40073553 DOI: 10.1016/j.foodchem.2025.143756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Extracellular proteases of bacteria have attracted attention in recent years. Alkaline protease AprA secreted from Pseudomonas fragi has been shown to cause spoilage in chilled meat and to degrade myofibrillar proteins (MPs), but the spoilage mechanism was unknown. AprA possessed a high affinity for substrate proteins (Km = 1.40 mg/mL, Vmax = 11.20 mg/mL/min) and was controlled by metal ions and inhibitors. AprA exhibited strong hydrolytic activity on MPs, with alterations in secondary structure, tertiary structure and sulfhydryl content. Molecular docking and molecular dynamics revealed that AprA bound to actin and myosin heavy chain (MHC) through hydrogen bonds, hydrophobic interaction and salt bridges, respectively. AprA exhibited a broad spectrum of cleavage, with a relative preference for Ala-linked peptide bonds, according to peptide release kinetics. The above results reveal the mechanism of bacterial spoilage of chilled meat at low temperatures. Of course, this provides a theoretical basis for targeted control of the meat spoilage caused by AprA.
Collapse
Affiliation(s)
- Silu Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Dong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinqi Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fang Li
- Anhui Konka Tongchuang Household Appliances Co., Ltd., Chuzhou 239000, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Zhu J, Zhu Y, Li H, Fu C, Yin W, Li C. Thawing methods affect quality properties and protein denaturation of frozen beef. Food Chem 2025; 476:143484. [PMID: 39987809 DOI: 10.1016/j.foodchem.2025.143484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Balancing efficiency and meat quality during thawing remains a big challenge for meat industry. In this study, the effects of three thawing methods, including ultrasound-assisted thawing (UT), solid-state microwave thawing (SMT) and traditional air thawing (CT) on the thawing features, quality attributes and protein physicochemical properties of beef in a pilot scale, were investigated. COMSOL Multiphysics simulation was employed to optimize the thawing process, identifying an optimal endpoint of no more than -2 °C. Results showed that optimized SMT helpfully avoided overheating, improved thawing efficiency and kept better water-holding capacity, microstructure and lower oxidation. In contrast, UT maintained better protein conformation and color, especially in a* value, but serious mechanical damage caused worse texture and aggravated protein oxidation, which limited its application. Thus, SMT could be a promising solution for industrial meat thawing applications.
Collapse
Affiliation(s)
- Jiaying Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingying Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou, Jiangsu, China
| | - Hui Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caili Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Weimin Yin
- Shanghai Dotwil Intelligent Technology Co., Ltd., Suzhou, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Cao Z, Xie C, Yang C, Liu X, Meng X. Effects of ohmic heating thawing under an appropriate electric field on the quality and structure of duck breast meat. J Food Sci 2025; 90:e70098. [PMID: 40205875 DOI: 10.1111/1750-3841.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
Ohmic heating thawing (OHT), as a novel thawing technique, possesses distinct advantages and is currently garnering attention from researchers. We have investigated the effects of OHT on the structure and protein quality of duck breast meat. Compared to conventional thawing (CT) methods (water thawing [WT], 20 ± 0.5°C; air thawing [AT], 20 ± 0.5°C), OHT (10, 15, and 20 V/cm) has been shown to enhance thawing efficiency, reducing thawing time by 28%-86% (p < 0.05), lowering thawing loss rates by 2.55% (p < 0.05), and resulting in milder protein oxidation with better preservation of protein secondary structures. Microscopically, OHT resulted in minimal damage to myofibrils in the duck breast meat. In this experiment, the optimal thawing electric field strength for duck breast was 15 V/cm. Moreover, the efficacy of OHT also relies on variations in voltage, with the most suitable thawing voltage determined by the specific characteristics of the material. These findings reveal the potential of OHT for thawing meat products. PRACTICAL APPLICATION: Ohmic heating thawing (OHT) shortens thawing time and enhances thawing efficiency while reducing thawing loss rates. It has a minimal impact on proteins and a minor effect on muscle fiber structure.
Collapse
Affiliation(s)
- Zhongwen Cao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Chengcheng Xie
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Cheng Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xingyu Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Xiangren Meng
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| |
Collapse
|
4
|
Du M, Hao F, Sun S, Li K, Xiang Q, Li J, Cao L, Bai Y. Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork. Foods 2025; 14:970. [PMID: 40232000 PMCID: PMC11941708 DOI: 10.3390/foods14060970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, myofibrillar proteins (MPs) of thawed pork were treated with plasma-activated water (PAW) generated at different times (0, 5, 10, 15, 20, and 25 s) to investigate whether the function of MPs is improved through PAW and the corresponding regulatory mechanism. The results found that PAW treatments increased the surface hydrophobicity and altered the secondary and tertiary structure of MPs. The α-helix content of MPs treated by PAW reduced from 37.3% to 31.25%. In the PAW25s group, the oxidation of MPs was significantly raised, reflected by the higher carbonyl content and lower total sulfhydryl content compared with other groups (p < 0.05). Furthermore, PAW treatments increased the whiteness and improved the strength, immobilized water contents, resilience, chewiness, and adhesiveness of MP gels. The observation of intermolecular forces and microstructure of MP gels presented an increase in ionic bonding, disulfide bonding, and hydrophobic interactions but a decrease in hydrogen bonding in MP gels with PAW treatments, leading to more homogeneous and denser gel structures compared with the control group. In conclusion, PAW, with a short generation time, significantly fixed and enhanced the function of MPs extracted from thawed pork and, to some extent, improved the processing quality of the MPs of thawed pork.
