1
|
Santhapur R, Jayakumar D, McClements DJ. Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels 2024; 10:446. [PMID: 39057469 PMCID: PMC11276292 DOI: 10.3390/gels10070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
There is a need to reduce the proportion of animal-derived food products in the human diet for sustainability and environmental reasons. However, it is also important that a transition away from animal-derived foods does not lead to any adverse nutritional effects. In this study, the potential of blending whey protein isolate (WPI) with either shiitake mushroom (SM) or oyster mushroom (OM) to create hybrid foods with enhanced nutritional and physicochemical properties was investigated. The impact of OM or SM addition on the formation, microstructure, and physicochemical attributes of heat-set whey protein gels was therefore examined. The mushroom powders were used because they have relatively high levels of vitamins, minerals, phytochemicals, and dietary fibers, which may provide nutritional benefits, whereas the WPI was used to provide protein and good thermal gelation properties. A variety of analytical methods were used to characterize the structural and physicochemical properties of the WPI-mushroom hybrids, including confocal microscopy, particle electrophoresis, light scattering, proximate analysis, differential scanning calorimetry, thermogravimetric analysis, dynamic shear rheology, textural profile analysis, and colorimetry. The charge on whey proteins and mushroom particles went from positive to negative when the pH was raised from 3 to 9, but whey protein had a higher isoelectric point and charge magnitude. OM slightly increased the thermal stability of WPI, but SM had little effect. Both mushroom types decreased the lightness and increased the brownness of the whey protein gels. The addition of the mushroom powders also decreased the hardness and Young's modulus of the whey protein gels, which may be because the mushroom particles acted as soft fillers. This study provides valuable insights into the formation of hybrid whey protein-mushroom products that have desirable physiochemical and nutritional attributes.
Collapse
Affiliation(s)
- Ramdattu Santhapur
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
| | - Disha Jayakumar
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
2
|
Malekmohammadi M, Ghanbarzadeh B, Hanifian S, Samadi Kafil H, Gharekhani M, Falcone PM. The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023; 12:3737. [PMID: 37893630 PMCID: PMC10606122 DOI: 10.3390/foods12203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization-sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and -18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.
Collapse
Affiliation(s)
- Maedeh Malekmohammadi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz P.O. Box 51656-65811, Iran;
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
3
|
Ghazal AF, Zhang M, Guo Z. Microwave-induced rapid 4D change in color of 3D printed apple/potato starch gel with red cabbage juice-loaded WPI/GA mixture. Food Res Int 2023; 172:113138. [PMID: 37689902 DOI: 10.1016/j.foodres.2023.113138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to explore the feasibility of utilizing microparticle mixture (MCPs) comprised of whey protein isolate (WPI), gum Arabic (GA), and freeze-dried red cabbage juice (FDRCJ) as a smart material to realize a rapid color change of 3D printed apple/potato starch gel in response to microwave heating stimulation. The particle size, morphology and thermal stability of WPI/FDRCJ/GA microparticles were examined. Then, the rheology, texture properties and printability of Apple/potato starch gel affected by different concentrations of WPI/FDRCJ/GA microparticles (0, 15, 30, 45, 60% (w/w)) were studied. Results showed that the WPI/FDRCJ/GA microparticles were more thermally stable than pure materials, indicating that the heat-sensitive anthocyanin and other compounds present in FDRCJ were effectively protected by the wall materials (WPI/GA). Moreover, the addition of various microparticle concentrations decreased the samples' mechanical properties but had no significant influence on their loss modulus, viscosity, or printing accuracy. As the microwave heating time increased, the lightness (L*) and yellowness (b*) of microparticle-added samples decreased while the redness (a*) significantly increased (p < 0.05), resulting in a gradual color change from yellow/brown to red. These findings could be useful to produce novel colorful and appealing 4D healthy food products that stimulate consumer appetite.
