1
|
Riaz F, Hameed A, Asghar MJ. Grain nutritional and antioxidant profiling of diverse lentil ( Lens culinaris Medikus) genetic resources revealed genotypes with high nutritional value. Front Nutr 2024; 11:1344986. [PMID: 38585617 PMCID: PMC10998453 DOI: 10.3389/fnut.2024.1344986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The lentil (Lens culinaris Medikus ssp. Culinaris) is a self-pollinating, diploid (2n = 2X = 14) crop with a genome size of 4 Gbp. The present study was conducted to provide a database for the evaluation of lentil antioxidant capacity, nutritional quality, and biochemical attributes. For these purposes, lentil germplasm, including 100 exotic and local genotypes from different agro-climatic zones of Pakistan, was collected. Significant variation (p < 0.05) was found among the genotypes under investigation using the Tukey HSD test. Ascorbate peroxidase was highest in ALTINOPARK (2,465 Units/g s. wt.), catalase in LPP 12110 (5,595 Units/g s. wt.), superoxide dismutase in LPP 12105 (296.75 Units/g s. wt.), and peroxidase in NIAB Masoor 2002 (3,170 Units/g s. wt.). Furthermore, NLM 15016 had a maximum total antioxidant capacity of 15.763 mg/g s. wt. The maximum values of total soluble sugars (83.93 mg/g. s. wt.) and non-reducing sugars (74.79 mg/g. s. wt.) were noticed in NLM 15015. The highest reducing sugars were detected in ILL 8006 (45.68 mg/g. s. wt.) ascorbic acid in LPP 12182 (706 μg/g s. wt.), total phenolic content in NLI 17003 (54,600 μM/g s. wt.), and tannins in NLI 17057 (24,563 μM/g s. wt.). The highest chlorophyll a (236.12 μg/g s. wt.), chlorophyll b (317 μg/g s. wt.), total chlorophyll (552.58 μg/g s. wt.), and lycopene (10.881 μg/g s. wt.) were found in NLH 12097. Maximum total carotenoids were revealed in the local approved variety Markaz 2009 (17.89 μg/g s. wt.). Principal component analysis (PCA), correlation analysis (Pearson's test), and agglomerative hierarchical clustering (AHC) were performed to detect the extent of variation in genotypes. In cluster analysis, all genotypes were categorized into three clusters. Cluster II genotypes showed remarkable divergence with cluster III. According to PCA, the contribution of PC-I regarding tested nutritional parameters toward variability was the highest (39.75%) and indicated positive factor loading for the tested nutritional and biochemical parameters. In conclusion, genotype X 2011S 33-34-32 can be used by the food industry in making pasta, multigrain bread, and snacking foods due to its high protein content for meat alternative seekers. Identified genotypes with high nutritional attributes can be utilized to improve quality parameters in the respective lentil breeding lines.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Proteometabolomic Analysis Reveals Molecular Features Associated with Grain Size and Antioxidant Properties amongst Chickpea (Cicer arietinum L.) Seeds Genotypes. Antioxidants (Basel) 2022; 11:antiox11101850. [DOI: 10.3390/antiox11101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Legumes are an essential source of nutrients that complement energy and protein requirements in the human diet. They also contribute to the intake of bioactive compounds such as polyphenols, whose content can vary depending on cultivars and genotypes. We conducted a comparative proteomics and metabolomics study to determine if there were significant variations in relevant nutraceutical compounds in the five genotypes of Kabuli-type chickpea grains. We performed an isobaric tandem mass tag (TMT) couple to synchronous precursor selection (SPS)-MS3 method along with a targeted and untargeted metabolomics approach based on accurate mass spectrometry. We observed an association between the overproduction of proteins involved in starch, lipid, and amino acid metabolism with gibberellin accumulation in large grains. In contrast, we visualized the over-accumulation of proteins associated with water deprivation in small grains. It was possible to visualize in small grains the over-accumulation of some phenolics such as vanillin, salicylic acid, protocatechuic acid, 4-coumaric acid, 4-hydroxybenzoic acid, vanillic acid, ferulic acid, and kaempferol 3-O-glucoside as well as the amino acid l-phenylalanine. The activated phenolic pathway was associated with the higher antioxidant capacity of small grains. Small grains consumption could be advantageous due to their nutraceutical properties.
