1
|
Yu Y, Wang F, Yang Y, Zhang J, Liu H, Liang Y, Wang J. Changes in rheological properties and structure of wheat gluten proteins induced by transglutaminase. Int J Biol Macromol 2025; 295:139599. [PMID: 39788262 DOI: 10.1016/j.ijbiomac.2025.139599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
To elucidate the effect of transglutaminase (TG) on the rheological properties of wheat gluten, this study investigates the underlying mechanisms by analyzing changes in gluten structure. The results demonstrated that the TG-treated gluten samples had higher storage modulus (G') and loss modulus (G″) compared to the control, conversely, creep and recovery strains followed an opposite trend. Notably, the most pronounced effects were observed with adding 2 U/g TG for 20-30 min. Size exclusion/reversed phase-high performance liquid chromatography profiles revealed that the treatment with TG elevated the levels of glutenin subunits, alongside reduced α- and γ-gliadins, promoting gluten aggregation. Moreover, the extractability of gluten gradually decreased due to TG-induced oxidation of sulfhydryl groups, which formed new disulfide bonds and cross-linked products. This structural modification reduced surface hydrophobic regions and promoted the aggregation of low molecular weight proteins into larger molecular weight aggregates. Microstructural analysis further confirmed that TG enhanced gluten network stability through covalent cross-linking. Overall, this study demonstrates that TG enhances the rheological characteristics of wheat gluten by facilitating the formation of a more robust network structure, driven by cross-linking reactions and disulfide bond formation.
Collapse
Affiliation(s)
- Yingtao Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fengjiao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yufan Yang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Jiapeng Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Kolotylo V, Piwowarek K, Synowiec A, Kieliszek M. Optimization of fermentation conditions for microbial transglutaminase production by Streptoverticillium cinnamoneum KKP 1658 using response surface methodology (RSM). Folia Microbiol (Praha) 2025; 70:259-269. [PMID: 39578338 PMCID: PMC11861405 DOI: 10.1007/s12223-024-01223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
3
|
Shi X, Yan H, Yuan F, Li G, Liu J, Li C, Yu X, Li Z, Zhu Y, Wang W. LexA, an SOS response repressor, activates TGase synthesis in Streptomyces mobaraensis. Front Microbiol 2024; 15:1397314. [PMID: 38855760 PMCID: PMC11157053 DOI: 10.3389/fmicb.2024.1397314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Transglutaminase (EC 2.3.2.13, TGase), an enzyme that catalyzes the formation of covalent cross-links between protein or peptide molecules, plays a critical role in commercial food processing, medicine, and textiles. TGase from Streptomyces is the sole commercial enzyme preparation for cross-linking proteins. In this study, we revealed that the SOS response repressor protein LexA in Streptomyces mobaraensis not only triggers morphological development but also enhances TGase synthesis. The absence of lexA significantly diminished TGase production and sporulation. Although LexA does not bind directly to the promoter region of the TGase gene, it indirectly stimulates transcription of the tga gene, which encodes TGase. Furthermore, LexA directly enhances the expression of genes associated with protein synthesis and transcription factors, thus favorably influencing TGase synthesis at both the transcriptional and posttranscriptional levels. Moreover, LexA activates four crucial genes involved in morphological differentiation, promoting spore maturation. Overall, our findings suggest that LexA plays a dual role as a master regulator of the SOS response and a significant contributor to TGase regulation and certain aspects of secondary metabolism, offering insights into the cellular functions of LexA and facilitating the strategic engineering of TGase overproducers.