Collapse
Affiliation(s)
- Manting Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Fangge Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
| | - Shunyang Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lichuang Cao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.D.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
5
|
Çalışkan Koç G, Özkan Karabacak A, Süfer Ö, Adal S, Çelebi Y, Delikanlı Kıyak B, Öztekin S. Thawing frozen foods: A comparative review of traditional and innovative methods. Compr Rev Food Sci Food Saf 2025; 24:e70136. [PMID: 39970035 PMCID: PMC11838820 DOI: 10.1111/1541-4337.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Due to the changing consumer lifestyles, the tendency to adopt foods that require less preparation time and offer both variety and convenience has played a significant role in the development of the frozen food industry. Freezing is one of the fundamental food preservation techniques, as it maintains high product quality. Freezing reduces chemical and enzymatic reactions, lowers water activity, and prevents microbial growth, thereby extending the shelf life of foods. The freezing and thawing procedures directly impact the quality of frozen foods. The degree of tissue damage is determined by the freezing rate and the structure of the ice crystals that form during the freezing process. Generally, thawing occurs more slowly than freezing. During thawing, microorganisms, as well as chemical and physical changes, can cause nutrient damage. Thus, the goal of this review is to identify innovative and optimal thawing strategies. In order to save energy and/or improve quality, new chemical and physical thawing aids are being developed alongside emerging techniques such as microwave-assisted, ohmic-assisted, high pressure, acoustic thawing, and so on. In addition to discussing the possible uses of these technologies for the thawing process and their effects on food quality, the purpose of this study is to present a thorough comparative overview of recent advancements in thawing techniques.
Collapse
Affiliation(s)
- Gülşah Çalışkan Koç
- Eşme Vocational School, Food Processing Department, Food Technology ProgramUşak UniversityUşakTürkiye
| | - Azime Özkan Karabacak
- Gemlik Asim Kocabiyik Vocational School, Food Technology ProgramBursa Uludag UniversityBursaTürkiye
| | - Özge Süfer
- Food Engineering DepartmentOsmaniye Korkut Ata UniversityOsmaniyeTürkiye
| | - Samiye Adal
- Department of Food Engineering, Faculty of Engineering; Food Control, Application and Research CenterAfyon Kocatepe UniversityAfyonkarahisarTürkiye
| | - Yasemin Çelebi
- Eşme Vocational School, Food Processing Department, Food Technology ProgramUşak UniversityUşakTürkiye
| | - Berrak Delikanlı Kıyak
- Deparment of Food Processing/Vocational School of IznikBursa Uludag UniversityBursaTürkiye
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of EngineeringBayburt UniversityBayburtTürkiye
| |
Collapse
|
6
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Zhang Y, Li Y, Guo J, Feng Y, Xie Q, Guo M, Yin J, Liu G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem 2024; 456:140001. [PMID: 38852449 DOI: 10.1016/j.foodchem.2024.140001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
8
|
Kim YJ, Shin DM, Oh EJ, Chun YG, Shin JK, Choi YS, Kim BK. Mechanisms underlying the changes in the structural, physicochemical, and emulsification properties of porcine myofibrillar proteins induced by prolonged pulsed electric field treatment. Food Chem 2024; 456:140024. [PMID: 38870818 DOI: 10.1016/j.foodchem.2024.140024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
This study aimed to explore how pulsed electric field (PEF) treatment affects the structural, physicochemical, and emulsification properties of porcine-derived myofibrillar proteins (MPs). Increasing PEF treatment induced partial polarization and protein unfolding, resulting in notable denaturation that affected both the secondary and tertiary structures. PEF treatment also improved the solubility and emulsification ability of MPs by reducing their pH and surface hydrophobicity. Confocal laser scanning microscopy confirmed the effective adsorption of MPs and PEF-treated MPs at the oil/water interface, resulting in well-fabricated Pickering emulsions. A weak particle network increased the apparent viscosity in short-term PEF-treated Pickering emulsions. Conversely, in emulsions with long-term PEF-treated MP, rheological variables decreased, and dispersion stability increased. These results endorse the potential application of PEF-treated porcine-derived MPs as efficient Pickering stabilizers, offering valuable insights into the creative use of PEF for enhancing high-quality meat products, meeting the increasing demand for clean-label choices.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Eun-Jae Oh
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung-Kue Shin
- Department of Korean Cuisine, Jeonju University, Jeonju 55069, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea..
