1
|
Lei WH, Liu ZY, Xie XX, Zhong N, Zhang LJ, Cao MJ, Lin D, Jin T, Zhang C, Chen YL. High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis. Int J Biol Macromol 2025; 299:140290. [PMID: 39863199 DOI: 10.1016/j.ijbiomac.2025.140290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy. Consequently, it is necessary to develop hemoglobin-specific antibodies characterized by high specificity and affinity to enhance detection accuracy. The variable domain of the new antigen receptor (VNAR) from sharks, the smallest antigen-binding unit, is ideal for disease diagnosis and treatment due to its small size, stability, and high affinity. In this study, Chiloscyllium plagiosum was immunized with human hemoglobin protein. Nine VNAR immune libraries with sizes ranging from 1 × 108 to 1.82 × 109 colony-forming units (CFU) were constructed and biopanned using phage display, resulting in three hemoglobin-specific VNAR sequences (5-10C, 7-11A, T-12-4D). These sequences were inserted into pTT5-TEV-Fc vectors and transfected into HEK 293F cells. The resulting VNAR-Fc fusion proteins were purified from the cell culture supernatants. Binding activity, cross-reactivity, physicochemical stability, and epitope competition were evaluated using non-competitive enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-12-4D-Fc exhibited the highest affinity with a KD value of 7.59 nM and superior physicochemical stability. It maintained over 80 % binding activity at 90 °C, over 51 % in extreme pH conditions (pH 2 and 12), and above 65 % in urea concentrations up to 8 mol/L. Its binding activity remained largely unaffected after 6 h of incubation in human plasma-like medium (HPLM). The binding epitope competition results showed that 5-10C-Fc and T-12-4D-Fc targeted the same hemoglobin epitope. Molecular dynamics simulations revealed hydrogen bonds as the primary interaction force between VNARs and hemoglobin. Furthermore, a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) method was established for the detection of human hemoglobin, utilizing T-12-4D-Fc as the coating antibody. This technique demonstrated high accuracy, reproducibility and specificity when applied to human whole blood samples. Hence, the identified VNARs, particularly T-12-4D, demonstrated good stability, specificity, and high affinity, filling the gap of hemoglobin-targeting shark-derived single-domain antibodies and offering a foundation for diagnosing and monitoring hemoglobin-related diseases.
Collapse
Affiliation(s)
- Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zu-Ying Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Xiao Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | | | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Wu H, Wu A, Liu L, Kuang H, Sun M, Xu C, Xu X. Computerized analysis of haptens for the ultrasensitive and specific detection of Pyriftalid. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134705. [PMID: 38805812 DOI: 10.1016/j.jhazmat.2024.134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.
Collapse
Affiliation(s)
- Huihui Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Liu Y, Guo L, Xu X, Kuang H, Liu L, Xu C, Sun M. Immunochromatographic visualization detection platform for bitertanol in foods. Food Chem 2024; 444:138599. [PMID: 38310776 DOI: 10.1016/j.foodchem.2024.138599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
As a widely used fungicide in agriculture, bitertanol (BIT) significantly affects hormone regulation leading to imbalance of homeostasis in vivo, which makes it necessary to monitor BIT residues in foods. In this research, a novel hapten derivation scheme was designed by analyzing the chemical structure of BIT to prepare an anti-BIT monoclonal antibody with high affinity, specificity and sensitivity (half inhibitory concentration of 4.78 ng/mL). Subsequently, a visualized gold immunochromatographic assay (GICA) platform was established based on antigen-antibody specific recognition, with a limit of detection of 0.06 mg/kg and 0.18 mg/kg in cucumber and tomato, respectively. GICA has spiked recoveries of 84.3 %-114.1 %, determines results are not significantly different from those of LC-MS/MS, and the complex purification treatments can be reduced during the detection process. Therefore, the developed GICA is a reliable, rapid, and sensitive method for on-site rapid monitoring of BIT in foods.