Collapse
Affiliation(s)
- Xinyu Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kolotylo V, Piwowarek K, Kieliszek M. Microbiological transglutaminase: Biotechnological application in the food industry. Open Life Sci 2023; 18:20220737. [PMID: 37791057 PMCID: PMC10543708 DOI: 10.1515/biol-2022-0737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial transglutaminases (mTGs) belong to the family of global TGs, isolated and characterised by various bacterial strains, with the first being Streptomyces mobaraensis. This literature review also discusses TGs of animal and plant origin. TGs catalyse the formation of an isopeptide bond, cross-linking the amino and acyl groups. Due to its broad enzymatic activity, TG is extensively utilised in the food industry. The annual net growth in the utilisation of enzymes in the food processing industry is estimated to be 21.9%. As of 2020, the global food enzymes market was valued at around $2.3 billion USD (mTG market was estimated to be around $200 million USD). Much of this growth is attributed to the applications of mTG, benefiting both producers and consumers. In the food industry, TG enhances gelation and modifies emulsification, foaming, viscosity, and water-holding capacity. Research on TG, mainly mTG, provides increasing insights into the wide range of applications of this enzyme in various industrial sectors and promotes enzymatic processing. This work presents the characteristics of TGs, their properties, and the rationale for their utilisation. The review aims to provide theoretical foundations that will assist researchers worldwide in building a methodological framework and furthering the advancement of biotechnology research.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| |
Collapse
|
5
|
Yin X, Rao S, Zhou J, Du G, Chen J, Liu S. Improved Productivity of Streptomyces mobaraensis Transglutaminase by Regulating Zymogen Activation. Front Bioeng Biotechnol 2022; 10:878795. [PMID: 35497347 PMCID: PMC9047793 DOI: 10.3389/fbioe.2022.878795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Streptomyces mobaraensis transglutaminase (TGase) is extracellularly expressed as a zymogen and then activated by TGase-activating protease (TAP). In this study, we reported the strategy for improving TGase production via the regulation of TAP activity in S. mobaraensis. First, we analyzed the effects of three inorganic nitrogen sources on TGase production. With 30 mM nitrogen content, the time to the peak of TGase activity induced by (NH4)2SO4 or NH4Cl was 72 h, 12 h earlier than that of the fermentation without adding NH4+. SDS-PAGE analysis indicated that NH4+ accelerated the TGase activation in S. mobaraensis. Then, we examined the effect of NH4+ on TAP biosynthesis using a TGase-deficient S. mobaraensis strain. It showed that NH4+ enhanced the TAP activity at the early stage of the fermentation, which was dependent on the concentration and time of NH4+ addition. Last, the yield and productivity of S. mobaraensis TGase were increased by 1.18-fold and 2.1-fold, respectively, when optimal NH4+ addition (60 mM and 12 h) was used. The fermentation period was shortened from 84 to 48 h. The NH4+ addition also increased the storage stability of crude enzyme at room temperature. These findings will benefit the TGase production and its activation mechanism in S. mobaraensis.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Song Liu,
| |
Collapse
|
6
|
|
7
|
Huang Y, Jin M, Yan W, Wu Q, Niu Y, Zou C, Jia C, Chang Z, Huang J, Jiang D, Gao H. A point mutant in the promoter of transglutaminase gene dramatically increased yield of microbial transglutaminase from Streptomyces mobaraensis TX1. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Fatima SW, Khare SK. Effect of key regulators in augmenting transcriptional expression of Transglutaminase in Streptomyces mobaraensis. BIORESOURCE TECHNOLOGY 2021; 340:125627. [PMID: 34330004 DOI: 10.1016/j.biortech.2021.125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminase forms isopeptide bonds in proteins which are helpful in various industrial applications. However, low productivity and high cost are the major bottlenecks for industrial Transglutaminase production. The present study describes the regulatory mechanism of microbial Transglutaminase (MTGase) biosynthesis from Streptomyces mobaraensis and the effect of key regulators to maximize production. The transcriptional responses under the effect of various key modulators of MTGasebiosynthesis were evaluated. Productivity of MTGase with novel biosynthesis approach by regulators augmentation was correlated by transcriptional profiling. The optimization by key modulators by combinational supplementation led to 2-fold rise in activity. The functional attributes, the copy number of MTGase gene and relative changes were assessed by Real-Time quantitative PCR. Protease, MgCl2, CTAB induced upregulation, whereas PMSF, NaF and bleomycin sulphate showed inhibitory action on MTGase production and activity. The optimization by combinational supplementation of key modulators led to 4.27-fold increase (6.11 IU/mL) in production.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Capezza AJ, Muneer F, Prade T, Newson WR, Das O, Lundman M, Olsson RT, Hedenqvist MS, Johansson E. Acylation of agricultural protein biomass yields biodegradable superabsorbent plastics. Commun Chem 2021; 4:52. [PMID: 36697586 PMCID: PMC9814733 DOI: 10.1038/s42004-021-00491-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/16/2021] [Indexed: 01/28/2023] Open
