1
|
Muñoz-Castells R, Modesti M, Moreno-García J, Catini A, Capuano R, Di Natale C, Bellincontro A, Moreno J. Application of an Electronic Nose to the Prediction of Odorant Series in Wines Obtained with Saccharomyces or Non- Saccharomyces Yeast Strains. Molecules 2025; 30:1584. [PMID: 40286168 PMCID: PMC11990477 DOI: 10.3390/molecules30071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Electronic noses (E-noses) have become powerful tools for the rapid and cost-effective differentiation of wines, providing valuable information for the comprehensive evaluation of aroma patterns. However, they need to be trained and validated using classical analytical techniques, such as gas chromatography coupled with mass spectrometry, which accurately identify the volatile compounds in wine. In this study, five low-ethanol wines with distinctive sensory profiles-produced using Saccharomyces and non-Saccharomyces yeasts and tailored to modern consumer preferences-were analyzed to validate the E-nose. A total of 57 volatile compounds were quantified, 27 of which had an Odor Activity Value (OAV) over 0.2. The content in volatiles, grouped into 11 odorant series according to their odor descriptors, along with the data provided by 12 E-nose sensors, underwent advanced statistical treatments to identify relationships between both data matrices. Partial least squares discriminant analysis (PLS-DA) applied to the data from the 12 E-nose sensors revealed well-defined clustering patterns and produced a model that explained approximately 92% of the observed variability. In addition, a principal component regression (PCR) model was developed to assess the ability of the E-nose to non-destructively predict odorant series in wine. The synergy between the volatile compound profiles and the pattern recognition capability of the E-nose, as captured by PLS-DA, enables a detailed characterization of wine aromas. In addition, predictive models that integrate data from gas chromatography, flame ionization detection, and mass spectrometry (GC-FID/GC-MSD) with the electronic nose demonstrating a promising approach for a rapid and accurate odor series prediction, thereby increasing the efficiency of wine aroma analysis.
Collapse
Affiliation(s)
- Raquel Muñoz-Castells
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| | - Margherita Modesti
- Department for Innovation of Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (A.C.); (R.C.); (C.D.N.)
| | - Andrea Bellincontro
- Department for Innovation of Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Marie Curie (C3) and Severo Ochoa (C6) Buildings, Ctra. N-IV-A, km 396, 14014 Córdoba, Spain; (R.M.-C.); (J.M.-G.)
| |
Collapse
|
2
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
3
|
Dumitriu (Gabur) GD, Sánchez-Suárez F, Peinado RA, Cotea VV, de Lerma NL, Gabur I, Simioniuc V. Metabolomics of Red Wines Aged Traditionally, with Chips or Staves. Foods 2024; 13:196. [PMID: 38254497 PMCID: PMC10814756 DOI: 10.3390/foods13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Traditionally and alternatively aged wines' odour activity values (OAVs) are investigated to differentiate and highlight the differences between the selected methods. An analysis of the volatile aroma compounds of wines derived from ageing in barrels, oak chips, and staves was performed using stir bar sorptive extraction chromatography-mass spectroscopy (SBSE-GC-MS). The results showed that alcohols, esters, and oak compounds were the main contributors to aroma, and their OAVs were higher in the stave samples after 3 months than in the samples from the other two systems of ageing. Furthermore, wines aged with staves have stronger fruity, spiced, and woody aromas, while samples aged in barrels present more chemistry-driven, floral, caramelly, and creamy aromas. The staves-medium plus toast (SMPT at 3 months > 225) and chips-medium plus toast (CMPT at 3 months > 170) showed the highest levels of aromatic series, suggesting that alternative systems provided more powerful aromas than traditional systems, such as barrels-medium plus toast (BMPT at 3 months > 150). A principal component analysis (PCA), orthogonal partial least squares (OPLS) analysis, and cluster analysis allowed for a clear differentiation to be made between red wines according to ageing systems and ageing times. The odour activity values fingerprint in winemaking is a feasible approach to characterise and distinguish wines. Moreover, OAVs provide important information on the effects of production methods on wine quality and aroma profile.
Collapse
Affiliation(s)
| | - Fernando Sánchez-Suárez
- Agricultural Chemistry, Soil Science and Microbiology Department, University of Córdoba, Campus of Rabanales, N-IV Road, Km 396, 14071 Córdoba, Spain; (F.S.-S.); (N.L.d.L.)
| | - Rafael A. Peinado
- Agricultural Chemistry, Soil Science and Microbiology Department, University of Córdoba, Campus of Rabanales, N-IV Road, Km 396, 14071 Córdoba, Spain; (F.S.-S.); (N.L.d.L.)
| | - Valeriu V. Cotea
- Faculty of Horticulture, Iasi University of Life Sciences, 700490 Iasi, Romania; (G.-D.D.); (V.V.C.)
| | - Nieves López de Lerma
- Agricultural Chemistry, Soil Science and Microbiology Department, University of Córdoba, Campus of Rabanales, N-IV Road, Km 396, 14071 Córdoba, Spain; (F.S.-S.); (N.L.d.L.)