Collapse
Affiliation(s)
- Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology Resources, Jiangnan University, 14122 Wuxi, China; Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Resources, Jiangnan University, 14122 Wuxi, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Zhimei Guo
- Wuxi Haihe Equipment Scientific & Technological Co., Wuxi, China
| |
Collapse
|
4
|
Huang Y, Liu W, Luo X, Zhao M, Liu T, Feng F. Synthesis and characterization of medium- and long-chain structural lipid rich in α-linolenic acid and lauric acid. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Park JH, Lee JW, Ahn H, Kang YT. Development of novel nanoabsorbents by amine functionalization of Fe3O4 with intermediate ascorbic acid coating for CO2 capture enhancement. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Kaur M, Bains A, Chawla P, Yadav R, Kumar A, Inbaraj BS, Sridhar K, Sharma M. Milk Protein-Based Nanohydrogels: Current Status and Applications. Gels 2022; 8:432. [PMID: 35877517 PMCID: PMC9320064 DOI: 10.3390/gels8070432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | - Anil Kumar
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | | | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de L’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale du Hainaut-Condorcet, 11, Rue de la Sucrerie, 7800 Ath, Belgium
| |
Collapse
|
7
|
Laein SS, Khanzadi S, Hashemi M, Gheybi F, Azizzadeh M. Peppermint essential oil-loaded solid lipid nanoparticle in gelatin coating: Characterization and antibacterial activity against foodborne pathogen inoculated on rainbow trout (Oncorhynchus mykiss) fillet during refrigerated storage. J Food Sci 2022; 87:2920-2931. [PMID: 35703572 DOI: 10.1111/1750-3841.16221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The present study was conducted to determine the characterization and antibacterial activity of peppermint essential oil-loaded solid lipid nanoparticle (PEO-SLN) and its impact on the quality of trout fillet stored at 4 ± 1°C for 12 days. The SLNs were prepared through a bath sonication technique. PEO-SLNs contained 0.2% (w/v) PEO in 2% of lipid phase glycerol monostearate (GMS) and tween 80 (1% w/v) used as a surfactant in the aqueous phase. The characterization parameter of PEO-SLN was evaluated, and the antibacterial activity of PEO-SLNs was conducted under in vitro conditions. Trout samples were analyzed for inoculated Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli O157:H7 during refrigerated storage. The mean particle size of PEO-SLNs was 154.83 ± 1.21 nm with a polydispersity index (PDI) of 0.35 ± 0.01 and zeta potential was about -24.16 ± 0.51 mV. The results indicated that PEO-SLN had higher antibacterial activity than the free form of PEO and also when used in combination with gelatin coating (gel + PEO-SLN) had a significant effect on preventing microbial growth in trout fillets (p < 0.05). The most decreasing rate of P. aeruginosa (1.92 log CFU/g), E. coli O157:H7 (0.71 log CFU/g), and L. monocytogenes count (1.69 log CFU/g) was seen in gel + PEO-SLN. These findings illustrated that PEO-SLNs could potentially be utilized in the food industry to increase the shelf life of fish fillets.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Castejón N, Luna P, Señoráns FJ. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: Effect on polyunsaturated fatty acid composition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
|
11
|
Vieira MDC, Vieira SAG, Skupien JA, Boeck CR. Nanoencapsulation of unsaturated omega-3 fatty acids as protection against oxidation: A systematic review and data-mining. Crit Rev Food Sci Nutr 2021; 62:4356-4370. [PMID: 33506691 DOI: 10.1080/10408398.2021.1874870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The chemical structure of unsaturated fatty acids makes them highly prone to oxidation, which decreases their nutritional properties. Nanocarriers have the ability to protect unstable nutraceuticals and take them to their specific targets. Thus, the aim is to determine the effectiveness of nanoencapsulation of omega-3 unsaturated fatty acids as protection against oxidation, as well as to apply data-mining approach to identify nanoencapsulation profiles. Three databases were used to search for studies focused on comparing omega-3 encapsulation to the active compound in its raw form. Studies without oxidation test or no use omega 3-rich oil as active ingredient in nanoformulations were excluded. Twenty-three studies were included in the systematic review. The qualitative analysis indicated that the main evaluated parameters were encapsulation efficiency (%), physical-chemical parameters and oxidation (analyzed at different storage temperatures), oil type, and whether the formulation was added to food. With regard to quantitative analysis, studies that did not perform oxidation tests focused on comparing free oil to the encapsulated one were excluded. Data-mining indicated that encapsulation efficiency and particle size were the main characteristic defining nanocarrier's effectiveness in protecting the oil against oxidation. Nevertheless, it is important to note the main characteristics associated with oil protection in nanocarriers.
