1
|
Williams B, Hewage SPWR, Alexander D, Fernando H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites 2025; 15:110. [PMID: 39997734 PMCID: PMC11857238 DOI: 10.3390/metabo15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Lipids are an important component of human nutrition. Conventional milk is obtained from animals, and dairy milk is consumed by many people worldwide. Recently, milk consumers have been increasingly shifting towards plant-based milk options. The aim of the study was the qualitative identification of lipid metabolites in animal- and plant-based milk, the identification and comparison of the fatty acids (FAs) of milk, and the qualitative identification of the lipid groups among the milk varieties. Methods: Milk samples were obtained from local grocery stores. Lipids were extracted using a modified Folch method and analyzed using nuclear magnetic resonance (NMR) metabolomics. Gas and liquid chromatography mass spectrometry methods (GC-MS and LC-MS) were used to identify the FAs and lipid groups. Lipid weights were compared and the NMR profiles of the lipids analyzed by multivariate statistical analysis. Principal component analysis was performed for the milk lipids obtained from the animal, and plant milk varieties. Results: Clustering of NMR data showed two main clusters: cow/almond/cashew and goat/soy/coconut. GC-MS analysis of the methylated fatty acids (FAs) showed the presence of 12:0, 14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:1, and 20:2 in all milk types, while FAs 19:0 and 20:4 were observed only in the dairy milk. LC-MS data showed common masses that may indicate the presence of mono- and diacyl glycerols and several lysophospholipids among the different types of milk. Conclusions: This study shows the advantage of using NMR, GC-MS, and LC-MS to differentiate the lipids among different milk types and compare them on one platform.
Collapse
Affiliation(s)
| | | | | | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA; (B.W.); (S.P.W.R.H.); (D.A.)
| |
Collapse
|
2
|
Huang J, Zhang M, Mujumdar AS, Li C. AI-based processing of future prepared foods: Progress and prospects. Food Res Int 2025; 201:115675. [PMID: 39849794 DOI: 10.1016/j.foodres.2025.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards. The development of artificial intelligence (AI) will change the processing of prepared foods. This review summarizes the progress and prospects of AI applications in the sorting/classification, cleaning, cutting, preprocessing, and freezing of prepared foods, encompassing techniques such as mathematical modeling, chemometrics, machine learning, fuzzy logic, and adaptive neuro fuzzy inference system. For example, AI-powered sorting systems using computer vision have improved accuracy in ingredient classification, while deep learning models in cleaning processes have enhanced microbial contamination detection with high spectral imaging techniques. Despite challenges like managing large-scale data and complex models, AI has shown significant potential to inspire both industry practice and research. AI applications can enhance the efficiency, accuracy, and consistency of prepared foods processing, while also reducing labor costs, improving hygiene monitoring, minimizing resource waste, and decreasing environmental impact. Furthermore, AI-driven resource optimization has demonstrated its potential in reducing energy consumption and promoting sustainable food production practices. In the future, AI technology is expected to further improve model generalization and operation precision, driving the food processing industry toward smarter, more sustainable development. This study provides valuable insights to encourage further innovation in AI applications within food processing and technological advancement in the food industry.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Chunli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Zhang S, Chen J, Gao F, Su W, Li T, Wang Y. Foodomics as a Tool for Evaluating Food Authenticity and Safety from Field to Table: A Review. Foods 2024; 14:15. [PMID: 39796305 PMCID: PMC11719641 DOI: 10.3390/foods14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
The globalization of the food industry chain and the increasing complexity of the food supply chain present significant challenges for food authenticity and raw material processing. Food authenticity identification now extends beyond mere adulteration recognition to include quality evaluation, label compliance, traceability determination, and other quality-related aspects. Consequently, the development of high-throughput, accurate, and rapid analytical techniques is essential to meet these diversified needs. Foodomics, an innovative technology emerging from advancements in food science, enables both a qualitative judgment and a quantitative analysis of food authenticity and safety. This review also addresses crucial aspects of fully processing food, such as verifying the origin, processing techniques, label authenticity, and detecting adulterants, by summarizing the omics technologies of proteomics, lipidomics, flavoromics, metabolomics, genomics, and their analytical methodologies, recent developments, and limitations. Additionally, we analyze the advantages and application prospects of multi-omics strategies. This review offers a comprehensive perspective on the food chain, food safety, and food processing from field to table through omics approaches, thereby promoting the stable and sustained development of the food industry.