| | - Iulian Gabur
- Department of Plant Science, Iasi University of Life Sciences, 700490 Iasi, Romania;
| | - Violeta Simioniuc
- Department of Plant Science, Iasi University of Life Sciences, 700490 Iasi, Romania;
| |
Collapse
|
4
|
Ma T, Zhang J, Yang L, Zhang S, Long X, Zeng Q, Li Z, Ren X, Yang F. Reusable and Practical Biocomposite Based on Sphingopyxis sp. YF1 and Polyacrylonitrile-Based Carbon Fiber for the Efficient Bioremediation of Microcystin-LR-Contaminated Water. Toxins (Basel) 2023; 16:20. [PMID: 38251236 PMCID: PMC10819031 DOI: 10.3390/toxins16010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Microbial degradation is a cost-effective and environmentally friendly method for removing microcystin-LR (MC-LR). However, the application of free bacteria has limitations due to low operational stability and difficulties in recovery. In a previous study, our group successfully isolated a highly efficient MC-LR-degrading bacterium, Sphingopyxis sp. YF1, from Taihu. To enhance its practical potential in addressing MC-LR-contaminated water pollution, a novel biological material named polyacrylonitrile-based carbon fiber @Sphingopyxis sp. YF1 (PAN-CF@YF1) was synthesized. The immobilization conditions of strain Sphingopyxis sp. YF1 on PAN-CF surfaces were optimized using Box-Behnken design and response surface methodology (RSM), which turned out to be an optimal pH of 7.6 for the culture medium, a ratio of 0.038 g of supporting materials per 100 mL of culture media, and an incubation time of 53.4 h. The resultant PAN-CF@YF1 showed a great degradation effect both for low and high concentrations of MC-LR and exhibited satisfactory cyclic stability (85.75% after six cycles). Moreover, the application of PAN-CF@YF1 in the bioreactors demonstrated effective and sustainable MC-LR removal, with a removal efficiency of 78.83% after three consecutive treatments. Therefore, PAN-CF@YF1 with high degradation activity, environmental compatibility, straightforward preparation, and recyclability shows significant application potential for the bioremediation of MC-LR-contaminated water bodies.
Collapse
Affiliation(s)
- Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Shengyu Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023; 11:2896. [PMID: 38138040 PMCID: PMC10745938 DOI: 10.3390/microorganisms11122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers are increasingly showing a preference for foods whose nutritional and therapeutic value has been enhanced. Probiotics are live microorganisms, and their existence is associated with a number of positive effects in humans, as there are many and well-documented studies related to gut microbiota balance, the regulation of the immune system, and the maintenance of the intestinal mucosal barrier. Hence, probiotics are widely preferred by consumers, causing an increase in the corresponding food sector. As a consequence of this preference, food industries and those involved in food production are strongly interested in the occurrence of probiotics in food, as they have proven beneficial effects on human health when they exist in appropriate quantities. Encapsulation technology is a promising technique that aims to preserve probiotics by integrating them with other materials in order to ensure and improve their effectiveness. Encapsulated probiotics also show increased stability and survival in various stages related to their processing, storage, and gastrointestinal transit. This review focuses on the applications of encapsulation technology in probiotics in sustainable food production, including controlled release mechanisms and encapsulation techniques.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
6
|
Lúquez-Caravaca L, Ogawa M, Rai R, Nitin N, Moreno J, García-Martínez T, Mauricio JC, Jiménez-Uceda JC, Moreno-García J. Yeast cell vacuum infusion into fungal pellets as a novel cell encapsulation methodology. Appl Microbiol Biotechnol 2023; 107:5715-5726. [PMID: 37490127 PMCID: PMC10439858 DOI: 10.1007/s00253-023-12681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Immobilized yeast cells are used industrially in winemaking processes such as sparkling wine and Sherry wine production. Here, a novel approach has been explored for the infusion and immobilization of yeast cells into filamentous fungal pellets, which serve as a porous natural material. This was accomplished through vacuum application to force the yeast cells towards the core of the fungal pellets followed by culture in YPD medium to promote their growth from the interior. This method represents an improved variation of a previous approach for the assembly of "yeast biocapsules," which entailed the co-culture of both fungal and yeast cells in the same medium. A comparison was made between both techniques in terms of biocapsule productivity, cell retention capacity, and cell biological activity through an alcoholic fermentation of a grape must. The results indicated a substantial increase in biocapsule productivity (37.40-fold), higher cell retention within the biocapsules (threefold), and reduction in cell leakage during fermentation (twofold). Although the majority of the chemical and sensory variables measured in the produced wine did not exhibit notable differences from those produced utilizing suspended yeast cells (conventional method), some differences (such as herbaceous and toasted smells, acidity, bitterness, and persistence) were perceived and wines positively evaluated by the sensory panel. As the immobilized cells remain functional and the encapsulation technique can be expanded to other microorganisms, it creates potential for additional industrial uses like biofuel, health applications, microbe encapsulation and delivery, bioremediation, and pharmacy. KEY POINTS: • New approach improves biocapsule productivity and cell retention. • Immobilized yeast remains functional in fermentation. • Wine made with immobilized yeast had positive sensory differences.
Collapse
Affiliation(s)
- Lara Lúquez-Caravaca
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | - Minami Ogawa
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | - Juan Carlos Jiménez-Uceda
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Pastor-Vega N, Carbonero-Pacheco J, Mauricio JC, Moreno J, García-Martínez T, Nitin N, Ogawa M, Rai R, Moreno-García J. Flor yeast immobilization in microbial biocapsules for Sherry wine production: microvinification approach. World J Microbiol Biotechnol 2023; 39:271. [PMID: 37541980 PMCID: PMC10403390 DOI: 10.1007/s11274-023-03713-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
Sherry wine is a pale-yellowish dry wine produced in Southern-Spain which features are mainly due to biological aging when the metabolism of biofilm-forming yeasts (flor yeasts) consumes ethanol (and other non-fermentable carbon sources) from a previous alcoholic fermentation, and produces volatile compounds such as acetaldehyde. To start aging and maintain the wine stability, a high alcohol content is required, which is achieved by the previous fermentation or by adding ethanol (fortification). Here, an alternative method is proposed which aims to produce a more economic, distinctive Sherry wine without fortification. For this, a flor yeast has been pre-acclimatized to glycerol consumption against ethanol, and later confined in a fungal-based immobilization system known as "microbial biocapsules", to facilitate its inoculum. Once aged, the wines produced using biocapsules and free yeasts (the conventional method) exhibited chemical differences in terms of acidity and volatile concentrations. These differences were evaluated positively by a sensory panel. Pre-acclimatization of flor yeasts to glycerol consumption was not successful but when cells were immobilized in fungal pellets, ethanol consumption was lower. We believe that immobilization of flor yeasts in microbial biocapsules is an economic technique that can be used to produce high quality differentiated Sherry wines.