Abstract
Superabsorbent polymers (SAP) are a central component of hygiene and medical products requiring high liquid swelling, but these SAP are commonly derived from petroleum resources. Here, we show that sustainable and biodegradable SAP can be produced by acylation of the agricultural potato protein side-stream (PPC) with a non-toxic dianhydride (EDTAD). Treatment of the PPC yields a material with a water swelling capacity of ca. 2400%, which is ten times greater than the untreated PPC. Acylation was also performed on waste potato fruit juice (PFJ), i.e. before the industrial treatment to precipitate the PPC. The use of PFJ for the acylation implies a saving of 320 000 tons as CO2 in greenhouse gas emissions per year by avoiding the industrial drying of the PFJ to obtain the PPC. The acylated PPC shows biodegradation and resistance to mould growth. The possibilities to produce a biodegradable SAP from the PPC allows for future fabrication of environment-friendly and disposable daily-care products, e.g. diapers and sanitary pads.
Collapse
Affiliation(s)
- Antonio J. Capezza
- grid.5037.10000000121581746Fibre and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden ,Plant Breeding Department, SLU Alnarp, Lomma, Sweden
| | - Faraz Muneer
- Plant Breeding Department, SLU Alnarp, Lomma, Sweden
| | - Thomas Prade
- Biosystems and Technology Department, SLU Alnarp, Lomma, Sweden
| | | | - Oisik Das
- grid.6926.b0000 0001 1014 8699Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering Division, Luleå University of Technology, Luleå, Sweden
| | | | - Richard T. Olsson
- grid.5037.10000000121581746Fibre and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael S. Hedenqvist
- grid.5037.10000000121581746Fibre and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eva Johansson
- Plant Breeding Department, SLU Alnarp, Lomma, Sweden
| |
Collapse
|
10
|
Akbari M, Razavi SH, Kieliszek M. Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem 2021; 356:129679. [PMID: 33827045 DOI: 10.1016/j.foodchem.2021.129679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Oxidative enzymes treat weak flours in order to restore the gluten network of damaged wheat flour and reduce the economic and technological losses. The present review concentrates on oxidative exogenous enzymes (transglutaminase, laccase, glucose oxidase, hexose oxidase) and oxidative endogenous enzymes (tyrosinase, peroxidase, catalase, sulfhydryl oxidase, lipoxygenase, lipase, protein disulfide isomerase, NAD(P)H-dependent dehydrogenase, thioredoxin reductase and glutathione reductase) and their effects on the rheological, functional, and conformational features of gluten and its subunits. Overall, transglutaminase is used in wheat-based foods through introducing isopeptide bonds (ε-γ glutamyl-lysine). Glucose oxidase, hexose oxidase, peroxidase, sulfhydryl oxidase, lipase, and lipoxygenase form disulfide and nondisulfide bonds through producing hydrogen peroxide. Laccase, tyrosinase, and protein disulfide isomerase form cross-links between tyrosine and cysteine residues by generating radicals. Thioredoxin reductase and glutathione reductase create new inter disulfide bonds. The effect of oxidative enzymes on the formation of covalent cross-linkages were substantially more than non-covalent bonds in gluten structure.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| |
Collapse
|
12
|
Ceresino EB, Johansson E, Sato HH, Plivelic TS, Hall SA, Bez J, Kuktaite R. Lupin Protein Isolate Structure Diversity in Frozen-Cast Foams: Effects of Transglutaminases and Edible Fats. Molecules 2021; 26:1717. [PMID: 33808718 PMCID: PMC8003408 DOI: 10.3390/molecules26061717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
This study addresses an innovative approach to generate aerated foods with appealing texture through the utilization of lupin protein isolate (LPI) in combination with edible fats. We show the impact of transglutaminases (TGs; SB6 and commercial), glycerol (Gly), soy lecithin (Lec) and linoleic acid (LA) on the micro- and nanostructure of health promoting solid foods created from LPI and fats blends. 3-D tomographic images of LPI with TG revealed that SB6 contributed to an exceptional bubble spatial organization. The inclusion of Gly and Lec decreased protein polymerization and also induced the formation of a porous layered material. LA promoted protein polymerization and formation of homogeneous thick layers in the LPI matrix. Thus, the LPI is a promising protein resource which when in blend with additives is able to create diverse food structures. Much focus has been placed on the great foamability of LPI and here we show the resulting microstructure of LPI foams, and how these were improved with addition of TGs. New food applications for LPI can arise with the addition of food grade dispersant Lec and essential fatty-acid LA, by improved puffiness, and their contributing as replacer of chemical leavening additives in gluten-free products.