Collapse
Affiliation(s)
- Yang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
4
|
Liu Y, Guo L, Liu L, Xu X, Kuang H, Xu L, Xu C. Immunoassay for the detection of cyproconazole in foods: From hapten synthesis to the establishment of a gold immunochromatographic assay. Food Chem 2024; 437:137847. [PMID: 37913707 DOI: 10.1016/j.foodchem.2023.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Cyproconazole (CPZ) is extensively used in agricultural production. However, its overuse can lead to high residue problems in crops. Existing detection methods are still dominated by instrumental methods and the development of rapid, sensitive field detection remains a challenge. In this study, we designed a novel hapten synthetic pathway and prepared a monoclonal antibody (mAb) that could specifically recognize CPZ with high sensitivity (half inhibition rate was 0.27 ng/mL). From this, a gold immunochromatographic assay (GICA) for the detection of CPZ was established by combining the mAb with gold nanoparticles, with limits of detection in rice, tomatoes and grapes of 0.02 mg/kg, 0.01 mg/kg and 0.05 mg/kg, respectively. The spiked recoveries ranged from 86.5 % to 115.1 %, and the results showed that the GICA was not significantly different from detection using LC-MS/MS. Therefore, we have successfully developed a GICA method for the reliable in situ, rapid and sensitive detection of CPZ.
Collapse
Affiliation(s)
- Yang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
5
|
Tai J, Hu H, Cao X, Liang X, Lu Y, Zhang H. Identification of animal species of origin in meat based on glycopeptide analysis by UPLC-QTOF-MS. Anal Bioanal Chem 2023; 415:7235-7246. [PMID: 37957327 DOI: 10.1007/s00216-023-04992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Adulteration of meat and meat products causes a concerning threat for consumers. It is necessary to develop novel robust and sensitive methods which can authenticate the origin of meat species to compensate for the drawbacks of existing methods. In the present study, the sarcoplasmic proteins of six meat species, namely, pork, beef, mutton, chicken, duck and turkey, were analyzed by one-dimensional gel electrophoresis. It was found that enolase could be used as a potential biomarker protein to distinguish between livestock and poultry meats. The glycosylation sites and glycans of enolase were analyzed by UPLC-QTOF-MS and a total of 41 glycopeptides were identified, indicating that the enolase N-glycopeptide profiles of different meats were species-specific. The identification models of livestock meat, poultry and mixed animal were established based on the glycopeptide contents, and the explanation degree of the three models was higher than 90%. The model prediction performance and feasibility results showed that the average prediction accuracy of the three models was 75.43%, with the animal-derived meat identification model showing superiority in identifying more closely related species. The obtained results indicated that the developed strategy was promising for application in animal-derived meat species monitoring and the quality supervision of animal-derived food.
Collapse
Affiliation(s)
- Jingjing Tai
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Huang Hu
- School of Agriculture, JinHua Polytechnic, Jinhua, 321016, Zhejiang, China
| | - Xiaoji Cao
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xinle Liang
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Yanbin Lu
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Hong Zhang
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
6
|
Liu T, Tian Y, Cao Y, Wang Z, Zha G, Liu W, Wei L, Xiao H, Zhang Q, Cao C. Isoelectric point barcode and similarity analysis with the earth mover's distance for identification of species origin of raw meat. Food Res Int 2023; 166:112600. [PMID: 36914325 DOI: 10.1016/j.foodres.2023.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
In this work, by combining the microcolumn isoelectric focusing (mIEF) and similarity analysis with the earth mover's distance (EMD) metric, we proposed the concept of isoelectric point (pI) barcode for the identification of species origin of raw meat. At first, we used the mIEF to analyze 14 meat species, including 8 species of livestock and 6 species of poultry, to generate 140 electropherograms of myoglobin/hemoglobin (Mb/Hb) markers. Secondly, we binarized the electropherograms and converted them into the pI barcodes that only showed the major Mb/Hb bands for the EMD analysis. Thirdly, we efficiently developed the barcode database of 14 meat species and successfully used the EMD method to identify 9 meat products thanks to the high throughput of mIEF and the simplified format of the barcode for similarity analysis. The developed method had the merits of facility, rapidity and low cost. The developed concept and method had evident potential to the facile identification of meat species.