Collapse
Affiliation(s)
- Noelia Pastor-Vega
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| |
Collapse
|
8
|
Huang J, Qiao C, Wang X, Gao Y, Zhao J, Luo H, Wang Y, Hou C, Huo D. The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation. Food Chem 2023; 407:135154. [PMID: 36502727 DOI: 10.1016/j.foodchem.2022.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pichia kudriavzevii was one of the important aroma-producing fungi in the solid-state fermentation of Baijiu, and immobilization was an effective strategy for improving microbial performance. Herein, P. kudriavzevii cells were immobilized in a gel network that crosslinked by chitosan and sodium alginate to form sodium alginate/chitosan-P. kudriavzevii microspheres (SA/CS-PMs). Their structural characteristics and formation processes were characterized by SEM and FT-IR. The effect of synthesis conditions on the performance of microspheres were determined by single-factor experiments. Under the optimal conditions, the SA/CS-PMs could increase the amylase activity of the fermentation broth by 57.18%, the esterase activity by 66.13%, the content of ester by 67.04%, and could be reused at least three times. Further research results indicated that the content of ester could be increased significantly in Baijiu solid-state fermentation with the SA/CS-PMs. In conclusion, the SA/CS-PMs could improve the ester production ability of P. kudriavzevii by increasing the esterase activity, which was a valuable exploration of directional biosynthesis and a feasible strategy to improve solid-state fermentation quality.
Collapse
Affiliation(s)
- Jiaqing Huang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinrou Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuwei Gao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Zhang J, Wang C, Wang J, Yang Y, Han K, Bakpa EP, Li J, Lyu J, Yu J, Xie J. Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper ( Capsicum annuum L.). Front Nutr 2023; 9:1027605. [PMID: 36704799 PMCID: PMC9871545 DOI: 10.3389/fnut.2022.1027605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The wrinkled pepper (Capsicum annuum L.) is a type of chili pepper domesticated in northwestern China, with a characteristic flavor. Fifteen wrinkled and four smooth-skinned pepper varieties were evaluated for morphology, texture, color, nutrients, capsaicinoids, and volatile compounds at the mature fruit stage. The sensory evaluation showed wrinkled pepper was superior to smooth pepper in texture, and it has a highly significant correlation (p < 0.01) with cuticle thickness, maximum penetrating force, lignin content, and moisture content. Citric acid was the major organic acid in peppers, accounting for 39.10-63.55% of the total organic acids, followed by quininic acid. The average oxalic acid content of smooth peppers was 26.19% higher than that of wrinkled peppers. The pungency of wrinkled pepper fruits ranged from 1748.9 to 25529.4 SHU, which can be considered slightly to very spicy, while the four smooth varieties ranged between 866.63 and 8533.70 SHU, at slightly to moderately spicy. A total of 199 volatile compounds were detected in the 19 pepper varieties. The average volatile content of wrinkled pepper was 39.79% higher than that of smooth pepper. Twenty-nine volatile compounds, including 14 aldehydes, four alcohols, three esters, three ketones, two furans, one pyrazine, one acid, and one phenol, contributed to the fragrance of peppers and could be regarded as aroma-active compounds, with 2-isobutyl-3-methoxypyrazine being the major contributor among the 19 pepper varieties. Wrinkled pepper can be confidently distinguished from smooth pepper and is of superior quality. The current findings outlined the major texture-related characteristics of pepper as well as the main aroma-active compounds, providing valuable information for pepper quality breeding and consumer guidelines.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,State Key Laboratory of Aridland Corp Science, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China,*Correspondence: Jianming Xie,
| |
Collapse
|
10
|
Application of Immobilized Yeasts for Improved Production of Sparkling Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Verdejo sparkling wines from two consecutive vintages were elaborated following the “champenoise” method. The second fermentation was developed with the same free or immobilized Saccharomyces cerevisiae bayanus yeast strain, carrying out four batch replicates each year. The sparkling wines were analyzed after 9 months of aging, showing no significant differences among the two typologies in the enological parameters (pH, total acidity, volatile acidity, reducing sugars, and alcoholic strength), the effervescence, or the spectrophotometric measurements. The free amino nitrogen content was significantly higher in the sparkling wines obtained from immobilized yeasts, nevertheless, the levels of neutral polysaccharides and total proteins were lower. No significant differences in the volatile composition were found, except for only two volatile compounds (isobutyric acid and benzyl alcohol); however, these two substances were present at levels below their respective olfactory thresholds. The sensory analysis by consumers showed identical preferences for both types of sparkling wines, except for the color acceptability. The descriptive analysis by a tasting panel revealed that sensorial differences between both sparkling wines were only found for the smell of dough. Therefore, the use of immobilized yeasts for the second fermentation of sparkling wines can reduce and simplify some enological practices such as the procedure of riddling and disgorging, with no impact on the so-mentioned quality parameters.
