1
|
Yang Y, Zhang Z, Wang Z, Pan R, Wu H, Zhai S, Wu G, Fu W, Gao H. Multi-chromatic and multi-component lateral flow immunoassay for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified crops. Mikrochim Acta 2024; 192:16. [PMID: 39680231 DOI: 10.1007/s00604-024-06853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024]
Abstract
A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad. The assay results can be visually interpreted within 10 min by observing the appearance of colored bands. The MCMC-LFIA demonstrated high sensitivity, with detection of limits of 7.8 ng/mL for CP4 EPSPS and 2.5 ng/mL for Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins, significantly improving the performance of previously reported LFIAs. The MCMC-LFIA exhibited excellent specificity and was validated for practical use in field-based applications. The proposed MCMC-LFIA offers a rapid, sensitive, and user-friendly tool for the on-site large-scale screening of GM materials.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zini Zhang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhi Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Ruxin Pan
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huimin Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Wei Fu
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
2
|
Rabbani S, Anvar SAA, Allahyaribeik S, Jannat B, Ahari H. Effect of ultrasound technique to improve quality of Iranian industrial honey by controlling crystallization process. Food Sci Nutr 2024; 12:2932-2946. [PMID: 38628199 PMCID: PMC11016448 DOI: 10.1002/fsn3.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
This experiment aimed to assess the effects of ultrasound techniques on the quality of Iranian industrial honey. Honey samples were subjected to ultrasound waves at different frequencies and various parameters. The results showed that both ultrasound treatments (30 or 42 kHz) changed the physical, biochemical, antioxidant, and antibacterial characteristics of honey. Ultrasound treatments at 20 or 45°C for 1, 5, or 10 min reduced moisture, acidity, sugars, ABTS levels, 5-hydroxymethylfurfural content, clostridium, aerobic mesophilic bacteria count, and osmophile count while increasing diastase, phenol, and proline levels. Ultrasound treatment of honey samples at 30 and 42 kHz and different temperatures for varying durations led to a decrease in acidity after 90 and 180 days. Treating honey samples with 42 kHz ultrasound at 45°C for 10 min led to a significant reduction in the amount of reducing sugar. Ultrasonication at different frequencies and temperatures led to higher levels of phenol, ABTS, and proline production, along with a considerable decrease in the total count of aerobic mesophilic bacteria. Our study unveils the potential of ultrasonication to enhance honey quality through multifaceted improvements. Treatment significantly augmented phenolic content and antioxidant capacity, opening avenues for novel honey preservation and quality enhancement strategies. Additionally, ultrasonication effectively controlled honey crystallization while simultaneously improving biochemical, antioxidant, and antibacterial properties. This demonstrates its potential as a comprehensive strategy for honey quality improvement.
Collapse
Affiliation(s)
- Safa Rabbani
- Department of Food Hygiene, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Sara Allahyaribeik
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Behrooz Jannat
- Food and Drug DeputyMinistry of Health, and Medical EducationTehranIran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
3
|
Liu H, Hu X, Zeng H, He C, Cheng F, Tang X, Wang J. A rapid and high-throughput system for the detection of transgenic products based on LAMP-CRISPR-Cas12a. Curr Res Food Sci 2023; 7:100605. [PMID: 37868002 PMCID: PMC10589767 DOI: 10.1016/j.crfs.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