Collapse
Affiliation(s)
- Tian Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wei
- Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hua Xiao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengxi Cao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
7
|
Dietary Heme-Containing Proteins: Structures, Applications, and Challenges. Foods 2022; 11:foods11223594. [PMID: 36429186 PMCID: PMC9689966 DOI: 10.3390/foods11223594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Heme-containing proteins, commonly abundant in red meat and blood, are considered promising dietary sources for iron supplementation and fortification with higher bioavailability and less side effects. As the precise structures and accurate bioactivity mechanism of various heme-containing proteins (hemoglobin, myoglobin, cytochrome, etc.) are determined, many methods have been explored for iron fortification. Based on their physicochemical and biological functions, heme-containing proteins and the hydrolyzed peptides have been also widely utilized as food ingredients and antibacterial agents in recent years. In this review, we summarized the structural characterization of hemoglobin, myoglobin, and other heme proteins in detail, and highlighted recent advances in applications of naturally occurring heme-containing proteins as dietary iron sources in the field of food science and nutrition. The regulation of absorption rate, auto-oxidation process, and dietary consumption of heme-containing proteins are then discussed. Future outlooks are also highlighted with the aim to suggest a research line to follow for further studies.
Collapse
|
8
|
Xu H, Lan H, Pan D, Xu J, Wang X. Visual Detection of Chicken Adulteration Based on a Lateral Flow Strip-PCR Strategy. Foods 2022; 11:foods11152351. [PMID: 35954117 PMCID: PMC9368418 DOI: 10.3390/foods11152351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to develop an accurate, easy-to-use, and cost-effective method for the detection of chicken adulteration based on polymerase chain reaction (PCR) and lateral flow strip (LFS). We compared six DNA extraction methods, namely the cetyltrimethylammonium bromide (CTAB) method, salt method, urea method, SDS method, guanidine isothiocyanate method, and commercial kit method. The chicken cytb gene was used as a target to design specific primers. The specificity and sensitivity of the PCR-LFS system were tested using a self-assembled lateral flow measurement sensor. The results showed that the DNA concentration obtained by salt methods is up to 533 ± 84 ng µL−1, is a suitable replacement for commercial kits. The PCR-LFS method exhibits high specificity at an annealing temperature of 62 °C and does not cross-react with other animal sources. This strategy is also highly sensitive, being able to detect 0.1% of chicken in artificial adulterated meat. The results of the test strips can be observed with the naked eye within 5 min, and this result is consistent with the electrophoresis result, demonstrating its high accuracy. Moreover, the detection system has already been successfully used to detect chicken in commercial samples. Hence, this PCR-LFS strategy provides a potential tool to verify the authenticity of chicken.
Collapse
Affiliation(s)
- Haoyi Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence: (H.L.); (X.W.)
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
9
|
Jiang X, Mu H, Hsieh YHP, Rao Q. Isolation and Characterization of Chicken Serum Albumin (Hen Egg Alpha-Livetin, Gal d 5). Foods 2022; 11:foods11111637. [PMID: 35681387 PMCID: PMC9180759 DOI: 10.3390/foods11111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Chicken serum albumin, i.e., hen egg alpha-livetin, is a recognized food allergen in chicken meat and hen eggs. Currently, there is no immunoassay available for its detection from food matrices. The characterization of chicken serum albumin-specific antibodies and the extraction of the target protein are essential for immunoassay development. One monoclonal antibody (mAb), 3H4, was used in this study due to its selectivity to a linear epitope on avian serum albumin. To study the extraction of chicken serum albumin, phosphate-buffered saline (PBS) with two additives, i.e., sodium dodecyl sulfate (SDS) and dithiothreitol (DTT), was used for its extraction from chicken blood plasma and hen egg yolk. SDS and DTT improved the chicken serum albumin’s recovery and enhanced chicken serum albumin’s immunodetection. In addition, chicken serum albumin retained the best solubility and immunoreactivity after heat treatment in a neutral condition. It experienced degradation and aggregation in acidic and alkaline conditions, respectively. Overall, PBS containing 0.1% SDS and 1 mM DTT (pH 7.2) was a better extraction buffer for chicken serum albumin. However, the complexity of the food matrix and elevated temperature could reduce its solubility and immunoreactivity.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (X.J.); (Y.-H.P.H.)