Collapse
|
11
|
Ogawa M, Carmona-Jiménez P, García-Martínez T, Jorrín-Novo JV, Moreno J, Rey MD, Moreno-García J. Use of yeast biocapsules as a fungal-based immobilized cell technology for Indian Pale Ale-type beer brewing. Appl Microbiol Biotechnol 2022; 106:7615-7625. [PMID: 36260099 DOI: 10.1007/s00253-022-12239-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Immobilized cell technologies (ICT) have been used in wort fermentation, beer maturation, or production of alcohol-free or low-alcohol beer. The purpose of ICT is to restrict intact cells to a specific location while allowing biological function. It improves cell stability, operational flexibility, and control in brewing, as well as ease in executing continuous operations. We investigated the use of yeast biocapsules for Indian Pale Ale (IPA) type beer wort fermentation, a novel ICT in brewing. Yeast biocapsules are a spherical yeast immobilization system in which yeast cells are encapsulated and connected to the hyphae of an inactivated hollow filamentous fungus pellet. Fermentations with yeast encapsulated in alginate beads, as the standard immobilization practice, and in free (non-immobilized) forms were carried out in parallel. We found that yeast biocapsules are a better option for cell reutilization than alginate beads, but worse for beer must clarity. Beer brewed with yeast biocapsules differed in concentration for five volatile compounds (acetaldehyde, diacetyl, ethyl acetate, 1,1-diethoxyethane, and isoamyl alcohol) and three sensory characters (persistency of the foam, malt, and yeast character). KEY POINTS: • Yeast biocapsules were investigated for beer wort fermentation • Biocapsules improve cell reutilization but are limited for beer clarification • Beer brewed with biocapsules is chemically different than conventional beer • Most sensory features did not differ between biocapsule and control beer.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA.,Department of Agricultural Chemistry, Edaphology and Microbiology, Campus of International Excellence CeiA3, University of Córdoba, Agrifood, Cordoba, Spain
| | - Pablo Carmona-Jiménez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Campus of International Excellence CeiA3, University of Córdoba, Agrifood, Cordoba, Spain.,Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Campus of International Excellence CeiA3, University of Córdoba, Agrifood, Cordoba, Spain
| | - Jesús Valentín Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Campus of International Excellence CeiA3, University of Córdoba, Agrifood, Cordoba, Spain
| | - María Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Campus of International Excellence CeiA3, University of Córdoba, Agrifood, Cordoba, Spain.
| |
Collapse
|
12
|
Analysis of Volatile Aroma Compounds and Sensory Characteristics Contributing to Regional Style of Red Wines from Hexi Corridor Based on Sixteen Grape Varieties/Clones. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hexi Corridor is an excellent region for high-quality wines in China, but the characteristic and style of red wine from this region is unclear. To elucidate the regional style of red wines from Hexi Corridor, the aroma properties of red wines made from 16 different varieties/clones of grapes were comprehensively analyzed using HS-SPME-GC-MS, sensory evaluation, odor activity value method, and partial least squares regression analyses. We identified 52 aroma compounds and found that floral and black berry provided a good reference for shaping red wine style and selecting related varieties in Hexi Corridor region. Ethyl caproate, (Z)-3-hexen-1-ol, ethyl 9-decenoate, and hexyl alcohol, which were the characteristic aroma substances of Hexi Corridor red wines, had positive effects on the floral aroma of Merlot, Cabernet Sauvignon, Pinot Noir, and Malbec wines. Hexyl alcohol and (Z)-3-hexen-1-ol also contributed to the black berry and spice aromas, while isobutyl acetate opposed the expression of these aromas of Malbec and Cabernet Franc wines. These results showed that the sensory characteristics of floral and black berry are of vital significance in shaping the red wine style of Hexi Corridor, among which ethyl caproate, (Z)-3-hexen-1-ol, ethyl 9-decenoate, and hexyl alcohol are important contributors.
Collapse
|
13
|
Cosme F, Gomes S, Vilela A, Filipe-Ribeiro L, Nunes FM. Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines. Molecules 2022; 27:4614. [PMID: 35889486 PMCID: PMC9322358 DOI: 10.3390/molecules27144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Trichloroanisole (TCA) in wine results in a sensory defect called "cork taint", a significant problem for the wine industry. Wines can become contaminated by TCA absorption from the atmosphere through contaminated wood barrels, cork stoppers, and wood pallets. Air-depleted solvent-impregnated (ADSI) cork powder (CP) was used to mitigate TCA in wines. The ADSI CP (0.25 g/L) removed 91% of TCA (6 ng/L levels), resulting in an olfactory activity value of 0.14. A Freundlich isotherm described ADSI CP TCA adsorption with irreversible adsorption and a KF = 33.37. ADSI CP application had no significant impact on the phenolic profile and chromatic characteristics of red wine. Using headspace sampling with re-equilibration, an average reduction in the volatile abundance of 29 ± 15%, 31 ± 19%, and 37 ± 24% was observed for the 0.10, 0.25, and 0.50 g/L ADSI CP, respectively. The alkyl esters and acids were the most affected. The impact observed was much lower when using headspace sampling without re-equilibration. Isoamyl acetate, ethyl hexanoate, ethyl hexanoate, and ethyl decanoate abundances were not significantly different from the control wine and 0.25 g/L ADSI CP application. Thus, ADSI CP can be a new sustainable fining agent to remove this "off-flavor" from wine, with a reduced impact on the wine characteristics.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Sara Gomes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.G.); (L.F.-R.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.G.); (L.F.-R.)
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Microbial Resources and Sparkling Wine Differentiation: State of the Arts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Consumers’ increasing interest in sparkling wine has enhanced the global market’s demand. The pro-technological yeasts strains selected for the formulation of microbial starter cultures are a fundamental parameter for exalting the quality and safety of the final product. Nowadays, the management of the employed microbial resource is highly requested by stakeholders, because of the increasing economic importance of this oenological sector. Here, we report an overview of the production processes of sparkling wine and the main characterisation criteria to select Saccharomyces and non-Saccharomyces strains appropriate for the preparation of commercial starter cultures dedicated to the primary and, in particular, the secondary fermentation of sparkling wines. We also focused on the possible uses of selected indigenous strains to improve the unique traits of sparkling wines from particular productive areas. In summary, the sparkling wine industry will get an important advantage from the management of autochthonous microbial resources associated with vineyard/wine microbial diversity.
