1
|
Ormston S, Qin N, Faludi G, Pitt J, Gordon AW, Theodoridou K, Yan T, Huws SA, Stergiadis S. Implications of Organic Dairy Management on Herd Performance and Milk Fatty Acid Profiles and Interactions with Season. Foods 2023; 12:foods12081589. [PMID: 37107384 PMCID: PMC10138061 DOI: 10.3390/foods12081589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Interest in organic cows' milk has increased due to the perceived superior nutritional quality and improved sustainability and animal welfare. However, there is a lack of simultaneous assessments on the influence of organic dairy practices and dietary and breed drivers on productivity, feed efficiency, health parameters, and nutritional milk quality at the herd level. This work aimed to assess the impact of organic vs. conventional management and month on milk yield and basic composition, herd feed efficiency, health parameters, and milk fatty acid (FA) composition. Milk samples (n = 800) were collected monthly from the bulk tanks of 67 dairy farms (26 organic and 41 conventional) between January and December 2019. Data on breed and feeding practices were gathered via farm questionnaires. The samples were analyzed for their basic composition and FA profile using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC), respectively. The data were analyzed using a linear mixed model, repeated measures design and multivariate redundancy analysis (RDA). The conventional farms had higher yields (kg/cow per day) of milk (+7.3 kg), fat (+0.27 kg), and protein (+0.25 kg) and higher contents (g/kg milk) of protein, casein, lactose, and urea. The conventional farms produced more milk (+0.22 kg), fat (+8.6 g), and protein (+8.1 g) per kg offered dry matter (DM). The organic farms produced more milk per kg of offered non-grazing and concentrate DM offered, respectively (+0.5 kg and +1.23 kg), and fat (+20.1 g and +51 g) and protein (+17 g and +42 g). The organic milk had a higher concentration of saturated fatty acid (SFA; +14 g/kg total FA), polyunsaturated fatty acid (PUFA; +2.4 g/kg total FA), and nutritionally beneficial FA alpha linolenic acid (ALNA; +14 g/kg total FA), rumenic acid (RA; +14 g/kg total FA), and eicosapentaenoic acid (EPA; +14 g/kg total FA); the conventional milk had higher concentrations of monounsaturated FA (MUFA; +16 g/kg total FA). Although the conventional farms were more efficient in converting the overall diet into milk, fat, and protein, the organic farms showed better efficiency in converting conserved forages and concentrates into milk, fat, and protein as a result of reduced concentrate feeding. Considering the relatively small differences in the FA profiles between the systems, increased pasture intake can benefit farm sustainability without negatively impacting consumer nutrition and health.
Collapse
Affiliation(s)
- Sabrina Ormston
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Nanbing Qin
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Gergely Faludi
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
- Department of Animal Breeding, Georgikon Campus, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Deák Ferenc u. 16, H-8360 Keszthely, Hungary
| | - Joe Pitt
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Alan W Gordon
- Statistical Services Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
| | - Katerina Theodoridou
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Tianhai Yan
- Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| |
Collapse
|
2
|
Ormston S, Davis H, Butler G, Chatzidimitriou E, Gordon AW, Theodoridou K, Huws S, Yan T, Leifert C, Stergiadis S. Performance and milk quality parameters of Jersey crossbreds in low-input dairy systems. Sci Rep 2022; 12:7550. [PMID: 35534492 PMCID: PMC9085769 DOI: 10.1038/s41598-022-10834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Previous work has demonstrated some benefit from alternative breeds in low-input dairying, although there has been no systematic analysis of the simultaneous effect of Jersey crossbreeding on productivity, health, fertility parameters or milk nutritional quality. This work aimed to understand the effects of, and interactions/interrelations between, dairy cow genotypes (Holstein-Friesian (HF), Holstein-Friesian × Jersey crossbreds (HF × J)) and season (spring, summer, autumn) on milk yield; basic composition; feed efficiency, health, and fertility parameters; and milk fatty acid (FA) profiles. Milk samples (n = 219) and breed/diet data were collected from 74 cows in four UK low-input dairy farms between March and October 2012. HF × J cows produced milk with more fat (+ 3.2 g/kg milk), protein (+ 2.9 g/kg milk) and casein (+ 2.7 g/kg milk); and showed higher feed, fat, and protein efficiency (expressed as milk, fat and protein outputs per kg DMI) than HF cows. Milk from HF × J cows contained more C4:0 (+ 2.6 g/kg FA), C6:0 (+ 1.9 g/kg FA), C8:0 (+ 1.3 g/kg FA), C10:0 (+ 3.0 g/kg FA), C12:0 (+ 3.7 g/kg FA), C14:0 (+ 4.6 g/kg FA) and saturated FA (SFA; + 27.3 g/kg milk) and less monounsaturated FA (MUFA; -23.7 g/kg milk) and polyunsaturated FA (− 22.3 g/kg milk). There was no significant difference for most health and fertility parameters, but HF × J cows had shorter calving interval (by 39 days). The superior feed, fat and protein efficiency of HF × J cows, as well as shorter calving interval can be considered beneficial for the financial sustainability of low-input dairy farms; and using such alternative breeds in crossbreeding schemes may be recommended. Although statistically significant, it is difficult to determine if differences observed between HF and HF × J cows in fat composition are likely to impact human health, considering average population dairy fat intakes and the relatively small difference. Thus, the HF × J cow could be used in low-input dairying to improve efficiency and productivity without impacting milk nutritional properties.