With the increasing acreage of genetically modified crops worldwide, rapid and efficient detection technologies have become very important for the regulation and screening of GM organisms. We constructed a method based on loop-mediated isothermal amplification (LAMP), CRISPR-Cas12a and lateral flow assay (LAMP-CRISPR-Cas12a-LFA). It is an intuitive, sensitive and specific fluorescence detection and test strip system to detect CP4-EPSPS and Cry1Ab/Ac genes in field screening. The LAMP-CRISPR-Cas12a-LFA method has a limit of detection (LOD) of 100 copies based on lateral flow test strips after optimization of the conditions with screened specific primers, and the entire detection process can be completed within 1 h at 61 °C. The system was used to evaluate field test samples and showed high reproducibility after testing products containing CP4-EPSPS and Cry1Ab/Ac genes, and both were detectable. The LAMP-CRISPR-Cas12a-LFA method established in this paper functions as a rapid field detection method. It requires only one portable thermostatic instrument, which renders it compatible with the rapid detection of field samples and useable at experimental workstations, in law enforcement field work, and in local inspection and quarantine departments.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Xiuwen Hu
- College of Food Sciences and Technology, Shanghai Ocean University, 999 Huancheng Road Shanghai, 200120, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Chuan He
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fang Cheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| |
Collapse
|
4
|
Ultrasensitive fluorescent biosensor for detecting CaMV 35S promoter with proximity extension mediated multiple cascade strand displacement amplification and CRISPR/Cpf 1. Anal Chim Acta 2022; 1215:339973. [DOI: 10.1016/j.aca.2022.339973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
|
5
|
Chou CC, Lin YT, Kuznetsova I, Wang GJ. Genetically Modified Soybean Detection Using a Biosensor Electrode with a Self-Assembled Monolayer of Gold Nanoparticles. BIOSENSORS 2022; 12:207. [PMID: 35448267 PMCID: PMC9025051 DOI: 10.3390/bios12040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, we proposed a genosensor that can qualitatively and quantitatively detect genetically modified soybeans using a simple electrode with evenly distributed single layer gold nanoparticles. The DNA sensing electrode is made by sputtering a gold film on the substrate, and then sequentially depositing 1,6-hexanedithiol and gold nanoparticles with sulfur groups on the substrate. Then, the complementary to the CaMV 35S promoter (P35S) was used as the capture probe. The target DNA directly extracted from the genetically modified soybeans rather than the synthesized DNA segments was used to construct the detection standard curve. The experimental results showed that our genosensor could directly detect genetically modified genes extracted from soybeans. We obtained two percentage calibration curves. The calibration curve corresponding to the lower percentage range (1-6%) exhibits a sensitivity of 2.36 Ω/% with R2 = 0.9983, while the calibration curve corresponding to the higher percentage range (6-40%) possesses a sensitivity of 0.1 Ω/% with R2 = 0.9928. The limit of detection would be 1%. The recovery rates for the 4% and 5.7% GMS DNA were measured to be 104.1% and 102.49% with RSD at 6.24% and 2.54%. The gold nanoparticle sensing electrode developed in this research is suitable for qualitative and quantitative detection of genetically modified soybeans and can be further applied to the detection of other genetically modified crops in the future.
Collapse
Affiliation(s)
- Cheng-Chi Chou
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Ying-Ting Lin
- Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 125009 Moscow, Russia;
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Yeasmin S, Takabatake R, Kagiya Y, Okazaki N, Minegishi Y, Kitta K. [Evaluation of a Species-specific, Stable, and Endogenous Sequence of Eggplant (Solanum melongena) using LAMP for the Detection of Genetically Modified Eggplants]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:180-186. [PMID: 34955468 DOI: 10.3358/shokueishi.62.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Species-specific endogenous reference sequences are indispensable in the development of methods to detect genetically modified (GM) crops for food and feed. We analyzed a partial sequence derived from the β-fructosidase gene among several solanaceous species and developed a new eggplant specific detection method using loop-mediated isothermal amplification (LAMP). LAMP is a rapid, specific, and cost-effective technique. The species-specificity and stability of the developed method were evaluated using 18 eggplant cultivars and other crops including solanaceous plants. The limit of detection was also evaluated. The developed method showed high specificity for eggplants and stability among the eggplant cultivars tested. These results suggested that the developed method would be useful as a positive control for the detection of GM eggplants with LAMP.