Collapse
|
15
|
López-Menchero JR, Ogawa M, Mauricio JC, Moreno J, Moreno-García J. Effect of calcium alginate coating on the cell retention and fermentation of a fungus-yeast immobilization system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Martínez-García R, Mauricio JC, García-Martínez T, Peinado RA, Moreno J. Towards a better understanding of the evolution of odour-active compounds and the aroma perception of sparkling wines during ageing. Food Chem 2021; 357:129784. [PMID: 33901917 DOI: 10.1016/j.foodchem.2021.129784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
A native veil-forming yeast and a commercial yeast strain were used to elaborate sparkling wines by the Champenoise method with a grape variety traditionally used for the production of still wines. Wines aged on lees for fifteen months were sampled at five points and their physicochemical and sensory indices were analysed. Unsupervised and supervised statistical techniques were used to establish a comparison between 81 volatile compounds and eight odour descriptors (chemical, fruity, floral, fatty, balsamic, vegetal, empyreumatic and spicy). Principal component analysis of both datasets showed good separation among the samples in relation to ageing time and yeast strain. By using a partial least squares regression-based criterion, 38 odour active compounds were selected as the most influential for the ageing factor and out of them, only 27 were unique to certain aroma descriptors. These results contribute to a better understanding of the aroma perception of sparkling wines.
Collapse
Affiliation(s)
- Rafael Martínez-García
- Department of Agricultural Chemistry and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A km 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Rafael A Peinado
- Department of Agricultural Chemistry and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry and Microbiology, Marie Curie (C3) and Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A km 396, 14014 Cordoba, Spain.
| |
Collapse
|
17
|
Huang XH, Zhang YY, Zhu M, Zhou DY, Du M, Zhu BW, Dong XP, Fisk I, Qin L. The effects of different extraction methods on the aroma fingerprint, recombination and visualization of clam soup. Food Funct 2021; 12:1626-1638. [PMID: 33476357 DOI: 10.1039/d0fo02615h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clam is a kind of nutritious, delicious and economical aquatic food around the world and is famous for its unique aroma. Instrumental analysis, sensory analysis, and comprehensive statistical analysis were performed to explain the relationship between aroma and odorants in clam soup. Six extraction methods combined with GC-MS and sniffing were utilized to obtain the aroma fingerprints of clam soup and to analyze the correlation with aroma perception. Solvent extraction methods were more effective than headspace extraction methods for the volatiles of clam soup. SAFE was the best method to obtain the most comprehensive information of volatiles of clam soup. The sequence of a combination of different extraction methods and SAFE would also affect the results of volatiles extracted from clam soup. Volatiles extracted via SDE, P&T, and SPME would add further information to the result of SAFE. A total of 119 volatile compounds were identified from clam soup by summarising the results of different extraction methods. The significant effect of 14 key odorants in clam soup on aroma perception was verified by aroma recombination and odorant omission tests. A neural network diagram of the aroma profile was designed to visualize the information of odor perception. Furthermore, the results would be beneficial for aroma research studies of aquatic food and the processing of clam products.
Collapse
Affiliation(s)
- Xu-Hui Huang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yu-Ying Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Da-Yong Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Bei-Wei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiu-Ping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Ian Fisk
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
18
|
Martínez-García R, Moreno J, Bellincontro A, Centioni L, Puig-Pujol A, Peinado RA, Mauricio JC, García-Martínez T. Using an electronic nose and volatilome analysis to differentiate sparkling wines obtained under different conditions of temperature, ageing time and yeast formats. Food Chem 2020; 334:127574. [PMID: 32721835 DOI: 10.1016/j.foodchem.2020.127574] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 07/11/2020] [Indexed: 01/03/2023]
Abstract
Effect of yeast inoculation format (F), temperature (T), and "on lees" ageing time (t) factors were evaluated on the composition of sparkling wines by a quantitative fingerprint obtained from volatile metabolites and the response of an electronic nose (E-nose). Wines elaborated according the traditional method at 10 and 14 °C, free cells and yeast biocapsules formats were monitored at 15 and 24 months of ageing time. Sixty-six volatiles identified and quantified in the eight sampling lots were subjected to a pattern recognition technique. A dual criterion based on univariate (ANOVA) and multivariate analysis (PLS-DA) through the variable importance projection (VIP) values, allowed to identify ten volatiles as potential markers for T factor, eleven for t and twelve for F factors. The discriminant models based on E-nose dataset enable a 100% correct classification of samples, in relation with t and F factors and the 83% for T factor.
Collapse
Affiliation(s)
- Rafael Martínez-García
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| | - Andrea Bellincontro
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems - Postharvest Laboratory, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Luna Centioni
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems - Postharvest Laboratory, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Anna Puig-Pujol
- Institut de Recerca i Tecnologia Agroalimentaries - Institut Català de la Vinya i el Vi), Plaça Àgora, 2, 08720 Vilafranca del Penedès (Barcelona), Spain
| | - Rafael A Peinado
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, kmm 396, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, kmm 396, 14014 Cordoba, Spain
| |
Collapse
|
19
|
Fermentative volatilome modulation of Muscat Ottonel wines by using yeast starter cultures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
González-Jiménez MDC, Moreno-García J, García-Martínez T, Moreno JJ, Puig-Pujol A, Capdevilla F, Mauricio JC. Differential Analysis of Proteins Involved in Ester Metabolism in two Saccharomyces cerevisiae Strains during the Second Fermentation in Sparkling Wine Elaboration. Microorganisms 2020; 8:E403. [PMID: 32183073 PMCID: PMC7143655 DOI: 10.3390/microorganisms8030403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.