Collapse
Affiliation(s)
- Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden;
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden;
| | - Hélia Harumi Sato
- Department of Food Science, School of Food Engineering, University of Campinas, São Paulo, SP 13083-862, Brazil;
| | - Tomás S. Plivelic
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden;
| | - Stephen A. Hall
- Department of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden;
| | - Jürgen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354 Freising, Germany;
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden;
| |
Collapse
|
13
|
Ceresino EB, Johansson E, Sato HH, Plivelic TS, Hall SA, Kuktaite R. Morphological and structural heterogeneity of solid gliadin food foams modified with transglutaminase and food grade dispersants. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Ceresino EB, Kuktaite R, Hedenqvist MS, Sato HH, Johansson E. Processing conditions and transglutaminase sources to “drive” the wheat gluten dough quality. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Ceresino EB, Kuktaite R, Sato HH, Hedenqvist MS, Johansson E. Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sorde KL, Ananthanarayan L. Isolation, screening, and optimization of bacterial strains for novel transglutaminase production. Prep Biochem Biotechnol 2019; 49:64-73. [DOI: 10.1080/10826068.2018.1536986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Karuna L. Sorde
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Laxmi Ananthanarayan
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
17
|
Muneer F, Johansson E, Hedenqvist MS, Plivelic TS, Kuktaite R. Impact of pH Modification on Protein Polymerization and Structure⁻Function Relationships in Potato Protein and Wheat Gluten Composites. Int J Mol Sci 2018; 20:ijms20010058. [PMID: 30586846 PMCID: PMC6337652 DOI: 10.3390/ijms20010058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Wheat gluten (WG) and potato protein (PP) were modified to a basic pH by NaOH to impact macromolecular and structural properties. Films were processed by compression molding (at 130 and 150 °C) of WG, PP, their chemically modified versions (MWG, MPP) and of their blends in different ratios to study the impact of chemical modification on structure, processing and tensile properties. The modification changed the molecular and secondary structure of both protein powders, through unfolding and re-polymerization, resulting in less cross-linked proteins. The β-sheet formation due to NaOH modification increased for WG and decreased for PP. Processing resulted in cross-linking of the proteins, shown by a decrease in extractability; to a higher degree for WG than for PP, despite higher β-sheet content in PP. Compression molding of MPP resulted in an increase in protein cross-linking and improved maximum stress and extensibility as compared to PP at 130 °C. The highest degree of cross-linking with improved maximum stress and extensibility was found for WG/MPP blends compared to WG/PP and MWG/MPP at 130 °C. To conclude, chemical modification of PP changed the protein structures produced under harsh industrial conditions and made the protein more reactive and attractive for use in bio-based materials processing, no such positive gains were seen for WG.
Collapse
Affiliation(s)
- Faraz Muneer
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden.
| | - Tomás S Plivelic
- MAX-IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden.
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053 Alnarp, Sweden.
| |
Collapse
|
18
|
Zhang Y, He S, Simpson BK. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|