Collapse
Affiliation(s)
| | - Reona Takabatake
- Institute of Food Research, National Agriculture and Food Research Organization
| | | | - Noriko Okazaki
- Institute of Food Research, National Agriculture and Food Research Organization
| | | | - Kazumi Kitta
- Institute of Food Research, National Agriculture and Food Research Organization
| |
Collapse
|
7
|
Yang Q, Wang Y, Liu X, Liu H, Bao H, Wang J, Zeng H. A Label-Free Immunosensor Based on Gold Nanoparticles/Thionine for Sensitive Detection of PAT Protein in Genetically Modified Crops. Front Chem 2021; 9:770584. [PMID: 34950635 PMCID: PMC8688707 DOI: 10.3389/fchem.2021.770584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Genetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT) protein has been widely planted worldwide. The development of a rapid method for detecting PAT protein is of great importance to food supervision. In this study, a simple label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification molecules and electrochemically active substances. Under optimum conditions, the limits of detection of the sensor for soybean A2704-12 and maize BT-176 were 0.02% and 0.03%, respectively. The sensor could detect crops containing PAT protein and had no cross-reaction with other proteins. After storage at 4°C for 33 days, the sensor still retained 82.5% of the original signal, with a relative standard deviation (RSD) of 0.92%. The recoveries of the sensor for soybean A2704-12 and maize BT-176 were 85%-108% and 98%-113%, respectively. The developed PAT-target immunosensor with high sensitivity, specificity, and satisfactory reproducibility and accuracy will be a useful tool in the trace screening of GM crops. Moreover, this design concept can be extended to other proteins by simply changing the antibody.
Collapse
Affiliation(s)
- Qianwen Yang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yu Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Hua Liu
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Huifang Bao
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Jinbin Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haijuan Zeng
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
8
|
Wang C, Huang C, Zhu P, Du Z, Wei S, Fu W. Applicability of a General Analytical Approach for Detection of Genetically Modified Organisms: Collaborative Trial. J AOAC Int 2021; 105:476-482. [PMID: 34927696 DOI: 10.1093/jaoacint/qsab154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND With the commercialization of genetically modified organisms (GMOs) in the market, laboratories have undergone a significantly increased workload. A universal analytical approach was designed to achieve cost-efficient and high-throughput GMOs screening with high specificity and accuracy. The approach provides accurate qualification of authorized and unauthorized GMOs. OBJECTIVE This paper describes the assessment of this analytical approach developed to detect majority of commercialized GMOs over the world. METHODS Seven elements and three events were detected by qPCR in a single laboratory to detect 59 commercialized GMOs. Certificated reference materials and food/feed samples from Chinese market were also evaluated for the specificity, conformity and robustness of this approach and were challenged in the inter-laboratory study. RESULTS The results showed that elements and events selected can best detect GMO presence with good specificity and sensitivity. The results showed a concordance between 97.5% and 99.56% and the variance between 0.65% and 12.88%, which is in line with the minimum requirement of analytical methods of GMO testing. CONCLUSION The approach validated here can be used to manipulate GMO presence in food and feed and showed the capacity to manipulate GMOs trace in the trade and domestic agriculture grocery in China. HIGHLIGHTS A universal analytical approach used to track GMO presence was evaluated for its specificity, sensitivity and robustness.
Collapse
Affiliation(s)
- Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Chunmeng Huang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China.,College of Plant Protection, China Agricultural University, Beijing, 100083 China
| | - Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Zhixin Du
- Technical Center of Nanning Customs District, Nanning, Guangxi, 530021 China
| | - Shuang Wei
- Inspection and Quarantine Technology Centre of China Customs, Guangzhou, Guangdong, 510623 China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China.,College of Plant Protection, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
9
|
Zeng H, Yang Q, Liu H, Wu G, Jiang W, Liu X, Wang J, Tang X. A sensitive immunosensor based on graphene-PAMAM composites for rapid detection of the CP4-EPSPS protein in genetically modified crops. Food Chem 2021; 361:129901. [PMID: 34082384 DOI: 10.1016/j.foodchem.2021.129901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 01/12/2023]
Abstract
A simple electrochemical immunosensor based on nitrogen-doped graphene and polyamide-amine (GN-PAM) composites was proposed for the detection of the CP4-EPSPS protein in genetically modified (GM) crops. In this immunosensor, the amplification of the detection signal was realized through antibodies labeled with gold nanoparticles (AuNPs). The electrochemical responses of the immunosensor were linear (R2 = 0.9935 and 0.9912) when the GM soybean RRS and maize NK603 content ranged from 0.025% to 1.0% and 0.05% to 1.5%, respectively. The limits of detection for the GM soybean RRS and maize NK603 were as low as 0.01% and 0.03%, respectively. The immunosensor also exhibited high specificity, and satisfactory stability, reproducibility, and accuracy. Our findings indicated that the constructed immunosensor provides a new approach for the sensitive detection of the CP4-EPSPS protein. Notably, the sensor may be applied to other proteins or pathogenic bacteria by simply changing the antibodies, and may also be used for multi-component analysis.