| | - Han Mu
- Novavax, Inc., Gaithersburg, MD 20878, USA;
| | - Yun-Hwa Peggy Hsieh
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (X.J.); (Y.-H.P.H.)
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (X.J.); (Y.-H.P.H.)
- Correspondence: ; Tel.: +1-850-644-1829
| |
Collapse
|
10
|
Feng CH, Otani C, Ogawa Y. Innovatively identifying naringin and hesperidin by using terahertz spectroscopy and evaluating flavonoids extracts from waste orange peels by coupling with multivariate analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Lu Q, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. Development of an Immunochromatographic Strip for the Rapid and Ultrasensitive Detection of Gamithromycin. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Seddaoui N, Amine A. Smartphone-based competitive immunoassay for quantitative on-site detection of meat adulteration. Talanta 2021; 230:122346. [PMID: 33934795 DOI: 10.1016/j.talanta.2021.122346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/15/2023]
Abstract
Rapid, sensitive, and portable analytical methods for on-site inspection of food fraud are now an urgent requirement to ensure food quality and satisfy the ethnic considerations of consumers. Hence, for the first time, a colorimetric smartphone-based immunoassay was developed for the on-site detection of pork adulteration in meat. In detail, the immunoassay was based on a competitive strategy in which immobilized standard porcine IgG competed with the target porcine IgG extracted in a single step from meat samples. The parameters involved in each step of the immunoassay conception and the digital colorimetric detection were carefully investigated and optimized. Using polystyrene microplates as ready-to-use stable and portable immunoplatforms, TMB as chromogenic substrate, smartphone as signal readout, and Image J software for image processing; the developed immunoassay was able to detect as low as 0.01% of pork in meat mixtures in a total assay time of 30 min. The selectivity of the immunoassay was evaluated for different meat species, and it was shown to selectively respond only to pork. Furthermore, excellent stability of the prepared immunological platform was demonstrated under extreme temperature conditions (50 °C), which confirms its high portability potential for in situ quantification of pork, while being relatively cost effective and non-laborious. The developed method also provides great precision (RSD < 6%) and accuracy (relative error< 6%). Given the universal use of smartphones as portable and affordable devices, such format of immunoassay could be a promising approach for rapid and sensitive real-time monitoring of food fraud.
Collapse
Affiliation(s)
- Narjiss Seddaoui
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146, Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146, Mohammedia, Morocco.
