1
|
Shi H, Zhang R, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Effects of NaCl partially substituted with KCl or MgCl 2 on the properties, oral mastication, in vitro gastric digestion, and pepsin diffusion of myofibrillar protein gel. Food Chem 2025; 482:144232. [PMID: 40209375 DOI: 10.1016/j.foodchem.2025.144232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
The effects of NaCl partially substituted by KCl, MgCl2, and KCl/MgCl2 on the gel characteristics, oral mastication, and in vitro gastric digestion of myofibrillar protein (MP) gel were investigated. The results indicated that partial substitution of NaCl by KCl or MgCl2 did not cause obvious deterioration of gel properties within 30 % substitution levels. MgCl2 substitution significantly increased the surface hydrophobicity of MP, and formed homogeneous network structure for effective limitation of moisture loss. The MgCl2-substituted gel exhibited relatively lower viscosity and hardness for better swallowing. The high pepsin diffusivity in MgCl2-substituted gel (59.57 ± 4.28 μm2/s, 30 %-Mg group) improved protein hydrolysis, and produced more shorter peptides due to the loose and relatively uniform structure compared to those of the gels only containing NaCl and partial KCl. Therefore, the changes of textural parameters, microstructure, and water mobility in sodium-reduced gel with different substitution levels could influence the subsequent gastric digestion characteristics.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ruyi Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. How chloride salt mixtures affect the final gel properties of low-sodium myofibrillar protein: Underlining the perspective of gelation process. Meat Sci 2025; 221:109735. [PMID: 39721208 DOI: 10.1016/j.meatsci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl2 exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl2 increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability. Microstructural and binarization results visually indicated that an irregular reticular structure composed of partial clusters formed when the temperature heated over 53 °C, and the cross-linked cluster blocks further shrunk from 53 °C to 73 °C. Rheological amplitude sweeps revealed that KCl/CaCl2-substitued MP displayed a faster fracture of the ductile structure, and this influenced the distribution of cluster blocks inside the network. The introduction of salt mixtures altered protein conformation, and more unordered structures were found in low-sodium MP containing CaCl2, rather than MP containing MgCl2. Additionally, Ca2+ ions increased the thermo-denatured temperature of MP, and extended the relaxation time of bound water at 53 °C, and Mg2+ ions slowed down the degree of liquid loss at 53 °C. As a result, the low-sodium MP containing CaCl2 exhibited a lower expansion of protein structure accompanied by the involvement of less proteins in gel formation and more liquid loss in the final gel.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Jiang Q, Yan J, Song C, Yang Y, Chen G, Kong F, Yang J, Song S. Hollow Salt Prepared Through Spray Drying with Alginate Enhances Salinity Perception to Reduce Sodium Intake. Foods 2024; 14:19. [PMID: 39796309 PMCID: PMC11719871 DOI: 10.3390/foods14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.25 g/L could enhance the saltiness of NaCl solution by 11.5%. Then, a solid salt was prepared through spray drying with 4.83% of this alginate, and its structure was characterised by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy to confirm its hollow structure with a particle size of 6.25 ± 2.26 μm as well as its crystal structure similar to original NaCl. Moreover, the conductivity monition revealed that the hollow salt exhibited a more rapid dissolution in water and its alginate component increased the adhesive retention of sodium ions on the tongue surface, which both effectively enhanced the sensory perception. Finally, as revealed by the sensory evaluation, the prepared hollow salt showed higher saltiness than that of original table salt and it could reduce sodium intake by 29%. Thus, the hollow salt prepared with alginate in the present study has potential for salt reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Q.J.); (J.Y.); (C.S.); (Y.Y.); (G.C.); (F.K.); (J.Y.)
| |
Collapse
|
4
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Effect of NaCl replacement by other salt mixtures on myofibrillar proteins: Underlining protein structure, gel formation, and chewing properties. J Food Sci 2024; 89:9060-9072. [PMID: 39468895 DOI: 10.1111/1750-3841.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
The protein structure, gel changes, and chewing properties of low-sodium myofibrillar protein (MP) prepared by compound chloride salts (KCl/MgCl2, KCl/CaCl2, and KCl/MgCl2/CaCl2) and different substitution degrees (10%, 25%, and 40%) at same ionic strength (0.6 M) were investigated. The results revealed that the low-sodium MP gels containing CaCl2 manifested more liquid loss and less moisture content accompanied by obvious morphological shrinkage, while KCl/MgCl2 contributed to the gel juiciness. At high substitution degree of 40%, KCl/CaCl2 substitution rendered the gel with dense structure and highest strength, but worse water retention capacity. Using other compound chloride salts influenced the chewing efficiency, and CaCl2 substitution made the gel relatively hard to chew. The inhomogeneous structure accompanied by cluster blocks in KCl/CaCl2-substituted MP gel accelerated the overall fracture rate. During heating process, more proteins in CaCl2-substituted MP did not participate in gel formation, intervening the final gel properties. The chloride salt mixtures containing MgCl2, rather than CaCl2, avoided or alleviated the liquid loss and shrinkage of low-sodium MP gel within the substitution degree of 10%-40%, and substitution degree not exceeding 25% was more reasonable for the controlled qualities.