Collapse
Affiliation(s)
- Shuchen Zhang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Jianan Chen
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Fanhui Gao
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Yuxiao Wang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Yi Z, Xiao X, Cai W, Ding Z, Ma J, Lv W, Yang H, Xiao Y, Wang W. Unraveling the spoilage characteristics of refrigerated pork using high-throughput sequencing coupled with UHPLC-MS/MS-based non-targeted metabolomics. Food Chem 2024; 460:140797. [PMID: 39128367 DOI: 10.1016/j.foodchem.2024.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The spoilage of refrigerated pork involves nutrient depletion and the production of spoilage metabolites by spoilage bacteria, yet the microbe-metabolite interactions during this process remain unclear. This study employed 16S rRNA high-throughput sequencing and non-targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to reveal the core microbiota and metabolite profiles of pork during refrigeration. A total of 45 potential biomarkers were screened through random forest model analysis. Metabolic pathway analysis indicated that eleven pathways, including biogenic amine metabolism, pentose metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, and fatty acid degradation, were potential mechanisms of pork spoilage. Correlation analysis revealed nine metabolites-histamine, tyramine, tryptamine, D-gluconic acid, UDP-d-glucose, xanthine, glutamine, phosphatidylcholine, and hexadecanoic acid-as spoilage biomarkers, with Pseudomonas, Serratia, and Photobacterium playing significant roles. This study provides new insights into the changes in microbial and metabolic characteristics during the spoilage of refrigerated pork.
Collapse
Affiliation(s)
- Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Stemler CD, Kaemper C, Hammann S, Börner A, Scherf KA. Lipidomic Profiling of Common Wheat Flours from 1891-2010. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25997-26005. [PMID: 39500489 PMCID: PMC11583971 DOI: 10.1021/acs.jafc.4c07688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Wheat lipids are a minor constituent of wheat, with an important influence on its processing properties. While breeding aimed to improve the protein composition of wheat flour, its influence on the lipid composition remains unknown. We therefore analyzed the lipidome of 60 different common wheat (Triticum aestivum) flours representing cultivars registered and grown in Germany from 1891 to 2010. Four different extraction techniques were tested before the application of a semiquantitative, untargeted UHPLC-MS/MS method. The measurements included 16 different lipid classes and 102 different lipid species. Based on the lipid profile, discrimination between old (registered between 1891 to 1950) and modern (1951 to 2010) cultivars was possible. While the lipid class composition remained constant, differences were due to variations within the class of triacylglycerols, with modern cultivars containing less unsaturated fatty acids than the older ones. Our results imply that improving the lipid class composition of common wheat is a promising target for further breeding.
Collapse
Affiliation(s)
- Charlotte D Stemler
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Christine Kaemper
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Simon Hammann
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Andreas Börner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - Katharina A Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- Technical University of Munich, TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| |
Collapse
|
6
|
Sammarco G, Dall'Asta C, Suman M. Untargeted metabolomics liquid chromatography-high resolution mass spectrometry approach for the geographical origin assessment of Italian dehydrated apples. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4954. [PMID: 37525466 DOI: 10.1002/jms.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023]
Abstract
Geographical provenience is nowadays a relevant aspect of the authenticity and the quality of many food commodities. Dehydrated apple cubes/slices represent an ingredient commonly used by food companies for bakery products. However, this apple-based matrix is not so known and studied from an analytical point of view. In the present work, seven compounds were identified as key molecules to distinguish between Italian and non-Italian samples, through an untargeted ultrahigh-pressure liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) approach. This methodology was merged with multivariate statistical analysis, and the principal features were studied and identified considering several identification steps. Samples from 2020 and 2021 harvesting campaigns, with partial and total dehydration rates, with or without peel, and from different apple varieties were considered for the study, for a total of 91 samples. Afterward, the same analysis protocol was applied to an external set (n = 12 samples), included in the statistical models, searching for the key compounds identified in the training set. Interesting and significant results underlined the potentiality of the UHPLC-HRMS technology as a confirmatory strategy for the geographical origin assessment of dehydrated apple commodities.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Michele Suman
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| |
Collapse
|
7
|
Schneider S, Hammann S, Hayen H. Determination of Polar Lipids in Wheat and Oat by a Complementary Approach of Hydrophilic Interaction Liquid Chromatography and Reversed-Phase High-Performance Liquid Chromatography Hyphenated with High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433133 DOI: 10.1021/acs.jafc.3c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Cereals contain lipids that fulfill important physiological roles and are associated with stress in the plant. However, many of the specific biological roles of lipids are yet unknown. Comprehensive analysis of these polar lipid categories in whole grain wheat and oat, cereals highly relevant also in nutrition, was performed. Hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with high-resolution mass spectrometry using electrospray ionization in both positive and negative ionization mode was used. Exploiting the different separation mechanisms, HILIC was used as a screening method for straightforward lipid class assignment and enabled differentiation of isomeric lipid classes, like phosphatidylethanolamine and lyso-N-acylphosphatidylethanolamine, while RP-HPLC facilitated separation of constitutional isomers. In combination with data-dependent MS/MS experiments, 67 lipid species belonging to nine polar lipid classes could be identified. Furthermore, with both ionization modes, fatty acyl chains directly connected to the lipid headgroups could be assigned. This work focused on the four lipid classes N-acylphosphatidylethanolamines, acyl-monogalactosyldiacylglycerols, digalactosyldiacylglycerols, and monogalactosyldiacylglycerols as they were less studied in detail in the past. Applying the complementary approach, the relative lipid species compositions in these lipid classes was investigated in detail.