Collapse
|
3
|
Huang Y, Fan B, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Maesen P, Blecker C. Selenium Biofortification of Soybean Sprouts: Effects of Selenium Enrichment on Proteins, Protein Structure, and Functional Properties. Front Nutr 2022; 9:849928. [PMID: 35592631 PMCID: PMC9113265 DOI: 10.3389/fnut.2022.849928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Selenium (Se) biofortification during germination is an efficient method for producing Se-enriched soybean sprouts; however, few studies have investigated Se distribution in different germinated soybean proteins and its effects on protein fractions. Herein, we examined Se distribution and speciation in the dominant proteins 7S and 11S of raw soybean (RS), germinated soybean (GS), and germinated soybean with Se biofortification (GS-Se). The effects of germination and Se treatment on protein structure, functional properties, and antioxidant capacity were also determined. The Se concentration in GS-Se was 79.8-fold higher than that in GS. Selenomethionine and methylselenocysteine were the dominant Se species in GS-Se, accounting for 41.5–80.5 and 19.5–21.2% of the total Se with different concentrations of Se treatment, respectively. Se treatment had no significant effects on amino acids but decreased methionine in 11S. In addition, the α-helix contents decreased as the Se concentration increased; the other structures showed no significant changes. The Se treatment also had no significant effects on the water and oil-holding capacities in protein but increased the foaming capacity and emulsion activity index (EAI) of 7S, but only the EAI of 11S. The Se treatment also significantly increased the antioxidant capacity in 7S but not in 11S. This study indicates that the dominant proteins 7S and 11S have different Se enrichment abilities, and the protein structures, functional properties, and antioxidant capacity of GS can be altered by Se biofortification.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fengzhong Wang
| | - Philippe Maesen
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- Philippe Maesen
| | - Christophe Blecker
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- Christophe Blecker
| |
Collapse
|
4
|
Bento JAC, Morais DK, Ferreira KC, Bassinello PZ, Carvalho RN, Caliari M, Soares Júnior MS. Physicochemical and functional properties of aged grains flour from different dry common beans. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Daisy Karione Morais
- Food Science and Technology Department Federal University of Goiás – UFG CP 131 CEP 74690‐900 Goiânia, Goiás Brazil
| | - Karen Carvalho Ferreira
- Food Science and Technology Department Federal University of Goiás – UFG CP 131 CEP 74690‐900 Goiânia, Goiás Brazil
| | | | | | - Márcio Caliari
- Food Science and Technology Department Federal University of Goiás – UFG CP 131 CEP 74690‐900 Goiânia, Goiás Brazil
| | - Manoel Soares Soares Júnior
- Food Science and Technology Department Federal University of Goiás – UFG CP 131 CEP 74690‐900 Goiânia, Goiás Brazil
| |
Collapse
|
5
|
Wang J, Li Y, Li A, Liu RH, Gao X, Li D, Kou X, Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int 2021; 150:110790. [PMID: 34865805 DOI: 10.1016/j.foodres.2021.110790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the Fabaceae family, is mainly grown in temperate and semiarid regions. Its biological activity and beneficial contribution to human health have been scientifically confirmed as an essential source of nutritional components. The objective of this review was to summarize and update latest available scientific data and information, on bioactive components in chickpea, bio-activities, and molecular mechanisms, which has mainly focused on the detection of relevant biochemical indicators, the regulation of signaling pathways, essential genes and proteins. The studies have shown that chickpea have significant multifunctional activities, which are closely related to the functionally active small molecule peptides and phytochemicals of chickpea. Significantly, numerous studies have only addressed the functional activity and mechanisms of single active components of chickpea, however, overlooking the synergy and antagonism between chickpea components, changes of functional active components in different processing methods, as well as the active form of the substances after human digestion and metabolism. Additionally, due to limitations in research methods and techniques, the structure of most functional active substances have not been determined, which makes it difficult to conduct interaction mechanism studies. Consequently, the significant bio-activity of the functional components of chickpea, synergistic and antagonistic effects and activity differences between bioactive components should be further studied.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, Tianjin 300140, China.