| |
Collapse
|
13
|
Jiang X, Wu M, Albo J, Rao Q. Non-Specific Binding and Cross-Reaction of ELISA: A Case Study of Porcine Hemoglobin Detection. Foods 2021; 10:foods10081708. [PMID: 34441486 PMCID: PMC8394222 DOI: 10.3390/foods10081708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Different types of enzyme-linked immunosorbent assays (ELISA) have been widely used to control food safety and quality. To develop an accurate and reproducible ELISA, false immunodetection results caused by non-specific binding (NSB) and cross-reaction must be prevented. During the case study of sandwich ELISA development for the detection of porcine hemoglobin (PHb), several critical factors leading to NSB and cross-reaction were found. First, to reduce the NSB of the target analyte, the selection of microplate and blocker was discussed. Second, cross-reactions between enzyme-labeled secondary antibodies and sample proteins were demonstrated. In addition, the function of (3-aminopropyl)triethoxysilane (APTES) was evaluated. Overall, this study highlights the essence of both antibody and assay validation to minimize any false-positive/negative immunodetection results.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Meng Wu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050081, China;
| | - Jonathan Albo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-1829
| |
Collapse
|
14
|
Chen L, Hu X, Sun Y, Xing Y, Zhang G. Immunochromatographic assay based on high-affine monoclonal antibody for the detection of imidocarb in milk. J Food Sci 2021; 86:3413-3421. [PMID: 34268739 DOI: 10.1111/1750-3841.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Imidocarb (IM) is an antiprotozoal agent, which is mainly used to treat babesiosis and piroplasmosis for animals. However, overdose or improbable utilization cause IM residues in animal origin products, which would be harmful to human health. Here, a monoclonal antibody (mAb) against IM with extremely sensitive and specific features has been successfully prepared from a novel immunogen synthesized by virtue of the active ester method. The concentration of half-maximal inhibition (IC50 ) of the mAb was 0.074 ng/ml and the affinity constant was 4.58 × 1010 L/mol. On the basis of this condition, an immunochromatographic strip (ICS) is proposed that could be applied in milk samples to test IM rapidly. For the ICS, the visual detection limit (cut-off value) was 5 ng/ml, IC50 was 0.4 ng/ml, the limit of detection (LOD) was 0.078 ng/ml, the linear detection scope was 0.117 to 1.37 ng/ml. The recovery rates ranged from 88.83% to 91.47% and coefficients of variation (CV) were in the spectrum of 7.31% to 9.43%. In general, the recommended test strip provided an exceedingly simple and reliable detection method for quickly testing the IM. PRACTICAL APPLICATION: In our joint efforts, an extremely sensitive monoclonal antibody against imidocarb was obtained and a test strip for the rapid detection of imidocarb in milk was developed. The developed method could be applied to the field and provided great potential for analytical of imidocarb in other matrixes.
Collapse
Affiliation(s)
- Linlin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
15
|
Lin L, Song S, Wu X, Liu L, Kuang H, Xiao J, Xu C. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst 2021; 146:721-729. [DOI: 10.1039/d0an01783c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and an immunochromatographic strip assay were developed for the rapid screening of robenidine hydrochloride (ROBH) in samples.
Collapse
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment
- China National Center for Food Safety Risk Assessment
- Beijing
- People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
16
|
Čapla J, Zajác P, Čurlej J, Belej Ľ, Kročko M, Bobko M, Benešová L, Jakabová S, Vlčko T. Procedures for the identification and detection of adulteration of fish and meat products. POTRAVINARSTVO 2020. [DOI: 10.5219/1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition or exchange of cheaper fish species instead of more expensive fish species is a known form of fraud in the food industry. This can take place accidentally due to the lack of expertise or act as a fraud. The interest in detecting animal species in meat products is based on religious demands (halal and kosher) as well as on product adulterations. Authentication of fish and meat products is critical in the food industry. Meat and fish adulteration, mainly for economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Economically motivated adulteration of food is estimated to create damage of around € 8 to 12 billion per year. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat and fish adulteration. Various analytical methods often based on protein or DNA measurements are utilized to identify fish and meat species. Although many strategies have been adopted to assure the authenticity of fish and meat and meat a fish products, such as the protected designation of origin, protected geographical indication, certificate of specific characteristics, and so on, the coverage is too small, and it is unrealistic to certify all meat products for protection from adulteration. Therefore, effective supervision is very important for ensuring the suitable development of the meat industry, and rapid, effective, accurate, and reliable detection technologies are fundamental technical support for this goal. Recently, several methods, including DNA analysis, protein analysis, and fat-based analysis, have been effectively employed for the identification of meat and fish species.