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea..
| |
Collapse
|
9
|
Jiang X, Liu Y, Liu L, Bai F, Wang J, Xu H, Dong S, Jiang X, Wu J, Zhao Y, Xu X. Mechanism of low-voltage electrostatic field on flavor retention in refrigerated sturgeon caviar: Insights from phospholipids. Food Chem X 2024; 23:101612. [PMID: 39113737 PMCID: PMC11305003 DOI: 10.1016/j.fochx.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
This study investigated the effect of low-voltage electrostatic field on the flavor quality changes and generation pathways of refrigerated sturgeon caviar. Research has found that after storage for 3-6 weeks, the physicochemical properties of caviar in the LVEF treatment group are better than those in the control group. The results of two-dimensional gas chromatography-time-of-flight mass spectrometry showed that the contents of hexanal, nonanal, (E,Z)-2,6-nonadienal, (E)-2-octenal and 1-octene-3-one related to the characteristic flavor of caviar (sweet, fruity and green) increased significantly. The lipidomics results indicated that the effects of LVEF on caviar mainly involve glycerophospholipid metabolism, linoleic acid metabolism, and α-Linolenic acid metabolism. Methanophosphatidylcholine (15:0/18:1), phosphatidylcholine (18:0/20:5), and phosphatidylcholine (18,1e/22:6) were significantly correlated with odor formation. Therefore, low-voltage electrostatic field treatment preserved the quality and enhanced the flavor of sturgeon caviar. This study provided a new theoretical basis for the preservation of sturgeon caviar.
Collapse
Affiliation(s)
- Xinyu Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yihuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Oceanographic Institution of Ocean University of China, Sanya 572024, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
10
|
Lin H, Wu G, Hu X, Chisoro P, Yang C, Li Q, Blecker C, Li X, Zhang C. Electric fields as effective strategies for enhancing quality attributes of meat in cold chain logistics: A review. Food Res Int 2024; 193:114839. [PMID: 39160042 DOI: 10.1016/j.foodres.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.
Collapse
Affiliation(s)
- Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojia Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Yang N, Yao H, Zhang A, Jin Y, Zhang X, Xu X. Effect of constant-current pulsed electric field thawing on proteins and water-holding capacity of frozen porcine longissimus muscle. Food Chem 2024; 454:139784. [PMID: 38815321 DOI: 10.1016/j.foodchem.2024.139784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
This study explored the effect of constant-current pulsed electric field thawing (CC-T) on the proteins and water-holding capacity of pork. Fresh meat (FM), and frozen meat after constant-voltage thawing (CV-T), air thawing (AT) and water immersion thawing (WT) were considered as controls. The results indicated that CC-T had a higher thawing rate than conventional thawing during ice-crystal melting stage (-5 to -1 °C). It also showed a lower water migration and thawing loss, maintaining pH and shear force closer to FM. Meanwhile, CC-T decreased myoglobin oxidation, resulting in a favorable surface color. The results of protein solubility, differential scanning calorimetry, total sulfhydryl, carbonyl and surface hydrophobicity demonstrated that CC-T reduced myofibrillar protein oxidative denaturation by suppressing the formation of disulfide and carbonyl bonds, thus enhancing solubility and thermal stability. Additionally, microstructural observation found that CC-T maintained a relatively intact muscle fiber structure by reducing muscle damage and myosin filament denaturation.
Collapse
Affiliation(s)
- Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Huangbing Yao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ankun Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Yang W, Dong Y, Ma X, Xie J, Mei J. Effects of multi-frequency ultrasound-assisted immersion freezing processing on myofibrillar protein structure and lipid oxidation of large yellow croaker (Larimichthys crocea) during long-time frozen storage. ULTRASONICS SONOCHEMISTRY 2024; 107:106945. [PMID: 38857567 PMCID: PMC11209630 DOI: 10.1016/j.ultsonch.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to β-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.
Collapse
Affiliation(s)
- Weihao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306,China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306,China.
| |
Collapse
|
13
|
Kim TK, Kim YJ, Kang MC, Cha JY, Kim YJ, Choi YJ, Jung S, Choi YS. Effects of myofibril-palatinose conjugate as a phosphate substitute on meat emulsion quality. Heliyon 2024; 10:e28315. [PMID: 38586345 PMCID: PMC10998059 DOI: 10.1016/j.heliyon.2024.e28315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
The objective of this study was to investigate a replacement for phosphate in meat products. Protein structural modification was employed in this study, and grafted myofibrillar protein (MP) with palatinose was added to meat emulsion without phosphate. Here, 0.15% of sodium polyphosphate (SPP) was replaced by the same (0.15%) concentration and double (0.3%) the concentration of grafted MP. Although the thermal stability was decreased, the addition of transglutaminase could increase stability. The rheological properties and pH also increased with the addition of grafted MP and transglutaminase. The addition of grafted protein could be perceived by the naked eye by observing a color difference before cooking, but it was not easy to detect after cooking. The cooking loss, emulsion stability, water holding capacity, lipid oxidation, and textural properties improved with the addition of grafted MP. However, the excessive addition of grafted MP and transglutaminase was not recommended to produce a high quality of phosphate replaced meat emulsion, and 0.15% was identified as a suitable addition ratio of grafted MP.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yoo-Jeong Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| |
Collapse
|
14
|
Wang W, Lin H, Guan W, Song Y, He X, Zhang D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem 2024; 436:137709. [PMID: 37857201 DOI: 10.1016/j.foodchem.2023.137709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of static magnetic field-assisted thawing (SMAT) at varying intensities (0, 1, 2, and 3 mT) on the quality, water status, and myofibrillar protein (MP) characteristics of frozen beef steaks. The thawing times of SMAT-1, 2, and 3 treatments could be shortened by approximately 10.9 %, 20.0 %, and 8.5 %, respectively, compared to the control. The results indicated that SMAT treatment significantly decreased thawing loss, maintained color stability, and reduced the degree of lipid oxidation in beef steaks compared to the control group (P < 0.05). Low-field nuclear magnetic resonance results confirmed that SMAT treatment enhanced the water-holding capacity of muscle. Furthermore, SMAT-2 treatment protected the muscle microstructure, decreased carbonyl content, and increased total sulfhydryl content (P < 0.05) compared to the control group. In conclusion, SMAT treatment effectively improved the beef quality and the characteristics of MP after thawing, especially in 2 mT.