Collapse
Affiliation(s)
- Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
8
|
Garlito B, Sentandreu MA, Yusà V, Oliván M, Pardo O, Sentandreu E. New insights into the search of meat quality biomarkers assisted by Orbitrap Tribrid untargeted metabolite analysis and chemometrics. Food Chem 2023; 407:135173. [PMID: 36527949 DOI: 10.1016/j.foodchem.2022.135173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Metabolite profiles of normal and defective dry, firm and dark (DFD) meat extracts with known ultimate pH (pHu) values were determined by Orbitrap Tribrid ID-X untargeted analysis coupled to chemometrics. An intelligent MS3 AcquireXTM workflow firstly approached the unambiguous characterization of detected features that were subsequently quantified by a complementary MS1 study of biological replicates. Chemometric research revealed how threonylphenylalanine (overexpressed in normal meats) together to tetradecadienoyl- and hydroxydodecanoyl-carnitines (both overexpressed in DFD meats) appropriately grouped meat groups assayed. Robustness of such biomarkers was confirmed through a time-delayed study of a blind set of samples (unknown pHu) and evidenced limitations of pHu as an isolated parameter for accurate meat quality differentiation. Other acyl-carnitines also characterized DFD samples, suggesting interferences induced by pre-slaughter stress (PSS) on lipid catabolism that would explain accumulation of such intermediate metabolites. Results achieved can ease understanding of biochemical mechanisms underlying meat quality defects.
Collapse
Affiliation(s)
- Borja Garlito
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castelló de la Plana, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain
| | - Miguel A Sentandreu
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain
| | - Mamen Oliván
- Servicio Regional de Investigación y Desarrollo Alimentario (SERIDA), Carretera de Oviedo, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Olga Pardo
- Public Health Laboratory of València, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Enrique Sentandreu
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Zhang J, Zhang Q, Fan J, Yu J, Li K, Bai J. Lipidomics reveals alterations of lipid composition and molecular nutrition in irradiated marble beef. Food Chem X 2023; 17:100617. [PMID: 36974174 PMCID: PMC10039263 DOI: 10.1016/j.fochx.2023.100617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Electron beam irradiation can effectively inhibit microbial growth, but the changes of lipid during irradiation have not been comprehensively analyzed in marble beef. Here, UHPLC-MS/MS was used to detect lipids changes of irradiated marble beef. A total of 1032 lipids were identified and classified into 3 lipid classes and 8 subclasses in irradiated marble beef. 9 lipid biomarkers were screened with increasing irradiation dose. 122 differential lipids were generated and involved in 4 metabolic pathways included Glycerophospholipid metabolism, Linoleic acid metabolism, alpha-Linolenic acid metabolism and Arachidonic acid metabolism though PC(18:0/14:0), PE(16:0/16:0) and PE(18:0/16:0) in irradiated. Our results showed that irradiation had effect on the lipid of marbled beef, but the increase of irradiation dose from 2.5 kGy to 4.5 kGy had little effect on lipids. These results help us to understand the dynamic changes of irradiated meat lipids and lay a foundation for the application of irradiation in meat preservation.
Collapse
|
10
|
Unuvar A, Boyaci I, Yazar S, Koksel H. Rapid detection of common wheat flour addition to durum wheat flour and pasta using spectroscopic methods and chemometrics. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Zainal PW, Syukri D, Fahmy K, Imaizumi T, Thammawong M, Tsuta M, Nagata M, Nakano K. Lipidomic Profiling to Assess the Freshness of Stored Cabbage. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Mutations in Rht-B1 Locus May Negatively Affect Frost Tolerance in Bread Wheat. Int J Mol Sci 2022; 23:ijms23147969. [PMID: 35887316 PMCID: PMC9324540 DOI: 10.3390/ijms23147969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
The wheat semi-dwarfing genes Rht (Reduced height) are widely distributed among the contemporary wheat varieties. These genes also exert pleiotropic effects on plant tolerance towards various abiotic stressors. In this work, frost tolerance was studied in three near-isogenic lines of the facultative variety ‘April Bearded’ (AB), carrying the wild type allele Rht-B1a (tall phenotype), and the mutant alleles Rht-B1b (semi-dwarf) and Rht-B1c (dwarf), and was further compared with the tolerance of a typical winter type variety, ‘Mv Beres’. The level of freezing tolerance was decreasing in the order ‘Mv Beres’ > AB Rht-B1a > AB Rht-B1b > AB Rht-B1c. To explain the observed differences, cold acclimation-related processes were studied: the expression of six cold-related genes, the phenylpropanoid pathway, carbohydrates, amino acids, polyamines and compounds in the tricarboxylic acid cycle. To achieve this, a comprehensive approach was applied, involving targeted analyses and untargeted metabolomics screening with the help of gas chromatography/liquid chromatography—mass spectrometry setups. Several cold-related processes exhibited similar changes in these genotypes; indeed, the accumulation of eight putrescine and agmatine derivatives, 17 flavones and numerous oligosaccharides (max. degree of polymerization 18) was associated with the level of freezing tolerance in the ‘April Bearded’ lines. In summary, the mutant Rht alleles may further decrease the generally low frost tolerance of the Rht-B1a, and, based on the metabolomics study, the mechanisms of frost tolerance may differ for a typical winter variety and a facultative variety. Present results point to the complex nature of frost resistance.