Collapse
Affiliation(s)
- Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Guogan Wu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Xueming Tang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Yu Y, Li R, Ma Z, Han M, Zhang S, Zhang M, Qiu Y. Development and evaluation of a novel loop mediated isothermal amplification coupled with TaqMan probe assay for detection of genetically modified organism with NOS terminator. Food Chem 2021; 356:129684. [PMID: 33812194 DOI: 10.1016/j.foodchem.2021.129684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
In this study, we aim to develop a novel loop mediated isothermal amplification (LAMP) coupled with TaqMan (LAMP-TaqMan) method for quick qualitative detection of genetically modified organism (GMOs). We designed four LAMP primers and one TaqMan probe for the LAMP-TaqMan detection method to detect the nopaline synthase gene (NOS) terminator in GMOs. This assay enabled the amplification of DNA within ~20 min at a constant temperature of 65 °C. This assay detected as few as five copies of target sequences, which had a high specificity similar to the TaqMan qPCR method. Furthermore, the LAMP-TaqMan detection method was successfully used to amplify and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel LAMP-TaqMan assay has been developed, which has the similar sensitivity but takes less time than the TaqMan qPCR method. This method offers a novel approach for rapid detection of GMOs in foods.
Collapse
Affiliation(s)
- Yanbo Yu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Rui Li
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Meihong Han
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Sen Zhang
- College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China; College of Animal Science, Yangtze University, Nanhuan Road 1, Jingzhou 434020, China.
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China.
| |
Collapse
|
11
|
Long L, Yan W, Li C, Dong L, Liu N, Xing Z, Li F. Event-specific quantitative polymerase chain reaction methods for detection of double-herbicide-resistant genetically modified corn MON 87419 based on the 3'-junction of the insertion site. Biosci Biotechnol Biochem 2021; 85:1468-1475. [PMID: 33720312 DOI: 10.1093/bbb/zbab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022]
Abstract
MON 87419 was one of the new transgenic corn events developed in US with the trait of herbicide resistance to both dicamba and glyphosate. To monitor unintended release of genetically modified organism in the future, as well as to meet GM-labeling requirements, it is requisite to develop a reliable method for the detection and quantification of MON 87419, an event-specific primer pair was designed to amplify the 3'-junction site between the endogenous genome sequence and the transferred DNA of GM event MON 87419, amplicons of desired size were produced by qualitative polymerase chain reaction (PCR) assay. For the validation of this quantitative method, the mixed samples containing 10%, 1%, and 0.1% MON 87419 ingredient were quantified. The precisions were expressed as relative standard deviations, deviated by 7.87%, 12.94%, and 19.98%, respectively. These results clearly demonstrate that the PCR methods we developed herein can be used for event-specific quantitative testing of the double-herbicide-resistant corn MON 87419.