Collapse
Affiliation(s)
- Wenxin Wang
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yu Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
16
|
Lan M, Li T, Li L, Wang S, Chen J, Yang T, Li Z, Yang Y, Zhang X, Li B. Ultrasonic treatment treated sea bass myofibrillar proteins in low-salt solution: Emphasizing the changes on conformation structure, oxidation sites, and emulsifying properties. Food Chem 2024; 435:137564. [PMID: 37776650 DOI: 10.1016/j.foodchem.2023.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
The physiochemical properties, structure characteristics, oxidation, and emulsifying properties of myofibrillar proteins (MPs) in low salt solution after treated by the ultrasound were investigated. The solubility, mean diameters, sulfhydryl content, and carbonyl contents of MPs after ultrasonic treatment increased, while the turbidity decreased. The surface hydrophobicity of MPs with 200 W-600 W treatment increased, but decreased at 800 W treatment. The circular dichroism analysis revealed that α-helix content increased, while β-sheet and random coil content decreased after ultrasonic treatment. Fluorescence spectroscopy indicated the fluorescence intensities of MPs were increased after ultrasonic treatment. SDS-PAGE results showed more protein polymers due to myosin heavy chain (MHC) aggregation via disulfide bonds. Based on LC-MS/MS result, the myosin heavy chain was susceptible to oxidation, with monooxidation being the main oxidative modification. Finally, the emulsions stabilized by ultrasonically treated MPs, especially those treated at 800 W, exhibited decreased particle size, improved uniformity, and enhanced stability.
Collapse
Affiliation(s)
- Meijuan Lan
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tongshuai Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Tangyu Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiru Li
- Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, China
| | - Yipeng Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Effect of protein structure changes during different power ultrasound thawing on emulsification properties of common carp (Cyprinus carpio) myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 101:106719. [PMID: 38091741 PMCID: PMC10757250 DOI: 10.1016/j.ultsonch.2023.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The impact of ultrasound thawing (UT) at different power (0 W, 100 W/0.132 W·cm-2, 300 W/1.077 W·cm-2, and 500 W/1.997 W·cm-2, namely WT, UT-100, UT-300, and UT-500) on protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein were investigated in the present study. The result showed that the reactive sulfhydryl content, total sulfhydryl content, protein solubility, and absolute potential of UT-300 samples were obviously higher than those of other thawed samples, while the turbidity of UT-300 samples was lower (P < 0.05), which indicated that proper UT power was beneficial to inhibit protein aggregation caused by thawing, while too low (100 W) or too high (500 W) ultrasonic power had poor effect. The Ca2+-ATPase activity and thermal stability of UT-300 samples were much higher than those of other thawed samples (P < 0.05), indicating that UT-300 inhibited myosin denaturation and thermal stability reduction of thawed products. The α-helix content of UT-300 samples was higher than that of other thawed samples, while the β-sheet content was significantly lower than that of other thawed samples (P < 0.05). The fluorescence intensity of UT-300 samples was higher than that of other thawed samples, and the λmax of UT-300 samples and UT-100 samples were lower than that of other thawed samples, which indicated that UT-300 could effectively inhibit the alteration of protein secondary structure and tertiary structure during thawing. The emulsifying activity of UT-300 samples was significantly higher than that of WT samples, and the droplet diameter of UT-300 samples was also lower than that of WT samples (P < 0.05), which indicated that UT-300 inhibited the decrease of emulsifying property during thawing. Overall, moderate ultrasonic power (300 W) could effectively inhibit the protein aggregation and structural changes during thawing, led to the decrease of emulsifying activity.