Collapse
|
17
|
Recombinase Polymerase Amplification Based Multiplex Lateral Flow Dipstick for Fast Identification of Duck Ingredient in Adulterated Beef. Animals (Basel) 2020; 10:ani10101765. [PMID: 33003526 PMCID: PMC7601885 DOI: 10.3390/ani10101765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The adulteration and authenticity of meat and meat products has become a global social problem. Beef is often intentionally adulterated with cheap meat. In order to ensure the authenticity of meat, and provide technical support to regulatory authorities, we developed a rapid and visual method to detect duck ingredient in adulterated beef. This method is implemented recombinase polymerase amplification (RPA) and multiplex lateral flow dipstick (MLFD) cascade. The whole RPA-MLFD reaction process can be finished within 35 min, and the results can be determined by naked eyes. RPA-MLFD was applied to simultaneously detect duck ingredient and beef ingredient without using additional instruments. An adulteration ratio as low as 5% of duck ingredient in beef can be easily measured. Moreover, we confirmed that our new method held good potential in the detection of commercially processed meat samples. Therefore, this study reports a useful animal derived meat adulteration detection method, which have potential application in future. Abstract Meat adulteration has become a global social problem. In order to protect consumers from meat adulteration, several methods have been developed to identify meat species. However, the conventional methods are labor-intensive, time-consuming and require instruments. In the present study, a rapid and visual method based on recombinase polymerase amplification (RPA) and multiplex lateral flow dipstick (MLFD) was developed to detect duck ingredient in adulterated beef. Using recombinase and strand displacement polymerase enable RPA to amplify different double-labeled DNA amplicons at room temperature, which can be further detected by MLFD. The whole reaction process can be finished within 35 min, and the results can be determined by naked eyes. As low as 5% of duck ingredient in adulterated beef can be easily measured. Moreover, we confirmed that our new method held good potential in the detection of commercially processed meat samples. In conclusion, this study reported a useful animal derived meat adulteration detection method, which have potential application in future.
Collapse
|
18
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Na G, Hu X, Sun Y, Kwee S, Xing G, Xing Y, Zhang G. A highly sensitive monoclonal antibody-based paper sensor for simultaneously detecting valnemulin and tiamulin in porcine liver. J Food Sci 2020; 85:1681-1688. [PMID: 32418205 DOI: 10.1111/1750-3841.15136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
Valnemulin (VAL) and tiamulin (TIA) are pleuromutilin antibiotics used primarily for treating bacterial infections in swine or other food animals. Furthermore, VAL and TIA are also employed as feed additives to promote animal growth. However, the illegal use of VAL and TIA could cause a series of hazards to consumers. Here, VAL was designed to be conjugated with bovine serum protein to prepare immunogen. A highly sensitive monoclonal antibody that recognized both VAL and TIA has been successfully produced. Moreover, an immunochromatographic strip assay for rapidly screening VAL and TIA in porcine liver was established with visual detection limits (cutoff values) of 50 and 25 ng/g, respectively. The IC50 values calculated from the equation of the standard curve were 6.06 and 3.45 ng/g and the limits of detection were 0.96 and 0.29 ng/g for VAL and TIA. According to the recovery experiment results, the test strip exhibited acceptable accuracy and precision. Generally, the proposed strip provided a practical tool for the detection of VAL and TIA. PRACTICAL APPLICATION: We produced a highly sensitive monoclonal antibody and developed an immunoassay strip for simultaneously monitoring TIA and VAL. Additionally it was preliminarily confirmed that the rapid detection tool was suitable for screening TIA and VAL in porcine liver.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, U.S.A
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
20
|
Jiang X, Wu M, Dong W, Rao Q, Huo H, Han Q. Monoclonal antibody-based sandwich enzyme-linked immunosorbent assay for porcine hemoglobin quantification. Food Chem 2020; 324:126880. [PMID: 32344349 DOI: 10.1016/j.foodchem.2020.126880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