Collapse
|
13
|
Prandi B, Righetti L, Caligiani A, Tedeschi T, Cirlini M, Galaverna G, Sforza S. Assessing food authenticity through protein and metabolic markers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:233-274. [PMID: 36064294 DOI: 10.1016/bs.afnr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter aims to address an issue of ancient origins, but more and more topical in a globalized world in which consumers and stakeholders are increasingly aware: the authenticity of food. Foods are systems that can also be very complex, and verifying the correspondence between what is declared and the actual characteristics of the product is often a challenging issue. The complexity of the question we want to answer (is the food authentic?) means that the answer is equally articulated and makes use of many different analytical techniques. This chapter will consider the chemical analyses of foods aimed at guaranteeing their authenticity and will focus on frontier methods that have been developed in recent years to address the need to respond to ever-increasing guarantees of authenticity. Targeted and non-targeted approaches will be considered for verifying the authenticity of foods, through the study of different classes of constituents (proteins, metabolites, lipids, flavors). The numerous approaches available (proteomics, metabolomics, lipidomics) and the related analytical techniques (LC-MS, GC-MS, NMR) are first described from a more general point of view, after which their specific application for the purposes of authentication of food is addressed.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Rapid detection of adulteration of glutinous rice as raw material of Shaoxing Huangjiu (Chinese Rice Wine) by near infrared spectroscopy combined with chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Hu Q, Zhang J, Xing R, Yu N, Chen Y. Integration of lipidomics and metabolomics for the authentication of camellia oil by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with chemometrics. Food Chem 2022; 373:131534. [PMID: 34801288 DOI: 10.1016/j.foodchem.2021.131534] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The integration of lipidomics and metabolomics approaches, based on UPLC-QTOF-MS technology coupled with chemometrics, was established to authenticate camellia oil adulterated with rapeseed oil, peanut oil, and soybean oil. Lipidomics revealed that the glyceride profile provides a prospective authentication of camellia oil, but no characteristic markers were available. Sixteen characteristic markers were identified by metabolomics. For camellia oil, all six markers were sapogenins of oleanane-type triterpene saponins. Lariciresinol, sinapic acid, doxercalciferol, and an unknown compound were identified as markers for rapeseed oil. Characteristic markers in peanut oil were formononetin, sativanone, and medicarpin. In the case of soybean oil, the characteristic markers were dimethoxyflavone, daidzein, and genistein. The established OPLS-DA and OPLS prediction models were highly accurate in the qualitative and quantitative analyses of camellia oil adulterated with 5% other oils. These results indicate that the integration of lipidomics and metabolomics approaches has great potential for the authentication of edible oils.