Collapse
Affiliation(s)
- Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
18
|
Bao M, Jia X, Cheng Y, Zheng J, Liu Z, Lü X, Shan Y. Structure and in vitro digestion characteristics of skim goat milk protein during processing: effects of fat separation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6521-6530. [PMID: 37226631 DOI: 10.1002/jsfa.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Although nonfat milk has been used worldwide in the industrial dairy process, little is known about the effects of fat separation during the manufacturing process on skim milk's structural and digestive properties. This study investigated the effects of the manufacturing process on the structure and in vitro digestion properties of skim goat milk, particularly emphasizing fat separation. RESULTS Changes in the surface charge and hydrophobicity of milk proteins caused by fat separation resulted in oxidation and aggregation in the subsequent homogenization, heat and spray-drying processing, which affected its digestibility. Compared with separation by dish separator (DS), skim milk after tubular centrifugal separation (CS) showed a higher initial and final digestibility. The CS samples also had a lower surface hydrophobicity level and higher free sulfhydryl content, ζ-potential, and average particle size (P < 0.05). Goat milk protein after CS was more readily oxidized and aggregated during the subsequent homogenization and heat treatment, as evidenced by the higher carbonyl content and particle size. Centrifugal separation also converted more β-sheets to α-helices, thus promoting the aggregation of oxidized skim milk protein. CONCLUSION The skim milk after CS and DS demonstrated different structural and digestive properties. Skim goat milk products after CS were more susceptible to oxidant-induced protein structural changes, resulting in higher protein digestibility. These findings provide insights into the mechanism involved in the control of gastric digestion of skim milk during manufacturing process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xuyu Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yujia Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling, PR China
| |
Collapse
|
19
|
Zhu M, Xing Y, Zhang J, Li H, Kang Z, Ma H, Zhao S, Jiao L. Low-frequency alternating magnetic field thawing of frozen pork meat: Effects of intensity on quality properties and microstructure of meat and structure of myofibrillar proteins. Meat Sci 2023; 204:109241. [PMID: 37321052 DOI: 10.1016/j.meatsci.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to evaluate the changes in quality properties and microstructure of pork meat as well as structural variation in myofibrillar proteins (MPs) after low-frequency alternating magnetic field thawing (LF-MFT) with different intensities (1-5 mT). LF-MFT at 3-5 mT shortened the thawing time. LF-MFT treatment significantly influenced the quality properties of meat and notably improved the structure of MPs (P < 0.05), compared to atmosphere thawing (AT). Especially, among the thawing treatments, LF-MFT-4 (LF-MFT at 4 mT) had the lowest values of thawing loss and drip loss, and the least changes in the color and myoglobin content. Regarding the results of rheological properties and micrographs, an optimal gel structure and a more compact muscle fiber arrangement formed during LF-MFT-4. Moreover, LF-MFT-4 was beneficial for improving the conformation of MPs. Therefore, LF-MFT-4 reduced the deterioration of porcine quality by protecting MPs structure, indicating a potential use in the meat thawing industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - Yi Xing
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
20
|
Sun W, He W, Guo D, Xu W. Effect of Capsaicin and Dihydrocapsaicin in Capsicum on Myofibrillar Protein in Duck Meat. Foods 2023; 12:3532. [PMID: 37835186 PMCID: PMC10572423 DOI: 10.3390/foods12193532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Spice and its extracts have gained widespread utilization as natural and eco-friendly additives, imparting enhancements in flavor, color, and antioxidative attributes to meat-based products. This work aims to study the effect mechanism of capsaicin (CA) and dihydrocapsaicin (DI) in capsicum (chili pepper) on the structure and function of myofibrillar proteins (MPs) in duck meat during thermal treatment. The results showed that at a CA-DI to MP ratio of 1:500 (g/g) following a 12 min heat treatment, the carbonyl content of MPs in duck meat decreased by 48.30%, and the sulfhydryl content increased by 53.42%. When the concentration was 1:500 (CA-DI, g/g) after 24 min of heat treatment, the •OH and DPPH radical scavenging rates were highest at 59.5% and 94.0%, respectively. And the initial denaturation temperature of MPs was the highest at 96.62 °C, and the thermal absorption was lowest at 200.24 J g-1. At the parameter, the smallest particle size and size distribution range of MP were 190 nm (9.51%). Furthermore, the interplay between CA-DI and MPs contributed to a reduction in the protein particle size and intrinsic fluorescence. In summary, the combination of CA-DI and MPs played a crucial role in inducing protein unfolding and disintegration.
Collapse
Affiliation(s)
- Wei Sun
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.H.); (W.X.)
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wenjie He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.H.); (W.X.)
| | - Danjun Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.H.); (W.X.)
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wei Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.H.); (W.X.)
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| |
Collapse
|
21
|
Wang X, Yao Y, Yu J, Cui H, Hayat K, Zhang X, Ho CT. Evolution of lean meat tenderness stimulated by coordinated variation of water status, protein structure and tissue histology during cooking of braised pork. Food Res Int 2023; 171:113081. [PMID: 37330836 DOI: 10.1016/j.foodres.2023.113081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Tenderness of lean meat in braised pork is of great importance to the consumer palatability and acceptance. The influence of water status, protein structure and histological changes on lean meat tenderness during cooking was investigated. Results indicated that lean meat began to tenderize mainly after 20 min-cooking. In the early period of cooking, the decrease of total sulfhydryl content caused the protein oxidative cross-linking, leading to the gradual unfolding of the protein structure, thus resulting in a decrease of T22 and an increase of centrifugal loss, which decreased the tenderness of lean meat. However, after cooking for 20 min, the β-sheet decreased and random coil increased, thus generating conversion between P21 and P22. The rupture of perimysium structure was observed. Changes in protein structure, water status, and tissue histology could facilitate the initiation and development of lean meat tenderness.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Yishun Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