Collapse
Affiliation(s)
| | - Jaime Moreno-García
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Teresa García-Martínez
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Juan José Moreno
- Department of Agricultural Chemistry, University of Cordoba, 14014 Cordoba, Spain;
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Fina Capdevilla
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Juan Carlos Mauricio
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| |
Collapse
|
21
|
Wu P, Li G, He Y, Luo D, Li L, Guo J, Ding P, Yang F. High-efficient and sustainable biodegradation of microcystin-LR using Sphingopyxis sp. YF1 immobilized Fe3O4@chitosan. Colloids Surf B Biointerfaces 2020; 185:110633. [DOI: 10.1016/j.colsurfb.2019.110633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
22
|
Dumitriu (Gabur) GD, Teodosiu C, Gabur I, Cotea VV, Peinado RA, López de Lerma N. Evaluation of Aroma Compounds in the Process of Wine Ageing with Oak Chips. Foods 2019; 8:E662. [PMID: 31835490 PMCID: PMC6963919 DOI: 10.3390/foods8120662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022] Open
Abstract
Many modern alcoholic beverages are subjected to ageing processes during which compounds extracted from wood contribute decisively to the overall beverage character. Wines represent a perfect example of beverage in which ageing is a crucial technological manufacturing step. During winemaking, producers accelerate chemical changes in wine composition by traditional and alternative methods, such as the use of oak wood barrels and/or oak wood chips. Our research aimed to investigate the overall volatile composition and sensory quality of red wines aged for two timeframes, namely, 1.5 and 3 months, and with two technological variants, i.e., American and French oak wood chips. Red grapes from the Fetească neagră (Vitis vinifera) variety were harvested from a vineyard in the North-East region of Romania. Stir bar sorptive extraction and gas chromatography coupled with mass spectrometry (SBSE-GC-MS) was used to extract minor aromas present in wine samples. The results showed clear differences between wines treated with American and French oak chips. Furthermore, ageing for 3 months increased the concentration of cis-whiskey lactone and guaiacol in American oak-treated wine samples. For wines aged with French oak chips, we observed higher concentrations of furfural, 5-methylfurfural, 4-vinylguaiacol, and trans-whiskey lactone. The increased presence of chemical compounds in wine aged with French oak chips generated prominent smoky, licorice, and toasty aromas, whereas in wines aged with American oak chips, notes of vanilla, toasty, and cacao aromas were noticed. Moreover, red wines aged with American and French oak chips were discriminated by chemometric analysis, which confirmed the evolution of aroma compounds.
Collapse
Affiliation(s)
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
| | - Iulian Gabur
- Department of Plant Science, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, 700490 Iasi, Romania
| | - Valeriu V. Cotea
- Department of Viticulture and Oenology, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, 700490 Iasi, Romania;
| | - Rafael A. Peinado
- Agrifood Campus of International Excellence ceiA3, Department of Agricultural Chemistry, University of Córdoba, 14014 Córdoba, Spain;
| | - Nieves López de Lerma
- Agrifood Campus of International Excellence ceiA3, Department of Agricultural Chemistry, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
23
|
Yeast cells in double layer calcium alginate–chitosan microcapsules for sparkling wine production. Food Chem 2019; 300:125174. [DOI: 10.1016/j.foodchem.2019.125174] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023]
|
24
|
Dumitriu Gabur GD, Peinado RA, Cotea VV, López de Lerma N. Volatilome fingerprint of red wines aged with chips or staves: Influence of the aging time and toasting degree. Food Chem 2019; 310:125801. [PMID: 31711813 DOI: 10.1016/j.foodchem.2019.125801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
The influence on aroma compounds chips or staves and toasting degree have been analyzed in red wines aged for two periods of time. Ethyl propanoate, ethyl butanoate, ethyl octanoate, ethyl acetate, isoamyl acetate, isobutanol, 2-methyl-1-butanol, 2-phenylethanol, E-2-hexenol, octanal, nonanal, decanal, γ-nonalactone, furfural, 5-methylfurfural, 2-methoxy-4-vinylphenol and cis-whiskey lactone were the compounds that contribute the most to the aroma series profile. By means of principal components analysis, esters were related to the aging time; cis-whiskey lactone with the type of wood pieces and octanal, 5-methyl furfural and cis-whiskey lactone with the toasting degree. Star plot show that woody aroma compounds are dominant in wines aged with low toasting degree oak pieces, whereas medium plus toasted pieces increased the concentration of aroma compounds with fruity aroma descriptors. Wines with prominent fruity or woody aromas can be obtained depending upon the degree of toasting of wood pieces used for aging.
Collapse
Affiliation(s)
- Georgiana-Diana Dumitriu Gabur
- Department Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection "Gheorghe Asachi" Technical University Iasi, Romania
| | - Rafael A Peinado
- Agricultural Chemistry Department, Building Marie Curie, Campus de Rabanales, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.
| | - Valeriu V Cotea
- Viticulture and Oenology Department, University of Agricultural Sciences and Veterinary Medicine "Ion Ionescu de la Brad" Iași, Romania.
| | - Nieves López de Lerma
- Agricultural Chemistry Department, Building Marie Curie, Campus de Rabanales, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.
| |
Collapse
|
25
|
Martínez-García R, Roldán-Romero Y, Moreno J, Puig-Pujol A, Mauricio JC, García-Martínez T. Use of a flor yeast strain for the second fermentation of sparkling wines: Effect of endogenous CO 2 over-pressure on the volatilome. Food Chem 2019; 308:125555. [PMID: 31655483 DOI: 10.1016/j.foodchem.2019.125555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
Abstract
Saccharomyces cerevisiae flor yeast is used for the first time in sparkling wine-making. Twenty-six oenological variables and fifty-three volatile metabolites are quantified in the middle (P = 3 bar) and at the end (P = 6 bar) of the second fermentation, carried out in open and closed bottles. A heat-map of volatiles and the fingerprints obtained for ten chemical families and ten odorant series visualize the changes for each condition. Terpenes, fatty acids and volatile phenols increased their contents by pressure effect at the end of the study by 25.0, 7.8 and 2.2%, respectively. The remaining families decrease between 17.4% and 30.1% for furanic compounds and esters in the same stage. A Principal Component Analysis established that nine volatiles are mainly affected by pressure and five by fermentation stage. The use of ethanol-tolerant flor yeasts constitutes an innovative procedure for the enhancement of the sparkling wines diversification.