Collapse
Affiliation(s)
- Likun Long
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Yan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Congcong Li
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Liming Dong
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Na Liu
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhenjuan Xing
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Feiwu Li
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
12
|
Takabatake R, Onishi M, Minegishi Y, Futo S, Soga K, Nakamura K, Kondo K, Mano J, Kitta K. Development of a Novel Detection Method Targeting an Ultrashort 25 bp Sequence Found in Agrobacterium-Mediated Transformed GM Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15327-15334. [PMID: 33296196 DOI: 10.1021/acs.jafc.0c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agrobacterium-mediated transformation is the most commonly used technique for plant genetic engineering. During the transformation, a T-DNA region, which is flanked by the right border (RB) and the left border, is transferred to plant nuclear chromosomes. Simultaneously, a sequence adjacent to the RB on T-DNA is frequently transferred to plant genomes together with the intentionally introduced recombinant DNA. We developed a novel polymerase chain reaction (PCR)-mediated detection method targeting this region. The conserved sequence of the region found in genetically modified (GM) crops is only 25 bp in length. To detect this ultrashort 25 bp sequence near the RB region, we designed a primer set consisting of a 12-base forward primer and a 13-base reverse primer. The predicted band was detected from GM crops by optimizing the PCR conditions. We used lateral flow DNA chromatography for rapid and inexpensive detection. The developed method would be applicable for screening the GM crops generated by Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Reona Takabatake
- Division of Analytical Science, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Mari Onishi
- FASMAC Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Yasutaka Minegishi
- Nippon Gene Co., Ltd., 1-5, Kandanishiki-cho, Chiyoda-ku, Tokyo 101-0054, Japan
| | - Satoshi Futo
- FASMAC Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Keisuke Soga
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kazunari Kondo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Junichi Mano
- Division of Analytical Science, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Kazumi Kitta
- Division of Analytical Science, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
13
|
Ding X, Yin K, Li Z, Pandian V, Smyth JA, Helal Z, Liu C. Cleavable hairpin beacon-enhanced fluorescence detection of nucleic acid isothermal amplification and smartphone-based readout. Sci Rep 2020; 10:18819. [PMID: 33139727 PMCID: PMC7608614 DOI: 10.1038/s41598-020-75795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Fluorescence detection of nucleic acid isothermal amplification utilizing energy-transfer-tagged oligonucleotide probes provides a highly sensitive and specific method for pathogen detection. However, currently available probes suffer from relatively weak fluorescence signals and are not suitable for simple, affordable smartphone-based detection at the point of care. Here, we present a cleavable hairpin beacon (CHB)-enhanced fluorescence detection for isothermal amplification assay. The CHB probe is a single fluorophore-tagged hairpin oligonucleotide with five continuous ribonucleotides which can be cleaved by the ribonuclease to specifically initiate DNA amplification and generate strong fluorescence signals. By coupling with loop-mediated isothermal amplification (LAMP), the CHB probe could detect Borrelia burgdorferi (B. burgdorferi) recA gene with a sensitivity of 100 copies within 25 min and generated stronger specific fluorescence signals which were easily read and analysed by our programmed smartphone. Also, this CHB-enhanced LAMP (CHB-LAMP) assay was successfully demonstrated to detect B. burgdorferi DNA extracted from tick species, showing comparable results to real-time PCR assay. In addition, our CHB probe was compatible with other isothermal amplifications, such as isothermal multiple-self-matching-initiated amplification (IMSA). Therefore, CHB-enhanced fluorescence detection is anticipated to facilitate the development of simple, sensitive smartphone-based point-of-care pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Vikram Pandian
- Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Joan A Smyth
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Zeinab Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops. Food Chem 2020; 335:127627. [PMID: 32738534 DOI: 10.1016/j.foodchem.2020.127627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/24/2022]
Abstract
A colloidal gold immunochromatographic strip (ICS) for simultaneous detection of multiple transgenic proteins, including CP4 EPSPS, BT-Cry1Ab and BT-Cry1Ac, was developed in this study. The sensitivity of the strip to the target protein was 5 ng/mL for CP4 EPSPS, 100 ng/mL for BT-Cry1Ab and Cry1Ac, respectively. Parallel analysis for maize, soybean, sugar beet and cotton showed the strip could detect 1% of transgenic content in crops containing BT-Cry1Ab and Cry1Ac, and, at least, 0.1% of content in crops containing CP4 EPSPS. The detection results for seed samples indicated the multicomponent analysis ICS had good accuracy. The analysis could be completed within 10 min and had the advantages of being high-throughput, easy to operate and visual detection. This is the first report of semi-quantitative ICS for detecting three transgenic proteins simultaneously. The developed approach may provide insights into the development of ICS for analyzing simultaneously multiple components in genetically modified crops.