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
6
|
Chen J, Li X, Kong B, Ma J, Liu M, Liu C, Liu Q. How to Efficiently Remove
tert
‐butylhydroquinone from Commercial Soybean Oils to Obtain Stripped Oils: Eliminating
tert
‐butylhydroquinone's Influence on Oxidative Stabilities of Model Oil‐in‐Water Emulsions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jiaxin Chen
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Xin Li
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baohua Kong
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Jinglin Ma
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Meiyue Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Chengguo Liu
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qian Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Green Food Science & Research Institute Harbin Heilongjiang 150028 China
| |
Collapse
|
7
|
Atudorei D, Stroe SG, Codină GG. Impact of Germination on the Microstructural and Physicochemical Properties of Different Legume Types. PLANTS 2021; 10:plants10030592. [PMID: 33809819 PMCID: PMC8004221 DOI: 10.3390/plants10030592] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
The microstructural and physicochemical compositions of bean (Phaseolus vulgaris), lentil (Lens culinaris Merr.), soybean (Glycine max L.), chickpea (Cicer aretinium L.) and lupine (Lupinus albus) were investigated over 2 and 4 days of germination. Different changes were noticed during microscopic observations (Stereo Microscope, SEM) of the legume seeds subjected to germination, mostly related to the breakages of the seed structure. The germination caused the increase in protein content for bean, lentil, and chickpea and of ash content for lentil, soybean and chickpea. Germination increased the availability of sodium, magnesium, iron, zinc and also the acidity for all legume types. The content of fat decreased for lentil, chickpea, and lupine, whereas the content of carbohydrates and pH decreased for all legume types during the four-day germination period. Fourier transform infrared spectroscopic (FT-IR) spectra show that the compositions of germinated seeds were different from the control and varied depending on the type of legume. The multivariate analysis of the data shows close associations between chickpea, lentil, and bean and between lupine and soybean samples during the germination process. Significant negative correlations were obtained between carbohydrate contents and protein, fat and ash at the 0.01 level.
Collapse
|
8
|
Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105731] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Xu M, Jin Z, Gu Z, Rao J, Chen B. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: Role of lipoxygenase and free radicals. Food Chem 2020; 314:126184. [PMID: 31954939 DOI: 10.1016/j.foodchem.2020.126184] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
In this study, pulse protein isolates (PPIs) were extracted from 0, 1, 3, and 5 days germinated chickpea, lentil, and yellow pea flours by alkaline extraction-isoelectric precipitation method. The germination time had negligible impact on the proximate composition of PPIs. In total, 67 volatiles in PPIs were identified via HS-SPME-GC-MS/O. Among all the identified volatile components, seven of them, including hexanal (11), (E)-2-octen-1-ol (7), (E,Z)-2,6-nonadienal (17), 3-octen-2-one (33), 3,5-octadien-2-one (34), 2-methoxy-3-isopropylpyrazine (56), and 2-methoxy-3-(1-methylpropyl)pyrazine (57), contributed to the beany-related odor of PPIs but much less than that in raw flours. However, the overall beany-related odor of PPIs increased when the germination time exceeded 1 day. Both the activity of lipoxygenase and the free radical populations in PPIs were positively related to the overall beany-related odor. Our findings are crucial for the preparation of germinated pulse proteins with improved functionality but without increasing undesirable odor.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
10
|
Impact of Genotype, Environment, and Malting Conditions on the Antioxidant Activity and Phenolic Content in US Malting Barley. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The phenolic content and antioxidant potential of malting barley are important in brewing. The objective of our study was to investigate the effects of barley genotype, growing environment, and malting conditions on the total phenolic content and antioxidant activities of malting barley grown in North America. Eight barley cultivars grown at three locations over three years were used. For the malting study, a single barley cultivar, separated into different kernel size fractions, was germinated for various periods of time and then processed by kilning or freeze-drying. Total phenolic content (TPC) and some of the antioxidant activities, including DPPH, ABTS, and superoxide anion radical scavenging activities, reducing power, and iron (II) chelating activity, were significantly impacted by the barley genotype, growth environment, and their interactions. The TPC and most antioxidant activities were also influenced by malting conditions and were generally higher in the malted barleys of the thin kernel size fraction, four-day germination, and in samples processed by kilning, when compared to the plumper kernel size fractions, one and two days of germination, and freeze-dried samples, respectively. There were interactions between malting parameters, and stepwise regression analysis was used to suggest the contribution of each parameter to the TPC and antioxidant activities.