22
|
Huang J, Zhang M, Mujumdar AS, Ma Y. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Crit Rev Food Sci Nutr 2023; 64:11044-11066. [PMID: 37409544 DOI: 10.1080/10408398.2023.2232464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fresh food is rich in nutrients but is usually seasonal, perishable, and challenging to store without degradation of quality. The inherent limitations of various preservation technologies can result in losses in all stages of the supply chain. As consumers of fresh foods have become more health-conscious, new technologies for intelligent, energy-efficient, and nondestructive preservation and processing have emerged as a research priority in recent years. This review aims to summarize the quality change characteristics of postharvest fruits, vegetables, meats, and aquatic products. It critically analyzes research progress and applications of various emerging technologies, which include: the application of high-voltage electric field, magnetic field, electromagnetic field, plasma, electrolytic water, nanotechnology, modified atmosphere packaging, and composite bio-coated film preservation technologies. An evaluation is presented of the benefits and drawbacks of these technologies, as well as future development trends. Moreover, this review provides guidance for design of the food supply chain to take advantage of various technologies used to process food, reduce losses and waste of fresh food, and this improve the overall resilience of the supply chain.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
23
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
24
|
Liu J, Zhu F, Yang J, Wang Y, Ma X, Lou Y, Li Y. Effects of high-voltage electrostatic field (HVEF) on frozen shrimp (Solenocera melantho) based on UPLC-MS untargeted metabolism. Food Chem 2023; 411:135499. [PMID: 36696717 DOI: 10.1016/j.foodchem.2023.135499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Shrimp meat is prone to autolysis and decay due to the abundance of endogenous enzymes and contamination from microorganisms. HVEF freezing can slow the spoilage of shrimp, producing small and uniform ice crystals, resulting in less damage to muscle tissue. In this study, HVEF technique was used to freeze the shrimp (Solenocera melantho), and the UPLC-MS metabolic technique was used to investigate the metabolites of frozen shrimp meat. Compared with the control group, 367 differential metabolites were identified in the HVEF group. Mapping them to the KEGG database, there were 108 with KEGG ID. Purine metabolism and pyrimidine metabolism were the most enriched pathways. In addition, phosphatidylcholines (PCs), inosine (HxR), and l-valine were identified as potential biomarkers associated with lipid, nucleotide, and organic acid metabolism, respectively. Overall, HVEF can improve freezing quality of shrimp meat by slowing down the metabolism of substances in the muscle of S. melantho.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Feixia Zhu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Jing Yang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yue Wang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Xiaohan Ma
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China.
| |
Collapse
|
25
|
Kim YJ, Kim TK, Yun HJ, Kim J, Cha JY, Lee JH, Choi YS. Effects of grafted myofibrillar protein as a phosphate replacer in brined pork loin. Meat Sci 2023; 199:109142. [PMID: 36822054 DOI: 10.1016/j.meatsci.2023.109142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
For the development of healthier meat products, the grafted myofibrillar protein was evaluated as an ingredient that can substitute phosphate in brined loin. Individual brine solutions, consisting of salt (negative control, NP), salt + sodium tripolyphosphate (positive control, PC), salt + myofibrillar protein without grafting (MP), salt + myofibrillar protein grafted at high concentration (GMP-H), and salt + myofibrillar protein grafted at low concentration (GMP-L), were added to the pork loin by 40% of their weight. Differential scanning calorimetry demonstrated that MP and GMP-H lowered the thermal energy for the transition of myosin and actin, thereby improving the thermal stability of pork loin and increasing protein solubility. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that thicker protein bands appeared in MP and GMP-H samples while exhibiting increased pH values, moisture content, water holding capacity, and processing yield. Accordingly, the shear force of MP and GMP-H decreased. Lipid oxidation of pork loin was increased in MP, whereas it decreased in GMP-H. Thus, GMP-L is a potential substitute for phosphate since it improves physicochemical properties and prevents the lipid oxidation of pork loin.
Collapse
Affiliation(s)
- Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hyun-Jung Yun
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jake Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
26
|
Aoude C, Grimi N, El Zakhem H, Vorobiev E. Electrowashing of microalgae Arthrospira platensis filter cake. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2189547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Christa Aoude
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, Al Koura, Lebanon
| | - Nabil Grimi
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
| | - Henri El Zakhem
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, Al Koura, Lebanon
| | - Eugene Vorobiev
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
| |
Collapse
|
27
|
Yang C, Wu G, Li Y, Zhang C, Liu C, Li X. Effect of Low-Voltage Electrostatic Field on Oxidative Denaturation of Myofibrillar Protein from Lamb-Subjected Freeze–Thaw Cycles. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
28
|
Effects of ultrasound-assisted slightly acidic electrolyzed water thawing on myofibrillar protein conformation and gel properties of chicken breasts. Food Chem 2023; 404:134738. [DOI: 10.1016/j.foodchem.2022.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/15/2022]
|
29
|
Chang CK, Lung CT, Gavahian M, Yudhistira B, Chen MH, Santoso SP, Hsieh CW. Effect of pulsed electric field-assisted thawing on the gelling properties of pekin duck meat myofibrillar protein. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
30
|
Kong D, Han R, Yuan M, Xi Q, Du Q, Li P, Yang Y, Applegate B, Wang J. Ultrasound combined with slightly acidic electrolyzed water thawing of mutton: Effects on physicochemical properties, oxidation and structure of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 93:106309. [PMID: 36706669 PMCID: PMC9938326 DOI: 10.1016/j.ultsonch.2023.106309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2023]
Abstract