Collapse
Affiliation(s)
- Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
16
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
17
|
Rocchetti G, Vitali M, Zappaterra M, Righetti L, Sirri R, Lucini L, Dall’Asta C, Davoli R, Galaverna G. A molecular insight into the lipid changes of pig Longissimus thoracis muscle following dietary supplementation with functional ingredients. PLoS One 2022; 17:e0264953. [PMID: 35324931 PMCID: PMC8947141 DOI: 10.1371/journal.pone.0264953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the Longissimus thoracis pig skeletal muscle was used as a model to investigate the impact of two different diets, supplemented with n-3 polyunsaturated fatty acids from extruded linseed (L) and polyphenols from grape skin and oregano extracts (L+P), on the lipidomic profile of meat. A standard diet for growing-finishing pigs (CTRL) was used as a control. Changes in lipids profile were investigated through an untargeted lipidomics and transcriptomics combined investigation. The lipidomics identified 1507 compounds, with 195 compounds fitting with the MS/MS spectra of LipidBlast database. When compared with the CTRL group, the L+P diet significantly increased 15 glycerophospholipids and 8 sphingolipids, while the L diet determined a marked up-accumulation of glycerolipids. According to the correlations outlined between discriminant lipids and genes, the L diet may act preventing adipogenesis and the related inflammation processes, while the L+P diet promoted the expression of genes involved in lipids' biosynthesis and adipogenic extracellular matrix formation and functioning.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marika Vitali
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Laura Righetti
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Rubina Sirri
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Roberta Davoli
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Gianni Galaverna
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| |
Collapse
|
18
|
Yong CH, Muhammad SA, Aziz FA, Ng JS, Nasir FI, Adenan M, Moosa S, Othman Z, Abdullah S, Sharif Z, Ismail F, Kelly SD, Cannavan A, Seow EK. Detection of adulteration activities in edible bird's nest using untargeted 1H-NMR metabolomics with chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Lamine M, Gargouri M, Rahali FZ, Hamdi Z, Mliki A. Local Tunisian durum wheat landraces revisited and rediscovered through modern integrative GC–TOF-MS™-based lipidomic profiling and chemometric approaches. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Zhang D, Zhao L, Wang W, Wang Q, Liu J, Wang Y, Liu H, Shang B, Duan X, Sun H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Sun R, Wu T, Guo H, Xu J, Chen J, Tao N, Wang X, Zhong J. Lipid profile migration during the tilapia muscle steaming process revealed by a transactional analysis between MS data and lipidomics data. NPJ Sci Food 2021; 5:30. [PMID: 34782644 PMCID: PMC8593017 DOI: 10.1038/s41538-021-00115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
In this work, lipid profile migration from muscle to juice during the tilapia muscle steaming process was revealed by a transactional analysis of data from ultra-high-performance liquid chromatography coupled with Q Exactive (UHPLC-QE) Orbitrap mass spectrometry (MS) and lipidomics. Firstly, the lipids in tilapia muscles and juices at different steaming time points were extracted and examined by UHPLC-QE Orbitrap mass spectrometry. Secondly, a transactional analysis procedure was developed to analyze the data from UHPLC-QE Orbitrap MS and lipidomics. Finally, the corrected lipidomics data and the normalized MS data were used for lipid migration analysis. The results suggested that the transactional analysis procedure was efficient to significantly decrease UHPLC-QE Orbitrap MS workloads and delete the false-positive data (22.4-36.7%) in lipidomics data, which compensated the disadvantages of the current lipidomics method. The lipid changes could be disappearance, full migration into juice, appearance in juice, appearance in muscle, appearance in both muscle and juice, and retention in the muscle. Moreover, the results showed 9 (compared with 52), 5 (compared with 116), and 10 (compared with 178) of lipid class (compared with individual lipid) variables showed significant differences among the different steaming times (0, 10, 30, and 60 min) in all the muscles, juices, and muscle-juice systems, respectively. These results showed significant lipid profile migration from muscle to juice during the tilapia steaming process.
Collapse
Affiliation(s)
- Rui Sun
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing, 400021, China
| | - Jiamin Xu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiahui Chen
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, China.
| |
Collapse
|
22
|
Loffi C, Cavanna D, Sammarco G, Catellani D, Dall'Asta C, Suman M. Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness. J Dairy Sci 2021; 104:12286-12294. [PMID: 34593223 DOI: 10.3168/jds.2021-20285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Milk freshness is an important parameter for both consumers' health and quality of milk-based products. Up to now there have been neither analytical methods nor specific parameters to uniquely define milk freshness from a complete and univocal chemical perspective. In this study, 8 molecules were selected and identified as responsible for milk aging, using a liquid chromatography-high-resolution mass spectrometry approach followed by chemometric data elaboration. For model setup and marker selection, 30 high-quality pasteurized fresh milk samples were collected directly from the production site and analyzed immediately and after storage at 2 to 8°C for 7 d. The markers were then validated by challenging the model with a set of 10 milk samples, not previously analyzed. Our results demonstrated that the markers identified within this study can be successfully used for the correct classification of non-fresh milk samples, complementing and successfully enhancing parallel evaluations obtainable through sensory measures.
Collapse
Affiliation(s)
- Cecilia Loffi
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Daniele Cavanna
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy
| | - Giuseppe Sammarco
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Dante Catellani
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy
| | - Chiara Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Michele Suman
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University of the Sacred Heart, 29121 Piacenza, Italy.
| |
Collapse
|
23
|
Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
25
|
Zhong P, Wei X, Xu Y, Zhang L, Koidis A, Liu Y, Lei Y, Wu S, Lei H. Integration of Untargeted and Pseudotargeted Metabolomics for Authentication of Three Shrimp Species Using UHPLC-Q-Orbitrap. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8861-8873. [PMID: 34319107 DOI: 10.1021/acs.jafc.1c02630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, an untargeted and pseudotargeted metabolomics combination approach was used for authentication of three shrimp species (Litopenaeus vanmamei, Penaeus japonicus, and Penaeus monodon). The monophasic extraction-based untargeted metabolomics approach enabled comprehensive-coverage and high-throughput analysis of shrimp tissue and revealed 26 potential markers. The pseudotargeted metabolomics approach confirmed 21 markers (including 9 key markers), which realized at least putative identification. The 21 confirmed markers, as well as 9 key markers, were used to develop PLS-DA models, correctly classifying 60/60 testing samples. Furthermore, DD-SIMCA and PLS-DA models were integrated based on the 9 key markers, with 59/60 and 20/20 samples of the species that were involved and uninvolved in model training correctly classified. The results demonstrated the potential of this untargeted and pseudotargeted metabolomics combination approach for shrimp species authentication.