Collapse
Affiliation(s)
- Maiana da Costa Vieira
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brazil
| | | | - Jovito Adiel Skupien
- Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana, Santa Maria, Brazil
| | - Carina Rodrigues Boeck
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brazil.,Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana, Santa Maria, Brazil
| |
Collapse
|
12
|
Vellido-Perez J, Ochando-Pulido J, Brito-de la Fuente E, Martinez-Ferez A. Novel emulsions–based technological approaches for the protection of omega–3 polyunsaturated fatty acids against oxidation processes – A comprehensive review. FOOD STRUCTURE-NETHERLANDS 2021. [DOI: 10.1016/j.foostr.2021.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr Rev Food Sci Food Saf 2020; 19:3266-3322. [DOI: 10.1111/1541-4337.12653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
14
|
Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Feltre G, Sartori T, Silva KFC, Dacanal GC, Menegalli FC, Hubinger MD. Encapsulation of wheat germ oil in alginate-gelatinized corn starch beads: Physicochemical properties and tocopherols' stability. J Food Sci 2020; 85:2124-2133. [PMID: 32579742 DOI: 10.1111/1750-3841.15316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 11/27/2022]
Abstract
Microencapsulation by production of polymer beads from ionic gelation is a useful method to improve the stability of nutritional compounds. Wheat germ oil is a nutritional source of unsaturated fatty acids and phytonutrients, such as tocopherols (α and β), phytosterols, carotenoids, and phenolic compounds. This work studied the development of alginate-starch beads over the stability of encapsulated wheat germ oil. The beads contained sodium alginate and gelatinized corn starch in proportions of 2:0, 1:1, 1:2, and 1:4. The addition of small amounts (1:1) of gelatinized starch in the alginate emulsions improved the physicochemical properties and stability during storage. The emulsions had oil droplets with mean sizes ranging from 4.5 to 12.2 µm. The 1:1 samples showed more disperse oil droplets, explained by the molecular interaction between the starch chains and oil. The encapsulation efficiency was higher than 91%, and the beads' mean diameters were between 383.22 and 797.45 µm. The proportion of 1:1 alginate-starch also enhanced the beads' microstructures, avoiding oil oxidation. Six days accelerated stability (65 °C) evidenced higher tocopherols amounts (0.66 mg/g oil) and a lower oxidation (2.52 meq.O2 /kg oil) for the 1:1 samples compared to the remained samples. PRACTICAL APPLICATION: Alginate-gelatinized corn starch beads loaded with wheat germ oil can be used as an ingredient in functional food products for the enrichment of nutrients. The use of starch decreased the oil oxidation and the loss of tocopherols during storage, indicating that the quality of the wheat germ oil will be desirable for longer durations of food storage.
Collapse
Affiliation(s)
- Gabriela Feltre
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Tanara Sartori
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Klycia F C Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Gustavo C Dacanal
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Florencia C Menegalli
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Miriam D Hubinger
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
16
|
Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr Res 2020; 492:108004. [DOI: 10.1016/j.carres.2020.108004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
|
17
|
Microencapsulation of Garlic Extract by Complex Coacervation Using Whey Protein Isolate/Chitosan and Gum Arabic/Chitosan as Wall Materials: Influence of Anionic Biopolymers on the Physicochemical and Structural Properties of Microparticles. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02375-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Mori C, Kadota K, Shimosaka A, Yoshida M, Shirakawa Y. A Powderization Process for Encapsulating with Functional Biomaterials Using Nozzleless Electrostatic Atomization. J Food Sci 2019; 84:2482-2489. [PMID: 31476025 DOI: 10.1111/1750-3841.14783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
Powderization of oils has been used as a method to enhance the stability of polyunsaturated fatty acids. Previously, we successfully powderized soybean oil via nozzleless electrostatic atomization. The process of nozzleless electrostatic atomization process was applied to the one-step process of encapsulating oil in wall materials. The encapsulation of oils in powder is dependent on the wall materials. The present study aimed to resolve the behavior of oil encapsulated in particles using a novel method of electrostatic atomization, and to investigate the effect of wall materials on the oil content in the encapsulated formulations. The size of particles surrounding oil was dependent on the type of wall materials used for encapsulation, and the oil content within the encapsulation decreased with increase in particle size. Furthermore, wall materials with higher hydrophobicity increased the oil content within the encapsulation, as more hydrophobic particles could absorb the oil more effectively. PRACTICAL APPLICATION: Nozzleless electrostatic atomization is a new method for preparing encapsulation of oil using various wall materials.
Collapse
Affiliation(s)
- Chinatsu Mori
- Doshisha Univ., Dept. of Chemical Engineering and Material Science, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0321, Japan
| | - Kazunori Kadota
- Osaka Univ. of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Atsuko Shimosaka
- Doshisha Univ., Dept. of Chemical Engineering and Material Science, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0321, Japan
| | - Mikio Yoshida
- Doshisha Univ., Dept. of Chemical Engineering and Material Science, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0321, Japan
| | - Yoshiyuki Shirakawa
- Doshisha Univ., Dept. of Chemical Engineering and Material Science, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
19
|
Montes C, Villaseñor MJ, Ríos Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Mori C, Kadota K, Tozuka Y, Shimosaka A, Yoshida M, Shirakawa Y. Application of nozzleless electrostatic atomization to encapsulate soybean oil with solid substances. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
The Effect of Pharmaceutical Excipients for Applying to Spray-Dried Omega-3 Powder. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Omega-3 fatty acid plays a role in protecting cells in the human body, maintaining the structure of the cell, and helping smooth metabolism. Also, it inhibits the formation of blood clotting and is effective in enhancing the formation of bone. However, the instability due to fatty acid oxidation and a fishy smell are the reasons it is avoided by people. In this study, we tried to obtain the omega-3 powder through spray-drying method using a variety of binders and surfactants for improving the limit of omega-3 fatty acid. First of all, an olive oil was used instead of omega-3 for optimization of the preparation of spray-dried omega-3 powder. Through the screening of binders and surfactants, γ-cyclodextrin and hydrogenated lecithin were chosen as a binder and a surfactant, respectively. Omega-3-loaded spray-dried powder was obtained, eventually. The morphology of omega-3-loaded spray-dried powder was spherical of 310 nm and the DHA amount was 98%. This study suggested that the transformation of omega-3 fatty acid into solid state by spray-drying using a binder and a surfactant was successively performed.