Collapse
|
15
|
A loop-mediated isothermal amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp. Int J Food Microbiol 2020; 325:108627. [PMID: 32334331 DOI: 10.1016/j.ijfoodmicro.2020.108627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 02/01/2023]
Abstract
Fumonisins are mycotoxins that contaminate maize and maize-based food products, and feed. They have been associated with nerve system disorders in horses, pulmonary edema in swine as well as neural tube defects and esophageal cancer in humans. The fum1 gene codes for a polyketide synthase involved in the biosynthesis of fumonisins. It is present in the genomes of all fumonisin producing Fusarium spp. Reliable detection of fum1 can provide an estimate of the toxicological potential of cultures and food sources. Therefore, a fum1 specific LAMP assay was developed and tested with purified DNA of 48 different species from the Fusarium fujikuroi species complex (FFSC). The fum1 gene was detected in 22 species among which F. fujikuroi, F. globosum, F. nygamai, F. proliferatum, F. subglutinans and F. verticillioides were the most prominent fumonisin producers. None out of 92 tested non-Fusarium species showed cross reactions with the new assay. The lowest limit of detection (LOD) was 5 pg of genomic DNA per reaction for F. fujikuroi, F. nygamai and F. verticillioides. Higher LODs were found for other LAMP positive species. Apart from pure genomic DNA, the LAMP assay detected fumonisin-producers when 103 conidia/reaction were used as template after mechanical lysis. LAMP-results were well correlated with FB1 production. This is the first report on fumonisin production in strains of F. annanatum, F. coicis, F. mundagurra, F. newnesense, F. pininemorale, F. sororula, F. tjataeba, F. udum and F. werrikimbe. Usefulness of the LAMP assay was demonstrated by analyzing fumonisin contaminated maize grains. The new LAMP assay is rapid, sensitive and reliable for the diagnosis of typical fumonisin producers and can be a versatile tool in HACCP concepts that target the reduction of fumonisins in the food and feed chain.
Collapse
|
16
|
Plácido A, Ferreira-da-Silva F, Leite JRSA, de-los-Santos-Álvarez N, Delerue-Matos C. A convenient renewable surface plasmon resonance chip for relative quantification of genetically modified soybean in food and feed. PLoS One 2020; 15:e0229659. [PMID: 32101588 PMCID: PMC7043770 DOI: 10.1371/journal.pone.0229659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
The cultivation of genetically modified organisms (GMO) continues to expand worldwide. Still, many consumers express concerns about the use of GMO in food or feed, and many countries have legislated on labelling systems to indicate the presence of GMO in commercial products. To deal with the increased number of GMO events and to address related regulations, alternative detection methods for GMO inspection are required. In this work, a genosensor based on Surface Plasmon Resonance under continuous flow was developed for the detection and quantification of a genetically modified soybean (event GTS 40-3-2). In a single chip, the simultaneous detection of the event-specific and the taxon-specific samples were achieved, whose detection limits were 20 pM and 16 pM, respectively. The reproducibility was 1.4%, which supports the use of the chip as a reliable and cost-effective alternative to other DNA-based techniques. The results indicate that the proposed method is a versatile tool for GMO quantification in food and feed samples.
Collapse
Affiliation(s)
- Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - José Roberto S. A. Leite
- Área Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, Federal District, Brazil
| | | | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
17
|
Wu H, He JS, Zhang F, Ping J, Wu J. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/Cas12a coupled with a designed reaction vessel: Rapid, specific and sensitive. Anal Chim Acta 2020; 1096:130-137. [PMID: 31883579 DOI: 10.1016/j.aca.2019.10.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022]
Abstract
An ultrafast and convenient method for visually detecting CaMV35S promoter amplicon (amplified products) was established by using CRISPR/Cas12a system coupled with a designed reaction vessel. Genetically modified (GM) soybean (Roundup Ready®) powders containing CaMV35S promoter were employed as detection targets, which were amplified by loop-mediated isothermal amplification (LAMP). The CRISPR/Cas12a system directly mixed with amplified products at 37 °C for 5 min and detection results could be clearly identified by the naked eye under UV light (254 nm). A designed reaction vessel was employed to make operation easier and could effectively prevent contamination at the source. The CRISPR/Cas12a detection system was optimized in our study and the concentration of magnesium ions was proved to be important for the work of CRISPR/Cas12a system. The optimized concentration range of magnesium ions was between 10 mM and 12 mM. Besides, the activated Bst DNA polymerase also had little effects on CRISPR/Cas12a system. The developed method could significantly distinguish the specific and non-specific amplification. And as low as 0.05% transgenic contents in soybean powders could be detected. It would have the potential to be complementary to instrument-based ultrahigh sensitive method and provide a new solution for on-site rapid detection.