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Yeoh SY, Tan HL, Muhammad L, Tan TC, Murad M, Mat Easa A. Sensory, structural breakdown, microstructure, salt release properties, and shelf life of salt-coated air-dried yellow alkaline noodles. NPJ Sci Food 2023; 7:8. [PMID: 36932100 PMCID: PMC10023698 DOI: 10.1038/s41538-023-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Salt reduction in food has been employed to improve public health. The effects of salt coatings on sodium content, sensory properties, structural breakdown, microstructure, salt release properties, and shelf life of yellow alkaline noodles (YAN) were evaluated. 15 g/dL resistant starch HYLON™ VII (HC) or 5% (v/v) Semperfresh™ (SC) with 10, 20, and 30 g/dL sodium chloride (NaCl) were used. HC-Na30 and SC-Na30 had the highest sodium content and came closest to commercial YAN in taste and saltiness perception. Structural improvement was demonstrated with HC-Na10 and SC-Na10 as both noodles required maximum work to be broken down. Moreover, SEM micrographs of these noodles showed a more compact and dense appearance with increased continuity of the matrix and fewer voids and hollows. However, ruptured surfaces were observed in noodles coated with 20 and 30% salt. The enhanced salt release from the coatings was demonstrated in an in vivo analysis, with the released salt occurring rapidly from HC and SC coatings. HC-Na10 and SC-Na10 noodles had a shelf life of more than 8 days when stored at 4 °C, which is longer than HC-Na0 and SC-Na0 noodles. Storage at 4 °C decelerated the microbiological growth, changes in pH and CIE L* values in salt-coated noodles than storage at 25 °. Thus, HC-Na10 and SC-Na10 could be suitable formulations to replace commercial YAN.
Collapse
Affiliation(s)
- Shin-Yong Yeoh
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia.
| | - Hui-Ling Tan
- School of Hospitality and Service Management, Sunway Universiti, 47500, Petaling Jaya, Selangor, Malaysia
| | - Lubowa Muhammad
- Department of Food Innovation and Nutrition, Mountains of the Moon University, Fort Portal, Uganda
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Maizura Murad
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia.
| |
Collapse
|
6
|
Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13:4198. [PMID: 34883701 PMCID: PMC8659840 DOI: 10.3390/polym13234198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
7
|
Wang X, Ullah N, Shen Y, Sun Z, Wang X, Feng T, Zhang X, Huang Q, Xia S. Emulsion delivery of sodium chloride: A promising approach for modulating saltiness perception and sodium reduction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Sun C, Zhou X, Hu Z, Lu W, Zhao Y, Fang Y. Food and salt structure design for salt reducing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
He X, Lu W, Sun C, Khalesi H, Mata A, Andaleeb R, Fang Y. Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydr Polym 2020; 255:117334. [PMID: 33436177 DOI: 10.1016/j.carbpol.2020.117334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Development of new sources and isolation processes has recently enhanced the production of cellulose in many different colloidal states. Even though cellulose is widely used as a functional ingredient in the food industry, the relationship between the colloidal states of cellulose and its applications is mostly unknown. This review covers the recent progress on illustrating various colloidal states of cellulose and the influencing factors with special emphasis on the correlation between the colloidal states of cellulose and its applications in food industry. The associated unique colloidal states of cellulose like high aspect ratio, crystalline structure, surface charge, and wettability not only promote the stability of colloidal systems, but also help improve the nutritional aspects of cellulose by facilitating its interactions with digestive system. Further studies are required for the rational control and improvement of the colloidal states of cellulose and producing food systems with enhanced functional and nutritional properties.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rani Andaleeb
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Jung EY, Lee DY, Kim OY, Lee SY, Yim DG, Hur SJ. Subacute feeding toxicity of low-sodium sausages manufactured with sodium substitutes and biopolymer-encapsulated saltwort (Salicornia herbacea) in a mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:794-802. [PMID: 31612484 DOI: 10.1002/jsfa.10087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Low-sodium sausages were manufactured using sodium substitution and biopolymer encapsulation. A diet comprising 10% treatment sausages (six treatment groups: C (100% NaCl), T1 (55% sodium substitute + 45% saltwort salt), T2 (55% sodium substitute + 45% saltwort salt with chitosan), T3 (55% sodium substitute + 45% saltwort salt with cellulose), T4 (55% sodium substitute + 45% saltwort salt with dextrin), and T5 (55% sodium substitute + 45% saltwort salt with pectin)) was added to a 90% commercial mouse diet for 4 weeks. RESULTS Subacute toxicity, hematology, liver function, and organ weight tests in low-sodium sausage groups showed results similar to those of the control group, and all toxicity test levels were within normal ranges. CONCLUSIONS All low-sodium sausage types tested are suggested to be safe in terms of subacute toxicity. Moreover, low-sodium sausages can be manufactured by biopolymer encapsulation of saltwort using pectin, chitosan, cellulose, and dextrin without toxicity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eun Young Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - On You Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| | - Dong Gyun Yim
- Department of Animal Science, Sangji University, Wonju, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| |
Collapse
|
11
|
Bedor PBA, Caetano RMJ, Souza Júnior FGD, Leite SGF. Advances and perspectives in the use of polymers in the environmental area: a specific case of PBS in bioremediation. POLIMEROS 2020. [DOI: 10.1590/0104-1428.02220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|