Collapse
Affiliation(s)
- Rafael Martínez-García
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain
| | - Yenifer Roldán-Romero
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, kmm 396, 14014 Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| | - Anna Puig-Pujol
- Institut de Recerca i Tecnologia Agroalimentaries - Institut Català de la Vinya i el Vi), Plaça Àgora, 2, 08720 Vilafranca del Penedès, Barcelona, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, kmm 396, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, kmm 396, 14014 Cordoba, Spain
| |
Collapse
|
26
|
Liu Y, Cheng H, Liu H, Ma R, Ma J, Fang H. Fermentation by Multiple Bacterial Strains Improves the Production of Bioactive Compounds and Antioxidant Activity of Goji Juice. Molecules 2019; 24:molecules24193519. [PMID: 31569407 PMCID: PMC6804111 DOI: 10.3390/molecules24193519] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Microorganisms can be used for enhancing flavors or metabolizing functional compounds. The fermented-food-derived bacterial strains comprising Bacillus velezensis, Bacillus licheniformis, and Lactobacillus reuteri mixed with Lactobacillus rhamnosus and Lactobacillus plantarum were used to ferment goji berry (Lycium barbarum L.) juice in this study. The fermentation abilities and antioxidant capacities of different mixtures of multiple strains in goji juice were compared. The results showed that the lactic acid contents increased 9.24-16.69 times from 25.30 ± 0.71 mg/100 mL in goji juice fermented using the SLV (Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus velezensis), SZP (Lactobacillus rhamnosus, Lactobacillus plantarum, and Bacillus licheniformis), and SZVP (Lactobacillus rhamnosus, Lactobacillus plantarum, Bacillus velezensis, and Bacillus licheniformis) mixtures, and the protein contents increased 1.31-2.11 times from 39.23 ± 0.67 mg/100 mL. In addition, their contents of volatile compounds increased with positive effects on aroma in the fermented juices. Conversion of the free and bound forms of phenolic acids and flavonoids in juice was influenced by fermentation, and the antioxidant capacity improved significantly. Fermentation enhanced the contents of lactic acid, proteins, volatile compounds, and phenols. The antioxidant capacity was strongly correlated with the phenolic composition.
Collapse
Affiliation(s)
- Yuxuan Liu
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Huiyan Liu
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Ruoshuang Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Jiangtao Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| | - Haitian Fang
- College of Agriculture, Ningxia University, Yinchuan 750021, China.
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
27
|
Ogawa M, Bisson LF, García-Martínez T, Mauricio JC, Moreno-García J. New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 2019; 103:4723-4731. [PMID: 31079167 DOI: 10.1007/s00253-019-09870-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Fungi possess extraordinary strength in attachment to biotic and abiotic surfaces. This review focuses on adhesion mechanisms of yeast and filamentous fungi and the proposed combination of the adhesive forces of both organisms in an immobilization system called yeast biocapsules, whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum. The natural adherent properties of each organism, one multicellular and another unicellular, allow yeast to be fixated securely on the filamentous fungi and complete alcoholic fermentation. Following alcoholic fermentation, the hyphae become an inert support for yeast cells while maintaining shape and integrity. Biocapsules have been used successfully in both wine and bioethanol production. Investigation of the potential genes involved in fungal-yeast fusion suggests that natural hydrophobic interactions of both organisms play a major role. Analysis of the possible mechanisms involved in fungus and yeast adhesion, future perspectives on improving yeast immobilization, and proposed applications of the biocapsules are explored.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Microbiology, University of Córdoba, Córdoba, Spain.,Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | | | - Juan C Mauricio
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
28
|
Chen H, Yue X, Yang J, Lv C, Dong S, Luo X, Sun Z, Zhang Y, Li B, Zhang F, Gu H, Yang Y, Zhang Q, Ge S, Bi H, Zheng D, Zhao Y, Li C, Peng W. Pyrolysis molecule of Torreya grandis bark for potential biomedicine. Saudi J Biol Sci 2019; 26:808-815. [PMID: 31049007 PMCID: PMC6486518 DOI: 10.1016/j.sjbs.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/27/2022] Open
Abstract
Torreya grandis is a unique tree species in China. Although full use has been made of the timber, the processing and utilization of the bark has not been effective. In order to explore a new way to utilize the bark of Torreya grandis, a powder of T. grandis bark was prepared and analyzed qualitatively and quantitatively. Differential scanning calorimetry (TG) and pyrolysis gas chromatography-mass spectrometry (PY-GC/MS) revealed many bioactive components in the bark of T. grandis, such as acetic acid, 2-methoxy-4-vinyl phenol, D-mannose, and furfural. These substances have potential broad applications in the chemical industry, biomedicine, and food additives. The chemical constituents of the bark of T. grandis suggest a theoretical basis for the future development and utilization of the bark of T. grandis.
Collapse
Affiliation(s)
- Huiling Chen
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaochen Yue
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxia Lv
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Shuaiwei Dong
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Xuefeng Luo
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Zhiyong Sun
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Ying Zhang
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Baoxiang Li
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Faping Zhang
- The Scientific Research Institution, Henan Xiaoqinling National Nature Reserve Administration Bureau, Sanmenxia 472500, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuling Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengbo Ge
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
| | - Huitao Bi
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongfang Zheng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
29
|
Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chem 2019; 270:518-526. [DOI: 10.1016/j.foodchem.2018.07.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
|
30
|
Bao R, Liu S, Ji C, Liang H, Yang S, Yan X, Zhou Y, Lin X, Zhu B. Shortening Fermentation Period and Quality Improvement of Fermented Fish, Chouguiyu, by Co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Front Microbiol 2018; 9:3003. [PMID: 30662432 PMCID: PMC6327836 DOI: 10.3389/fmicb.2018.03003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Chouguiyu, a Chinese traditional fermented fish, is famous for its uniquely strong odor and desirable taste. However, traditional spontaneous fermentation often resulted in contamination and unstable quality of products. In this study, individual or conjunctive inoculation of two indigenous lactic acid bacteria (LAB), Lactococcus lactis M10 and Weissella cibaria M3, was tested for their effect on improving Chouguiyu's quality. It was shown that inoculation would not affect the system's pH, while increased the total bacteria count and lactic acid bacteria amounts. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF) analysis results revealed that Lactoc. lactis M10 and W. cibaria M3 could quickly occupy a dominant position in the ecosystem, and Lactoc. lactis M10 played an important role in the control of spoilage bacteria. Volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and biogenic amines results also showed that Lactoc. lactis M10 had a positive effect on improving the product's quality. Co-inoculation of Lactoc. lactis M10 and W. cibaria M3 could promote the formation of flavor according to the E-nose and gas chromatography-mass spectrometer (GC-MS) analyses, especially for the aroma-active and key volatile compounds. PCA plots of E-nose and hierarchical clustering analysis of GC-MS profiles revealed that the co-inoculation sample at the fifth day (LW5) was the most similar to the natural fermentation sample at the seventh day (C7). The overall acceptance of LW5 was also the closest to that of C7 in sensory evaluation. In conclusion, mixed starter culture was shown to have a good effect on improving product quality and enhancing flavor with fermentation time shortened by 29%.