Collapse
Affiliation(s)
- Peng Zhong
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi Xu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lulu Zhang
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, United Kingdom
| | - Yunle Liu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi Lei
- Guangdong Institute of Food Inspection, Guangzhou 510435, China
| | - Shaozong Wu
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Province Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
A novel approach for rapid discrimination of common and durum wheat flours using spectroscopic analyses combined with chemometrics. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Liu HY, Wadood SA, Xia Y, Liu Y, Guo H, Guo BL, Gan RY. Wheat authentication:An overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 2021; 63:33-56. [PMID: 34196234 DOI: 10.1080/10408398.2021.1942783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops and is consumed as a staple food around the globe. Wheat authentication has become a crucial issue over the last decades. Recently, many techniques have been applied in wheat authentication including the authentication of wheat geographical origin, wheat variety, organic wheat, and wheat flour from other cereals. This paper collected related literature in the last ten years, and attempted to highlight the recent studies on the discrimination and authentication of wheat using different determination techniques and chemometric methods. The stable isotope analysis and elemental profile of wheat are promising tools to obtain information regarding the origin, and variety, and to differentiate organic from conventional farming of wheat. Image analysis, genetic parameters, and omics analysis can provide solutions for wheat variety, organic wheat, and wheat adulteration. Vibrational spectroscopy analyses, such as NIR, FTIR, and HIS, in combination with multivariate data analysis methods, such as PCA, LDA, and PLS-DA, show great potential in wheat authenticity and offer many advantages such as user-friendly, cost-effective, time-saving, and environment friendly. In conclusion, analytical techniques combining with appropriate multivariate analysis are very effective to discriminate geographical origin, cultivar classification, and adulterant detection of wheat.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Syed Abdul Wadood
- Department of Food and Nutrition, University of Home Economics, Lahore, Pakistan
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, China
| |
Collapse
|
28
|
Liu Z, Yang MQ, Zuo Y, Wang Y, Zhang J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit Rev Anal Chem 2021; 52:1606-1623. [PMID: 33840329 DOI: 10.1080/10408347.2021.1905503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fraud in herbal medicines (HMs), commonplace throughout human history, is significantly related to medicinal effects with sometimes lethal consequences. Major HMs fraud events seem to occur with a certain regularity, such as substitution by counterfeits, adulteration by addition of inferior production-own materials, adulteration by chemical compounds, and adulteration by addition of foreign matter. The assessment of HMs fraud is in urgent demand to guarantee consumer protection against the four fraudulent activities. In this review, three analysis platforms (targeted, non-targeted, and the combination of non-targeted and targeted analysis) were introduced and summarized. Furthermore, the integration of analysis technology and chemometrics method (e.g., class-modeling, discrimination, and regression method) have also been discussed. Each integration shows different applicability depending on their advantages, drawbacks, and some factors, such as the explicit objective analysis or the nature of four types of HMs fraud. In an attempt to better solve four typical HMs fraud, appropriate analytical strategies are advised and illustrated with several typical studies. The article provides a general workflow of analysis methods that have been used for detection of HMs fraud. All analysis technologies and chemometrics methods applied can conduce to excellent reference value for further exploration of analysis methods in HMs fraud.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,School of Agriculture, Yunnan University, Kunming, China
| | - Mei Quan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yingmei Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
29
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
30
|
|
31
|
Lipid Compositions and Geographical Discrimination of 94 Geographically Authentic Wheat Samples Based on UPLC-MS with Non-Targeted Lipidomic Approach. Foods 2020; 10:foods10010010. [PMID: 33374499 PMCID: PMC7822159 DOI: 10.3390/foods10010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Wheat is the staple food for the world’s major populations. However, chemical characters of geographically authentic wheat samples, especially for the lipids, have not been deeply studied. The present research aimed to investigate lipid compositions of Chinese wheat samples and clarify the major markers that contribute to the geographical differences. A total of 94 wheat samples from eight main wheat-producing provinces in China were evaluated to differentiate their lipid compositions. Based on the data collected from ultra-high-performance-liquid-chromatography tandem time-of-flight mass spectrometry (UPLC-Q/TOF MS), an optimized non-targeted lipidomic method was utilized for analyses. As the results, 62 lipid compounds, including fatty acids, phospholipids, galactolipids, triglycerides, diglycerides, alkylresorcinol, and ceramide were tentatively identified. Partial least squares discriminant analysis (PLS-DA) demonstrated a more satisfying performance in distinguishing wheat samples from different origins compared with principal component analysis (PCA). Further, the abundances of triglycerides and glycerophospholipids with more unsaturated fatty acids were found greater in wheat samples from northern origins of China, while more glycolipids and unsaturated fatty acids arose in southern original wheat samples. These findings describe the lipid profiles of wheat samples in China and could contribute to the quality and safety control for the wheat flour products.