Collapse
|
23
|
Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
A supported dendrimer with terminal symmetric primary amine sites for adsorption of salicylic acid. J Colloid Interface Sci 2019; 540:501-514. [DOI: 10.1016/j.jcis.2019.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/22/2018] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
|
25
|
Azizi M, Li Y, Kaul N, Abbaspourrad A. Study of the Physicochemical Properties of Fish Oil Solid Lipid Nanoparticle in the Presence of Palmitic Acid and Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:671-679. [PMID: 30614694 DOI: 10.1021/acs.jafc.8b02246] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ω-3 polyunsaturated fatty acids, naturally found in fish oil, are highly desirable for their associated health benefits. However, they are highly prone to oxidation and degradation. We examined the feasibility of simultaneously adding a solid lipid (palmitic acid) and an antioxidant (quercetin) into a whey-protein-isolate-stabilized solid lipid nanoparticle emulsion for encapsulating fish oil. The goal was to find a rational and new formulation containing both solid lipid and antioxidant that can encapsulate fish oil and give it the best physicochemical stability. Our results show that adding palmitic acid improved the physical stability of the emulsions by decreasing the size of the oil-in-water droplets. On the basis of the thiobarbituric acid reactive substances assay, we found out that at low concentrations of palmitic acid the addition of quercetin played a dominant role in increasing the oxidation stability of fish oil. On the contrary, at high concentrations of palmitic acid, it was palmitic acid that dominated the oxidation inhibition by the solidification of the encapsulates' core.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agriculture and Life Science , Cornell University , Ithaca , New York 14853 , United States
| | - Yitong Li
- Department of Food Science, College of Agriculture and Life Science , Cornell University , Ithaca , New York 14853 , United States
| | - Neha Kaul
- Department of Food Science, College of Agriculture and Life Science , Cornell University , Ithaca , New York 14853 , United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
26
|
Fares MM, Shirzaei Sani E, Portillo Lara R, Oliveira RB, Khademhosseini A, Annabi N. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 2018; 6:2938-2950. [PMID: 30246835 PMCID: PMC11110880 DOI: 10.1039/c8bm00474a] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Mohammad M Fares
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Tan C, Celli GB, Selig MJ, Abbaspourrad A. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chem 2018; 264:342-349. [DOI: 10.1016/j.foodchem.2018.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
28
|
Feng J, Chen Q, Wu X, Jafari SM, McClements DJ. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21742-21751. [PMID: 29790050 DOI: 10.1007/s11356-018-2183-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Oil-in-water (O/W) emulsions can be utilized as effective pesticide delivery systems in the agricultural industry. In this study, the effects of hydrophile-lipophile balance (HLB), concentration, and location of surfactants on the formation and physical stability of O/W emulsions suitable for pesticide applications was investigated using dynamic light scattering and vertical laser profiling. A non-polar pesticide (lambda-cyhalothrin) was used as a model. The pesticide emulsion with the highest stability was obtained using a commercial non-ionic surfactant (polyoxyethylene castor oil ether, EL-20) with a required HLB value of 10.5. Emulsion stability increased as the surfactant concentration was increased from 2 to 6%, which was attributed to the formation of smaller oil droplets during emulsification. Emulsions prepared with the surfactant initially in the oil phase were more stable than those prepared with it initially in the aqueous phase. The optimum formulation of the pesticide emulsion was determined as follows: 5% lambda-cyhalothrin (active ingredient) and 6% EL-20 (surfactant) dissolved in 5% S-200 (aromatic hydrocarbon, as oil phase), then deionized water up to 100%, which met the quality indicators set by the FAO standards. The present study is expected to provide useful information to improve the stability of pesticide emulsions for commercial applications.
Collapse
Affiliation(s)
- Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qicheng Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemin Wu
- College of Science, China Agricultural University, Beijing, 100193, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | | |
Collapse
|
29
|
Liang S, Han L, Mu W, Jiang D, Hou T, Yin X, Pang X, Yang R, Liu Y, Zhang N. Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy. J Mater Chem B 2018; 6:7004-7014. [DOI: 10.1039/c8tb01721b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-mediated drug resistance can strongly weaken the therapeutic efficiency of platinum(ii).
Collapse
|