Collapse
Affiliation(s)
- Ruiqi Bao
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Sasa Liu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei, China
| | - Xiaoming Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei, China
| | - Yingqin Zhou
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
31
|
Berbegal C, Polo L, García-Esparza MJ, Lizama V, Ferrer S, Pardo I. Immobilisation of yeasts on oak chips or cellulose powder for use in bottle-fermented sparkling wine. Food Microbiol 2018; 78:25-37. [PMID: 30497605 DOI: 10.1016/j.fm.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
Abstract
Sparkling wine production comprises two successive fermentations performed by Sacharomyces cerevisiae strains. This research aimed to: develop yeast immobilisation processes on two wine-compatible supports; study the effects of yeast type (IOC 18-2007 and 55A) and the immobilisation support type (oak chips and cellulose powder) on the fermentation kinetics, the deposition rate of lees and the volatile composition of the finished sparkling wine; compare the fermentation parameters of the wines inoculated with immobilised or non-immobilised cells. Proper immobilisation of yeast on oak chips and cellulose powder was demonstrated by electron microscopy. Total sugar consumption occurred in under 60 days in all bottles, regardless of the strain used and the way they were inoculated in wine. Deposition of lees was 3-fold faster in the bottles containing immobilised cells than in those with free cells; no addition of adjuvants was necessary. The analysis of the volatile compounds of the finished sparkling wines showed significant differences in the formation of esters, acids, alcohols, aldehydes and lactones according to the yeast and the immobilisation support used. Oak chips were the more appropriate support for yeast immobilisation. No significant differences in the sensorial analysis of the sparkling wines produced by the different strategies were found.
Collapse
Affiliation(s)
- Carmen Berbegal
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, València, Spain.
| | - Lucía Polo
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, València, Spain.
| | - Ma José García-Esparza
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s.n., 46022, València, Spain.
| | - Victoria Lizama
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s.n., 46022, València, Spain.
| | - Sergi Ferrer
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, València, Spain.
| | - Isabel Pardo
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, València, Spain.
| |
Collapse
|
32
|
Moreno-García J, Martín-García FJ, Ogawa M, García-Martínez T, Moreno J, Mauricio JC, Bisson LF. FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 2018; 9:2586. [PMID: 30429833 PMCID: PMC6220091 DOI: 10.3389/fmicb.2018.02586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/10/2018] [Indexed: 11/14/2022] Open
Abstract
A reoccurring flaw of most yeast immobilization systems that limits the potential of the technique is leakage of the cells from the matrix. Leakage may be due to weakly adherent cells, deterioration of the matrix, or to new growth and loss of non-adherent daughter cells. Yeast biocapsules are a spontaneous, cost effective system of immobilization whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum, creating hollow spheres that allow recovery and reutilization. This attachment is based on naturally occurring adherent properties of the yeast cell surface. We hypothesized that proteins associated with flocculation might play a role in adherence to fungal hyphae. To test this hypothesis, yeast strains with overexpressed and deleted flocculation genes (FLO1, FLO5, and FLO11) were evaluated for biocapsule formation to observe the impact of gene expression on biocapsule diameter, number, volume, dry mass, and percent immobilized versus non-immobilized cells. Overexpression of all three genes enhanced immobilization and resulted in larger diameter biocapsules. In particular, overexpression of FLO11 resulted in a five fold increase of absorbed cells versus the wild type isogenic strain. In addition, deletion of FLO1 and FLO11 significantly decreased the number of immobilized yeast cells compared to the wild type BY4742. These results confirm the role of natural adherent properties of yeast cells in attachment to fungal hyphae and offer the potential to create strongly adherent cells that will produce adherent progeny thereby reducing the potential for cell leakage from the matrix.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, University of Córdoba, Córdoba, Spain
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Minami Ogawa
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Juan Moreno
- Department of Agricultural Chemistry, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Linda F. Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Abstract
The interest in non-Saccharomyces yeast for use in sparkling wine production has increased in recent years. Studies have reported differences in amino acids and ammonia, volatile aroma compounds (VOCs), glycerol, organic acids, proteins and polysaccharides. The aim of this review is to report on our current knowledge concerning the influence of non-Saccharomyces yeast on sparkling wine chemical composition and sensory profiles. Further information regarding the nutritional requirements of each of these yeasts and nutrient supplementation products specifically for non-Saccharomyces yeasts are likely to be produced in the future. Further studies that focus on the long-term aging ability of sparkling wines made from non-Saccharomyces yeast and mixed inoculations including their foam ability and persistence, organic acid levels and mouthfeel properties are recommended as future research topics.
Collapse
|
34
|
Di Gianvito P, Perpetuini G, Tittarelli F, Schirone M, Arfelli G, Piva A, Patrignani F, Lanciotti R, Olivastri L, Suzzi G, Tofalo R. Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production. Food Res Int 2018; 109:552-560. [DOI: 10.1016/j.foodres.2018.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|