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengdi Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Kim YJ, Lee MH, Kim SM, Kim BK, Yong HI, Choi YS. Improvement of structural, physicochemical, and rheological properties of porcine myofibrillar proteins by high-intensity ultrasound treatment for application as Pickering stabilizers. ULTRASONICS SONOCHEMISTRY 2023; 92:106263. [PMID: 36516724 PMCID: PMC9768353 DOI: 10.1016/j.ultsonch.2022.106263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 05/07/2023]
Abstract
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Hyeock Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Se-Myung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
32
|
PENG J, LIU C, XING S, BAI K, LIU F. The application of electrostatic field technology for the preservation of perishable foods. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiakun PENG
- China Agricultural University, China; China Agricultural University, China
| | - Chune LIU
- China Agricultural University, China
| | | | - Kaikai BAI
- China Agricultural University, China; China Agricultural University, China
| | - Feng LIU
- China Agricultural University, China
| |
Collapse
|
33
|
Liu J, Wang Y, Zhu F, Yang J, Ma X, Lou Y, Li Y. The effects of freezing under a high-voltage electrostatic field on ice crystals formation, physicochemical indices, and bacterial communities of shrimp (Solenocera melantho). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Physicochemical and Functional Properties Changes in Myofibrillar Protein Extracted from Channel Catfish by a High-Voltage Electrostatic Field. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
36
|
Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Changes in Quality and Collagen Properties of Cattle Rumen Smooth Muscle Subjected to Repeated Freeze-Thaw Cycles. Foods 2022; 11:foods11213338. [PMID: 36359951 PMCID: PMC9657863 DOI: 10.3390/foods11213338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
This study revealed changes in the quality, structural and functional collagen properties of cattle rumen smooth muscle (CSM) during F-T cycles. The results showed that thawing loss, pressing loss, β-galactosidase, β-glucuronidase activity, β-sheet content, emulsifying activity index (EAI), emulsion stability index (ESI), surface hydrophobicity, and turbidity of samples were significantly (p < 0.05) increased by 108.12%, 78.33%, 66.57%, 76.60%, 118.63%, 119.57%, 57.37%, 99.14%, and 82.35%, respectively, with increasing F-T cycles. Meanwhile, the shear force, pH, collagen content, α-helix content, thermal denaturation temperature (Tmax), and enthalpy value were significantly (p < 0.05) decreased by 30.88%, 3.19%, 33.23%, 35.92%, 10.34% and 46.51%, respectively. Scanning electron microscopy (SEM) and SDS-PAGE results indicated that F-T cycles induced an increase in disruption of CSM muscle microstructure and degradation of collagen. Thus, repeated F-T cycles promoted collagen degradation and structural disorder in CSM, while reducing the quality of CSM, but improving the functional collagen properties of CSM. These findings provide new data support for the development, processing, and quality control of CSM.
Collapse
|
38
|
Kim TK, Yong HI, Cha JY, Kim YJ, Jung S, Choi YS. Effects of Protein Functionality on Myofibril Protein-Saccharide
Graft Reaction. Food Sci Anim Resour 2022; 42:849-860. [PMID: 36133638 PMCID: PMC9478984 DOI: 10.5851/kosfa.2022.e36] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
39
|
Kutlu N, Pandiselvam R, Kamiloglu A, Saka I, Sruthi NU, Kothakota A, Socol CT, Maerescu CM. Impact of ultrasonication applications on color profile of foods. ULTRASONICS SONOCHEMISTRY 2022; 89:106109. [PMID: 35939925 PMCID: PMC9364028 DOI: 10.1016/j.ultsonch.2022.106109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 05/20/2023]
Abstract
Food color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red-purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt 69500, Turkey
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, Kerala, India.
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara 06830, Turkey
| | - N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | | | | |
Collapse
|
40
|
Wang H, Xu J, Liu Q, Chen Q, Sun F, Kong B. Interaction between protease from Staphylococcus epidermidis and pork myofibrillar protein: Flavor and molecular simulation. Food Chem 2022; 386:132830. [PMID: 35364500 DOI: 10.1016/j.foodchem.2022.132830] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/04/2022]
Abstract
This study investigated the influence of a protease from Staphylococcus (S.) epidermidis on the hydrolysis and flavor development in pork myofibrillar protein (MP). The surface hydrophobicity, fluorescence, Fourier transform infrared spectra, and atomic force microscopy analysis indicated that hydrolysis significantly changed surface hydrophobicity and secondary structure of MP (p < 0.05), and improved the stability of MP in water. The contents of free amino acid from MP, especially glutamic and alanine, significantly increased (p < 0.05), and the production of volatile compound such as aldehydes, alcohols and acid were promoted under the action of protease. MP treated with S. epidermidis protease is non-cytotoxic to the HEK-293 cells. Molecular docking analysis suggested that the interaction between the protease and actin was spontaneous and mainly involved hydrogen bonding forces. In summary, this study provides a theoretical basis for the future application of S. epidermidis protease in fermented meat products.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
41
|
Zhang Y, Kim Y, Puolanne E, Ertbjerg P. Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review. Meat Sci 2022; 190:108841. [DOI: 10.1016/j.meatsci.2022.108841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/13/2022] [Accepted: 05/01/2022] [Indexed: 01/08/2023]
|
42
|
Wang B, Bai X, Du X, Pan N, Shi S, Xia X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods 2022; 11:1368. [PMID: 35564090 PMCID: PMC9099600 DOI: 10.3390/foods11091368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of vacuum thawing (VT), ultrasound thawing (UT) and microwave thawing (MT) on the quality, protein and lipid oxidation, internal temperature distribution and microstructure of porcine longissimus lumborum were compared. The results showed that a significant decrease (p < 0.05) in quality compared with those of fresh meat (FM) occurred for all of the thawing samples, especially for the MT samples. Changes in quality of the VT and UT samples were less significant than those of the MT samples. The increases in carbonyl content and TBARS value indicated that proteins and lipids in the thawing samples were oxidized. The decreases in uniform degrees of internal temperature distributions of muscles from the thawing samples were analysed by infrared thermography. Scanning electron microscopy images showed that the myofibril arrangements of thawing samples were looser than those of the FM samples with compact and ordered structure, which was proven by the obvious increase in the myofibril gap value of the thawing samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.W.); (X.B.); (X.D.); (N.P.); (S.S.)