Collapse
|
32
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
33
|
A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat. Food Chem 2020; 317:126366. [DOI: 10.1016/j.foodchem.2020.126366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
|
34
|
Stark TD, Weiss P, Friedrich L, Hofmann T. The wheat species profiling by non-targeted UPLC–ESI–TOF-MS analysis. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03517-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Hua YL, Ma Q, Zhang XS, Jia YQ, Peng XT, Yao WL, Ji P, Hu JJ, Wei YM. Pulsatilla Decoction Can Treat the Dampness-Heat Diarrhea Rat Model by Regulating Glycerinphospholipid Metabolism Based Lipidomics Approach. Front Pharmacol 2020; 11:197. [PMID: 32194420 PMCID: PMC7064006 DOI: 10.3389/fphar.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ethnopharmacological Relevance Diarrhea is a major medical problem in clinical practice. According to the theory of traditional Chinese medicine (TCM), different types of diarrhea should be treated with different TCM formulations based on the targeted medical condition. Dampness-heat diarrhea (DHD) is a serious diarrheal disease and Pulsatilla decoction (PD), a TCM, has been found effective against DHD. Objective The aim of this study was to clarify the mechanism of action of PD in DHD using an untargeted lipidomics strategy. Materials and Methods Wistar rats were randomized to four groups, including the control group, model group, PD groups and self-healing group. The PD groups were given a daily intragastric gavage of PD at doses of 3.76 g/kg. The rat model of DHD established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment, drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of DHD. Then the clinical symptoms and signs, blood routine, serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed to evaluate DHD model and therapeutic effect of PD. Lipid biomarkers of DHD were selected by comparing the control and model groups with the colon lipidomics technology and an ultra-high performance liquid chromatography (UHPLC) coupled with Q Exactive plus mass analyzer. Multivariate statistical analysis and pattern recognition were employed to examine different lipids within the colon of PD-treated rats. Results The clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of DHD. After treatment with PD, the clinical symptoms and signs of the rats with DHD were improved; the indexes of blood routine and inflammatory cytokines levels tended to be normal. The lipidomics profile of the model group were evidently disordered when compared to the control group. A total of 42 significantly altered lipids between the model-control groups were identified by multivariate statistical analysis. DHD may result from such lipid disorders which are related to glycerophospholipid metabolism, arachidonic acid (AA) metabolism, and sphingolipid metabolism. After PD treatment, the lipidomic profiles of the disorders tended to recover when compared to the model group. Twenty lipid molecules were identified and some glycerophospholipids and AA levels returned close to the normal level. Conclusion Glycerophospholipid metabolism may play an important role in the treatment of dampness-heat induced diarrhea using PD.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qi Ma
- Institute of Animal Science, Southwestern University, Chongqing, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ya-Qian Jia
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiao-Ting Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Li H, Song Y, Zhang H, Wang X, Cong P, Xu J, Xue C. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOF-MS/MS. Food Chem 2019; 310:125947. [PMID: 31841939 DOI: 10.1016/j.foodchem.2019.125947] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022]
Abstract
An ultra performance liquid chromatography-Triple time of flight mass spectrometry (UPLC-Triple TOF-MS/MS) method were established to characterize the lipid profiles in four shellfish species. More than 600 lipid molecular species belonging to 14 classes were detected. Phospholipids (PLs) were predominant in Chlamys farreri (54.9%) and glycerolipids (GLs) were dominant in Ostrea gigas (51.6%). PLs that contained polyunsaturated fatty acids (PUFAs) such as PC (16:0/20:5), PC (16:0/22:6) and PE (18:0/22:6) were the main molecular species. Especially, the percentage of sphingolipids (SLs) in four shellfishes is considerable (18.8-38.6%), the characterization of their special long-chain base (LCB) structure (mainly d19:3) and N-acyl group (mainly 16:0) was realized. Several SL subclasses with low abundance in four shellfish species, such as ceramide 2-aminoethylphosphonate (CAEP) and deoxy-ceramide (DeoxyCer), were also detected. These active lipids identified by this method have potential value in revealing the nutritional value of shellfishes and serving as biomarkers for distinguishing different shellfishes.