Collapse
Affiliation(s)
- Hui Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Establishment and application of a loop-mediated isothermal amplification method with double-stranded displacement probes to quantify the genetically modified rice M12 event. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03430-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Kaygusuz D, Vural S, Aytekin AÖ, Lucas SJ, Elitas M. DaimonDNA: A portable, low-cost loop-mediated isothermal amplification platform for naked-eye detection of genetically modified organisms in resource-limited settings. Biosens Bioelectron 2019; 141:111409. [PMID: 31207569 DOI: 10.1016/j.bios.2019.111409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/13/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
Abstract
The steady increase in commercialization of genetically modified organisms (GMOs) demands low-cost, rapid and portable GMO-detection methods that are technically and economically sustainable. Traditional nucleic acid detection platforms are still expensive, immobile and generate complex read-outs to be analyzed by experienced personal. Herein, we report the development of a portable, rapid and user-friendly GMO-detection biosensor, DaimonDNA. The system specifically amplifies the target DNA using loop-mediated isothermal amplification (LAMP) and provides real-time, naked-eye detection with Hydroxynaphthol blue reagent in less than 30 min. The construction of the platform relies on 3D printing and off-the-shelf electronic components that makes it extremely low-cost (<25 Euro), light weight (108 g), mobile (6 × 6 × 3 cm) and suitable for field deployment. We present the detection of the soybean lectin gene as a species control, and P35S as a transgene element found in many GMO varieties. We confirmed specificity of the DaimonDNA biosensor using" RoundUp Ready (RRS)" and MON89788 soybean genomic DNA with P35S and lectin primer sets. We characterized sensitivity of our system using 76.92, 769.2 and 7692 copies of RRS soybean genomic DNA in a non-GMO background. We benchmarked the DNA amplification and detection efficiency of our system against a thermocycling machine by quantifying the images obtained from gel electrophoresis and showed that our system is comparable to most other reported isothermal amplification techniques. This system can also be used for widespread point-of-care or field-based testing that is infrequently performed due to the lack of rapid, inexpensive, user-friendly and portable methods.
Collapse
Affiliation(s)
- Doğukan Kaygusuz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Sümeyra Vural
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ali Özhan Aytekin
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| |
Collapse
|
20
|
Qi X, Liu B, Wu H, Song Q, Jiang J, Bu Y, Rui J, Zou B, Zhou G. Bacterial communities under long-term conventional and transgenic cotton farming systems using V3-V5 and V5-V9 of 16s rDNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:618-628. [PMID: 30165339 DOI: 10.1016/j.ecoenv.2018.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Understanding the community structure of soil microbes is required to evaluate the potential effects of genetically modified (GM) plants on ecological environments. Bacterial communities in soil planted with conventional cotton (CC) and transgenic cultivar (TC) in a natural ecosystem for three years were characterized by 454 pyrosequencing of the V3-V5 and V5-V9 regions of 16S rDNA from June to September 2013. V3-V5 and V5-V9 regions yielded a total of 12,848 and 10,541 OTUs, respectively. The V5-V9 amplicon was additionally used to detect phyla that were poorly sequenced by V3-V5 (such as Chlamydiae, Crenarchaeota and Archaea). Among the species detected by each primer pair, 46% of the species identified from V3-V5 and 60% of those identified from V5-V9 were detected by both primer pairs. Although distinct bacterial compositions existed between the two amplified regions, statistical analysis revealed no significant difference in the diversity indexes or phylogenetic patterns in TC versus compared to those in the CC control. Further, clustering analysis in both regions indicated that there was no unambiguous aggregation in TC compared to that in CC control. Of all 26 phyla detected by both regions, each region detected 2 distinct phyla exhibiting significant variations in abundance. The species unique to each treatment field accounted for less than 27% of all species and were rare taxa (abundance < 0.15%). However, a small fraction of diagnostic taxa with specific ecological functions differed significantly between TC and CC. These differences were not driven by any obvious environmental factors. The results established a comprehensive inventory of the bacterial communities associated with GM plants and indicated that transgenic cotton may not significantly affect soil microorganisms compared with conventional cotton over a three-year period. Furthermore, diagnostic taxa were provided for monitoring the perturbation in soil, but further verification in future studies is required.