Collapse
|
11
|
Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods 2020; 9:foods9030330. [PMID: 32178261 PMCID: PMC7143261 DOI: 10.3390/foods9030330] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a multifunctional antioxidant neurohormone found in plant foods such as lentil sprouts. We aim to evaluate the effect of lentil sprout intake on the plasmatic levels of melatonin and metabolically related compounds (plasmatic serotonin and urinary 6-sulfatoxymelatonin), total phenolic compounds, and plasmatic antioxidant status, and compare it with synthetic melatonin. The germination of lentils increases the content of melatonin. However, the phenolic content diminished due to the loss of phenolic acids and flavan-3-ols. The flavonol content remained unaltered, being the main phenolic family in lentil sprouts, primarily composed of kaempferol glycosides. Sprague Dawley rats were used to investigate the pharmacokinetic profile of melatonin after oral administration of a lentil sprout extract and to evaluate plasma and urine melatonin and related biomarkers and antioxidant capacity. Melatonin showed maximum concentration (45.4 pg/mL) 90 min after lentil sprout administration. The plasmatic melatonin levels increased after lentil sprout intake (70%, p < 0.05) with respect to the control, 1.2-fold more than after synthetic melatonin ingestion. These increments correlated with urinary 6-sulfatoxymelatonin content (p < 0.05), a key biomarker of plasmatic melatonin. Nonetheless, the phenolic compound content did not exhibit any significant variation. Plasmatic antioxidant status increased in the antioxidant capacity upon both lentil sprout and synthetic melatonin administration. For the first time, we investigated the bioavailability of melatonin from lentil sprouts and its role in plasmatic antioxidant status. We concluded that their intake could increase melatonin plasmatic concentration and attenuate plasmatic oxidative stress.
Collapse
|
12
|
Hernandez-Aguirre AI, Téllez-Pérez C, San Martín-Azócar A, Cardador-Martínez A. Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch ( Vicia sativa spp.). Molecules 2019; 25:E151. [PMID: 31905949 PMCID: PMC6982807 DOI: 10.3390/molecules25010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022] Open
Abstract
Legumes are widely consumed by humans, being an important source of nutrients; however, they contain non-nutritional factors (NNFs), such as phytic acid (IP6), raffinose, stachyose, total phenolic compounds, condensed tannins, and flavonoids, that have negative effects on human health. Although vetches (Vicia sativa) are widely cultivated, they are not intended for human feeding due to their contents of NNF. Usually, the NNF are removed by cooking or germinating; however, germination is a process that requires extended time, and cooking may compromise the viability of some nutrients. To promote vetches for human consumption, the effect of the Instant Controlled Pressure Drop (DIC) process was studied as an alternative to cooking and germinating to decrease NNF contents. Results showed that compared to raw vetches, DIC treatment reduced total phenolic compounds (48%), condensed tannins (28%), flavonoids (65%), IP6 (92%), raffinose (77%), and stachyose (92%). These results are very similar to the ones achieved by traditional ways of removing NNF.