The major objective of this study was to establish a monoclonal antibody (mAb)-based sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of porcine hemoglobin (PHb) in raw meat products. Before assay development, two mAbs immunoreactive to PHb β subunit with different epitopes were characterized. The optimized immunoassay was specific to PHb and had a wide PHb working range from 15.6 µg/mL to 3,000 µg/mL and high reproducibility with low coefficient of variations (CV < 20%). Through this assay, the estimated PHb residuals in pork loin and shoulder meats were 0.4 mg/g and 1.1 mg/g, respectively. In addition, this immunoassay could effectively quantify PHb in laboratory-spiked meats (pork loin, pork shoulder, and turkey breast) with acceptable recovery. Overall, this is the first mAb-based sandwich ELISA that is suitable for the government, food industry, and third-party authority to monitor PHb residuals or porcine blood adulteration in raw pork and pork-free meat products.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Meng Wu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei 050081, China
| | - Weiya Dong
- Hebei Animal Disease Prevention and Control Center, Shijiazhuang, Hebei 050050, China
| | - Qinchun Rao
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Huiling Huo
- Hebei Institute of Veterinary Drug Control, Shijiazhuang, Hebei 050035, China
| | - Qingan Han
- Hebei Animal Disease Prevention and Control Center, Shijiazhuang, Hebei 050050, China
| |
Collapse
|
21
|
Karahalil E. Principles of halal-compliant fermentations: Microbial alternatives for the halal food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Na G, Hu X, Sun Y, Xing G, Xing Y, Zhang G. A novel gold particle-based paper sensor for sensitively detecting carprofen in bovine muscle. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1740178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Guanqiong Na
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaofei Hu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Yunrui Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
23
|
Seddaoui N, Amine A. A sensitive colorimetric immunoassay based on poly(dopamine) modified magnetic nanoparticles for meat authentication. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Nhari RR, Hanish I, Mokhtar NK, Hamid M, El Sheikha A. Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R.M.H. Raja Nhari
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - I. Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - N.F. Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M. Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - A.F. El Sheikha
- Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
25
|
Wang Z, Wang Z, Li T, Qiao L, Liu R, Zhao Y, Xu Z, Chen G, Yang S, Chen A. Real‐time
PCR
based on single‐copy housekeeping genes for quantitative detection of goat meat adulteration with pork. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhicheng Wang
- Department of Bioinformatics School of Life Sciences Hubei University Wuhan 430062 China
| | - Zhiying Wang
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Tingting Li
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Lu Qiao
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Rui Liu
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Gang Chen
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro‐Products, Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| |
Collapse
|
26
|
Fei Q, Zhang N, Sun C, Zhang P, Yang X, Hua Y, Li L. A novel non-enzymatic sensing platform for determination of 5'-guanosine monophosphate in meat. Food Chem 2019; 286:515-521. [PMID: 30827641 DOI: 10.1016/j.foodchem.2019.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 12/22/2022]
Abstract
Graphitic carbon nitride (g-C3N4) doped carboxylated MWCNTs nanocomposite was synthesized using a simple method. The composite films containing 45 wt%, 50 wt%, 56 wt%, 67 wt% fraction of the carboxylated MWCNTs doped into g-C3N4 were fabricated and characterized. An electrochemical non-enzymatic sensor for determination of 5'-guanosine monophosphate (GMP) based on the nanocomposite was developed. The results indicate that the g-C3N4-carboxylated MWCNTs nanocomposite has highly electrocatalytic activity, good conductivity and biocompatibility, which plays an essential role in the determination of GMP. Under the optimum conditions, the linear fitting equation was I (µA) = -0.0022c (μg·mL-1) + 0.3560 (R2 = 0.9982). The linear range was from 0.5 to 100 μg·mL-1 and the detection limit (LOD, S/N = 3) was 0.109 μg·mL-1. This non-enzymatic sensor can offer a better alternative to other methods for the analysis of GMP because of cheap cost, low detection limit and good anti-jamming capability in meat quality evaluation.
Collapse
Affiliation(s)
- Qiqi Fei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Nana Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Panpan Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaodi Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yunhui Hua
- Department of Dermatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, PR China.
| | - Li Li
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| |
Collapse
|