| |
Collapse
|
43
|
Lung CT, Chang CK, Cheng FC, Hou CY, Chen MH, Santoso SP, Yudhistira B, Hsieh CW. Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chem 2022; 390:133137. [PMID: 35561506 DOI: 10.1016/j.foodchem.2022.133137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
We determined the effect of pulsed electric field (PEF)-assisted thawing on the texture and muscle tissue of Pekin duck meat. The results indicated that 1-4 kV/cm of PEF shortened the thawing time by 20%-50%. Furthermore, 1-3 kV/cm of PEF-assisted thawing reduced the effect of thawing on meat quality, decreased thawing loss by 28% and protein loss by 19%, and maintained meat quality similar to that of fresh meat. Using low-field nuclear magnetic resonance, we confirmed that PEF stabilized the water retention capacity of muscle tissues during thawing. Microstructure and secondary structure analyses revealed that PEF accelerated the melting of ice crystals, reducing the damage caused by ice crystals by 70% and maintaining the stability of the α-helix and β-sheet. These results revealed the potential of PEF-assisted methods for use in thawing meat.
Collapse
Affiliation(s)
- Chun-Ta Lung
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan.
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan.
| | - Fang-Chi Cheng
- Council of Agriculture Executive Yuan, Food Technology and Processing Section, Zhongzheng Dist., Taipei 10050, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Nanzi Dist., Kaohsiung City 81157, Taiwan.
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture, Executive Yuan Marketing & Processing Division 8, Chung Hsing New Village, Nantou 54044, Taiwan.
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei 10607, Taiwan.
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia.
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan.
| |
Collapse
|
44
|
Lin R, Yuan H, Wang C, Yang Q, Guo Z. Study on the Flavor Compounds of Fo Tiao Qiang under Different Thawing Methods Based on GC–IMS and Electronic Tongue Technology. Foods 2022; 11:foods11091330. [PMID: 35564052 PMCID: PMC9099569 DOI: 10.3390/foods11091330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
“Fo Tiao Qiang” is a famous dish with Chinese characteristics. It is delicious, rich in materials, and high in nutritional value. Through physical and chemical analysis, electronic tongue, gas chromatography–ion mobility spectroscopy, and other technologies, the present study explored the quality characteristics and flavor differences of Fo Tiao Qiang by using different thawing methods (natural thawing, ultrasonic thawing, microwave thawing, and water bath thawing). The results show that the protein content was slightly higher in Fo Tiao Qiang with ultrasonic thawing than others. The fat content of the microwave-thawed Fo Tiao Qiang was significantly lower than the other three kinds of samples. After ultrasonic thawing, the number of free amino acids in the samples were the highest and the umami taste was the best. Compared with natural thawing, most of the flavor substances decreased in ultrasonic thawing, microwave thawing, and water bath thawing. However, several substances increased, such as alpha-terpineol, beta-phenylethyl alcohol, phenylacetaldehyde, cis-rose oxide, isobutyl acetate, and 2–3-pentanedione. This study revealed the changing laws of different thawing methods on the quality characteristics and flavor characteristics of Fo Tiao Qiang. It provides theoretical guidance for the industrial production and quality control of Fo Tiao Qiang.
Collapse
Affiliation(s)
- Ruirong Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (R.L.); (H.Y.); (C.W.); (Q.Y.)
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongfei Yuan
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (R.L.); (H.Y.); (C.W.); (Q.Y.)
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changrong Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (R.L.); (H.Y.); (C.W.); (Q.Y.)
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingyu Yang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (R.L.); (H.Y.); (C.W.); (Q.Y.)
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (R.L.); (H.Y.); (C.W.); (Q.Y.)
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-137-6383-8550
| |
Collapse
|
45
|
Effects of ultrasonic treatment on physico-chemical properties and structure of tuna (Thunnus tonggol) myofibrillar proteins. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Yang K, Bian C, Ma X, Mei J, Xie J. Recent Advances in Emerging Techniques for Freezing and Thawing on Aquatic Products Quality. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kun Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Chuhan Bian
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xuan Ma
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jun Mei
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
47
|
Li J, Ma X, Wang Y, Du M, Wang Y, Du J, Li K, Bai Y. Effects of immersion freezing on the conformational changes of myofibrillar proteins in pork under ultrasonic power densities of 0, 15, 30 and 45 W L
−1. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Xuyang Ma
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
| | - Yu Wang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Manting Du
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Yuntao Wang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Juan Du
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Ke Li
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| | - Yanhong Bai
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou China
| |
Collapse
|
48
|
LI L. Effects of high pressure versus conventional thawing on the quality changes and myofibrillar protein denaturation of slow/fast freezing beef rump muscle. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.91421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Li LI
- Harbin University of Commerce, China
| |
Collapse
|
49
|
Effects of freeze-thaw cycles of Pacific white shrimp (Litopenaeus vannamei) subjected to radio frequency tempering on melanosis and quality. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|