Collapse
Affiliation(s)
| | | | | | - Anaberta Cardador-Martínez
- Departamento de Bioingenierias, Tecnologico de Monterrey, Monterrey 76158, Mexico; (A.I.H.-A.); (C.T.-P.); (A.S.M.-A.)
| |
Collapse
|
13
|
Xu M, Jin Z, Ohm JB, Schwarz P, Rao J, Chen B. Effect of germination time on antioxidative activity and composition of yellow pea soluble free and polar soluble bound phenolic compounds. Food Funct 2019; 10:6840-6850. [PMID: 31580364 DOI: 10.1039/c9fo00799g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research aims to study antioxidative activities of polar solvent extractable phenolic compounds from yellow peas with different germination times against oil-in-water emulsion oxidation. After germination (0, 2, 4, and 6 days), soluble free and polar soluble bound phenolic compounds were extracted and their antioxidative activity was evaluated using stripped soybean oil (SSO)-in-water emulsions. Liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and size-exclusion chromatography with multiangle-light-scattering and refractive-index detection (SEC-MALS-RI) were employed to analyze the phenolic composition and molar mass, respectively. Antioxidative activities of soluble free phenolic compounds increased in the SSO-in-water emulsion system, while those of polar soluble bound phenolic compounds decreased with germination. On the basis of chemometric analysis, pratensein (2), phloridzin (4), quercetin (9), sayanedine (12), hesperetin (13), glyzaglabrin (14), and pinocembrin (15) were speculated as the pivotal phenolic compounds responsible for the hydrogen donating capacity. Additionally, decreased molecular weight of soluble bound phenolic compounds was accompanied by the reduction of antioxidative activity in SSO-in-water emulsions indicating that the moieties of polar soluble bound phenolic compounds also have an important impact on the antioxidative activity of phenolic compounds.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Xu M, Jin Z, Simsek S, Hall C, Rao J, Chen B. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem 2019; 295:579-587. [PMID: 31174798 DOI: 10.1016/j.foodchem.2019.05.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/14/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Chemical composition, thermal, pasting, and moisture adsorption properties of flours from chickpea (Cicer aretinium L.), lentil (Lens culinaris Merr.), and yellow pea (Pisum sativum L.) were investigated over a 6-day germination. Protein content increased for pulses over germination while lentil had the highest protein content that increased from 30.65 to 33.60 g/100 g dry basis (d.b.). Lipid content in pulse flours decreased over germination with chickpea having the greatest decline, i.e. from 8.00 to 5.90 g/100 g (d.b.). Total starch decreased in lentil and yellow pea flours during germination, while there was no significant change (p > 0.05) in germinated chickpea flours. Thermal properties of pulse flours changed slightly, while pasting properties varied among pulses. The highest final viscosities for chickpea, lentil, and yellow pea flours were 1061, 981, and 1052 cP and were observed after 2, 1, and 0 days of germination, respectively. Moisture adsorption isotherms showed improved water adsorption capability after germination.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Senay Simsek
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Clifford Hall
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
15
|
Yu Y, Li Z, Cao G, Huang S, Yang H. Bamboo Leaf Flavonoids Extracts Alleviate Oxidative Stress in HepG2 Cells via Naturally Modulating Reactive Oxygen Species Production and Nrf2-Mediated Antioxidant Defense Responses. J Food Sci 2019; 84:1609-1620. [PMID: 31116430 DOI: 10.1111/1750-3841.14609] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 01/01/2023]
Abstract
In this study, bamboo leaf flavonoids extracts (BFE) were employed to alleviate oxidative stress induced by oleic acid in HepG2 cells. Biochemical indexes, intracellular reactive oxygen species production, lipid droplets accumulation, antioxidant enzymes production, and mitochondrial membrane potential were determined to show the alleviation performance of BFE intervention (P < 0.05). Importantly, the results of qRT-PCR and western blot determination indicated that BFE intervention upregulated the expression of Nrf2/HO-1/NQO1 to initiate the antioxidant defense response for counteracting oxidative stress (P < 0.05). Moreover, mitochondrial membrane potential-mediated apoptosis and FOXO signaling pathway initiation caused by BFE intervention may together contribute to oxidative stress alleviation in HepG2 cells. In conclusion, these findings suggested that BFE intervention upregulated related antioxidant defense responses for preventing cells from oxidative damage. PRACTICAL APPLICATION: In this study, bamboo leaf flavonoids extracts intervention upregulated related antioxidant defense responses for preventing cells from oxidative damage. These findings in bamboo leaf extracts antioxidants are a promising and innovative subject with practical applications to enhance the development of bamboo leaf extracts functional products in the food industry.