Collapse
Affiliation(s)
- He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Hongwei Zhang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutang Xia Road, Qingdao, Shandong Province 266500, China
| | - Xuesong Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China; Qingdao National Laboratory for Marine Science and Technology, No. 1, Wen Hai Road, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
37
|
Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019; 11:nu11122879. [PMID: 31779167 PMCID: PMC6950659 DOI: 10.3390/nu11122879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Although ancient, heritage, and modern wheat varieties appear rather similar from a nutritional point of view, having a similar gluten content and a comparable toxicity linked to their undigested gluten peptide, whenever the role of ancient end heritage wheat grains has been investigated in animal studies or in clinical trials, more anti-inflammatory effects have been associated with the older wheat varieties. This review provides a critical overview of existing data on the differential physiological responses that could be elicited in the human body by ancient and heritage grains compared to modern ones. The methodology used was that of analyzing the results of relevant studies conducted from 2010 through PubMed search, by using as keywords “ancient or heritage wheat”, “immune wheat” (protein or peptides), and immune gluten (protein or peptides). Our conclusion is that, even if we do not know exactly which molecular mechanisms are involved, ancient and heritage wheat varieties have different anti-inflammatory and antioxidant proprieties with respect to modern cultivars. It is, therefore, reasonable to assume that the health proprieties attributed to older cultivars could be related to wheat components which have positive roles in the modulation of intestinal inflammation and/or permeability.
Collapse
|
38
|
Lipid profiling and analytical discrimination of seven cereals using high temperature gas chromatography coupled to high resolution quadrupole time-of-flight mass spectrometry. Food Chem 2019; 282:27-35. [DOI: 10.1016/j.foodchem.2018.12.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/21/2023]
|
39
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
40
|
Medina S, Perestrelo R, Silva P, Pereira JA, Câmara JS. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Medina S, Pereira JA, Silva P, Perestrelo R, Câmara JS. Food fingerprints - A valuable tool to monitor food authenticity and safety. Food Chem 2018; 278:144-162. [PMID: 30583355 DOI: 10.1016/j.foodchem.2018.11.046] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
In recent years, food frauds and adulterations have increased significantly. This practice is motivated by fast economical gains and has an enormous impact on public health, representing an important issue in food science. In this context, this review has been designed to be a useful guide of potential biomarkers of food authenticity and safety. In terms of food authenticity, we focused our attention on biomarkers reported to specify different botanical or geographical origins, genetic diversity or production systems, while at the food safety level, molecular evidences of food adulteration or spoilage will be highlighted. This report is the first to combine results from recent studies in a format that allows a ready overview of metabolites (<1200 Da) and potentially molecular routes to monitor food authentication and safety. This review has therefore the potential to unveil important aspects in food adulteration and safety, contributing to improve the current regulatory frameworks.
Collapse
Affiliation(s)
- Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Jorge A Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
42
|
Kowalska A, Soon JM, Manning L. A study on adulteration in cereals and bakery products from Poland including a review of definitions. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Cavanna D, Catellani D, Dall'Asta C, Suman M. Egg product freshness evaluation: A metabolomic approach. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:849-861. [PMID: 29952040 PMCID: PMC6767415 DOI: 10.1002/jms.4256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 05/28/2023]
Abstract
Egg products' freshness is a crucial issue for the production of safe and high-quality commodities. Up to now, this parameter is assessed with the quantification of few compounds, but the possibility to evaluate more molecules simultaneously could help to provide robust results. In this study, 31 compounds responsible of freshness and not freshness of egg products were selected with a metabolomic approach. After an ultrahigh-pressure liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis, different chemometric models were created to select gradually the most significant features that were finally extracted and identified through HRMS data. Sample lots were collected directly from their arrival at the production plant sites, extracted immediately after, then left at room temperature, and extracted again after 24 and 48 hours (first day and second day, respectively). A total amount of 79 samples was used for the model creation. Furthermore, the same compounds were detected in seven new egg products sample lots not used for the model creation and treated with the same experimental design (total amount of samples, 21). The results obtained clearly demonstrate that these 31 molecules can be considered real freshness or not freshness chemical markers. Furthermore, this UHPLC-HRMS metabolomic approach allows for the detection of a larger set of metabolites clearly related to possible microbial growth over time, which is a relevant point for also ensuring food safety.
Collapse
Affiliation(s)
- Daniele Cavanna
- Advanced Laboratory ResearchBarilla G. e R. Fratelli S.p.A.ParmaItaly
- Department of Food and DrugUniversity of ParmaParmaItaly
| | - Dante Catellani
- Advanced Laboratory ResearchBarilla G. e R. Fratelli S.p.A.ParmaItaly
| | | | - Michele Suman
- Advanced Laboratory ResearchBarilla G. e R. Fratelli S.p.A.ParmaItaly
| |
Collapse
|