Collapse
Affiliation(s)
- Xiemin Qi
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Biao Liu
- Key Laboratory of Biosafety, Ministry of Environmental Protection of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Haiping Wu
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China
| | - Qinxin Song
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China; Department of Pharmaceutical Analysis, Jiangsu key lab of drug screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Jiang
- Department of Pharmaceutical Analysis, Jiangsu key lab of drug screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bu
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China
| | - Jianzhong Rui
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China.
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
21
|
Takabatake R, Kagiya Y, Minegishi Y, Futo S, Soga K, Nakamura K, Kondo K, Mano J, Kitta K. Rapid Screening Detection of Genetically Modified Crops by Loop-Mediated Isothermal Amplification with a Lateral Flow Dipstick. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7839-7845. [PMID: 29949351 DOI: 10.1021/acs.jafc.8b01765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed a novel loop-mediated isothermal amplification (LAMP)-based detection method using lateral flow dipstick chromatography for genetically modified (GM) soybean and maize events. The single-stranded tag hybridization (STH) for the chromatography printed-array strip (C-PAS) system was used for detections targeting the cauliflower mosaic virus 35S promoter, mannose-6-phosphate isomerase gene, Pisum sativum ribulose 1, 5-bisphosphate carboxylase terminator, a common sequence between the Cry1Ab and Cry1Ac genes, and a GA21-specific sequence. The STH C-PAS system was applicable for multiplex analyses to perform simultaneous detections. The limit of detection was 0.5% or less for each target. By using the developed method, the LAMP amplification was visually detected. Moreover, the detection could be carried out without any expensive instruments, even for the DNA amplification steps, by virtue of the isothermal reaction. We demonstrated that the rapid and useful method developed here would be applicable for screening GM crops.
Collapse
Affiliation(s)
- Reona Takabatake
- Division of Analytical Science, Food Research Institute , National Agriculture and Food Research Organization , 2-1-12 Kannondai , Tsukuba , Ibaraki 305-8642 , Japan
| | - Yukari Kagiya
- FASMAC Co., Ltd. , 5-1-3 Midorigaoka , Atsugi , Kanagawa 243-0041 , Japan
| | - Yasutaka Minegishi
- Nippon Gene Co., Ltd. , 1-5, Kandanishiki-cho, Chiyoda-ku , Tokyo 101-0054 , Japan
| | - Satoshi Futo
- FASMAC Co., Ltd. , 5-1-3 Midorigaoka , Atsugi , Kanagawa 243-0041 , Japan
| | - Keisuke Soga
- National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki-ku, Kawasaki-shi , Kanagawa 210-9501 , Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki-ku, Kawasaki-shi , Kanagawa 210-9501 , Japan
| | - Kazunari Kondo
- National Institute of Health Sciences , 3-25-26, Tonomachi , Kawasaki-ku, Kawasaki-shi , Kanagawa 210-9501 , Japan
| | - Junichi Mano
- Division of Analytical Science, Food Research Institute , National Agriculture and Food Research Organization , 2-1-12 Kannondai , Tsukuba , Ibaraki 305-8642 , Japan
| | - Kazumi Kitta
- Division of Analytical Science, Food Research Institute , National Agriculture and Food Research Organization , 2-1-12 Kannondai , Tsukuba , Ibaraki 305-8642 , Japan
| |
Collapse
|