Collapse
Affiliation(s)
- Yue Yu
- Huzhou Vocational and Technical College, Huzhou, 313000, PR China.,Dept. of Food Science, China Jiliang Univ., Hangzhou, 310018, PR China
| | - Zhanming Li
- Dept. of Food Science, China Jiliang Univ., Hangzhou, 310018, PR China.,Food Science and Technology Programme, Dept. of Chemistry, National Univ. of Singapore, Singapore, 117543, Singapore
| | - Guangtian Cao
- Dept. of Food Science, China Jiliang Univ., Hangzhou, 310018, PR China
| | - Shudan Huang
- Dept. of Food Science, China Jiliang Univ., Hangzhou, 310018, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, Dept. of Chemistry, National Univ. of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
16
|
Xu M, Jin Z, Lan Y, Rao J, Chen B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem 2019; 280:83-95. [PMID: 30642511 DOI: 10.1016/j.foodchem.2018.12.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023]
Abstract
In this study, volatile component changes of germinated chickpea, lentil, and yellow pea flours over the course of 6 days germination were characterized by HS-SPME-GC-MS/O. In total, 124 volatile components were identified involving 19 odor active components being recorded by GC-O exclusively. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that lentil and yellow pea flours had the similar aromatic attributes, while the decrease of beany flavor compounds along with the occurrence of unpleasant flavors was detected in chickpea flours upon germination. Six beany flavor markers, including hexanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 3-methyl-1-butanol, 1-hexanol, and 2-pentyl-furan, were employed to quantify beany flavor formation in the flours over the course of germination. The results suggested that no significant beany flavor formation or mitigation was appeared after 1 day of germination. The findings are crucial for tailing pulse germination process to enhance the macronutrients without increasing undesirable beany flavor.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yang Lan
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
17
|
Yu Y, Li Z, Cao G, Li S, Yang H. Effects of ball milling micronization on amino acids profile and antioxidant activities of Polygonatumcyrtonema Hua tuber powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Xu M, Rao J, Chen B. Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Crit Rev Food Sci Nutr 2019; 60:740-759. [DOI: 10.1080/10408398.2018.1550051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
19
|
Bautista-Expósito S, Martínez-Villaluenga C, Dueñas M, Silván JM, Frias J, Peñas E. Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
20
|
Xu M, Jin Z, Ohm JB, Schwarz P, Rao J, Chen B. Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6179-6187. [PMID: 29860843 DOI: 10.1021/acs.jafc.8b02208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our recent study found that antioxidative activity of phenolic compounds extracted from germinated chickpea was boosted in both in vitro assays and oil-in-water emulsions [ Xu et al. Food Chem. 2018 , 250 , 140 ]. The purpose of this study was to elucidate the mechanism by which germination enhances the antioxidative activity of the phenolic compounds extracted from chickpea. Liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and size-exclusion chromatography with multiangle-light-scattering and refractive-index detection (SEC-MALS-RI) were employed to evaluate the phenolic composition of soluble phenolic compounds (free and bound) and molar masses of soluble bound phenolic compounds, respectively, over 6 days of germination. According to principal-component analysis of the interrelationship between germination time and phenolic composition, it is revealed that protocatechuic acid 4- O-glucoside and 6-hydroxydaidzein played a pivotal role in the soluble free phenolic compounds, whereas gentisic acid and 7,3',4'-trihydroxyflavone were important in the soluble bound phenolic compounds. Molar masses of soluble bound phenolic compounds were increased after 6 days of germination. Protective and dual antioxidative effects were proposed to explicate how the antioxidative activity of soluble bound phenolic compounds in oil-in-water emulsions was improved with germination.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Zhao Jin
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Jae-Bom Ohm
- Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab , USDA-ARS , Fargo , North Dakota 58108 , United States
| | - Paul Schwarz
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Jiajia Rao
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Bingcan Chen
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| |
Collapse
|