Collapse
|
3
|
Stergiadis S, Qin N, Faludi G, Beauclercq S, Pitt J, Desnica N, Pétursdóttir ÁH, Newton EE, Angelidis AE, Givens I, Humphries DJ, Gunnlaugsdóttir H, Juniper DT. Mineral Concentrations in Bovine Milk from Farms with Contrasting Grazing Management. Foods 2021; 10:2733. [PMID: 34829015 PMCID: PMC8620383 DOI: 10.3390/foods10112733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
Thirty conventional and twenty-four organic dairy farms were divided into equal numbers within system groups: high-pasture, standard-pasture, and low-pasture groups. Milk samples were collected monthly for 12 consecutive months. Milk from high-pasture organic farms contained less fat and protein than standard- and low-pasture organic farms, but more lactose than low-pasture organic farms. Grazing, concentrate feed intake and the contribution of non-Holstein breeds were the key drivers for these changes. Milk Ca and P concentrations were lower in standard-pasture conventional farms than the other conventional groups. Milk from low-pasture organic farms contained less Ca than high- and standard-pasture organic farms, while high-pasture organic farms produced milk with the highest Sn concentration. Differences in mineral concentrations were driven by the contribution of non-Holstein breeds, feeding practices, and grazing activity; but due to their relatively low numerical differences between groups, the subsequent impact on consumers' dietary mineral intakes would be minor.
Collapse
Affiliation(s)
- Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Nanbing Qin
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Gergely Faludi
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
- Georgikon Campus, Szent Istvan University, Deák Ferenc u. 16, H-8360 Keszthely, Hungary
| | - Stephane Beauclercq
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Joe Pitt
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Natasa Desnica
- Matís Ltd., Vinlandsleid 12, 113 Reykjavik, Iceland; (N.D.); (Á.H.P.); (H.G.)
| | | | - Eric E. Newton
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Angelos E. Angelidis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| | - Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK;
| | - David J. Humphries
- Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Hall Farm House, Church Ln, Reading RG2 9HX, UK;
| | - Helga Gunnlaugsdóttir
- Matís Ltd., Vinlandsleid 12, 113 Reykjavik, Iceland; (N.D.); (Á.H.P.); (H.G.)
- Faculty of Food Science and Nutrition, School of Health Sciences, University Iceland, 102 Reykjavik, Iceland
| | - Darren T. Juniper
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK; (N.Q.); (G.F.); (S.B.); (J.P.); (E.E.N.); (A.E.A.); (D.T.J.)
| |
Collapse
|
4
|
Effect of Intensification Practices, Lambing Period and Environmental Parameters on Animal Health, and Milk Yield and Quality in Dairy Sheep Production Systems on Crete. SUSTAINABILITY 2021. [DOI: 10.3390/su13179706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to increasing demand, many traditional, grazing-based Mediterranean sheep production systems have introduced intensified feeding regimes, increased investments in infrastructure and drug use to increase milk yields. However, compared to bovine milk production systems, there is limited knowledge about the impact of these intensification practices on animal welfare and health and on the quality of dairy products. The aim of this study was therefore to quantify the effects of management practices and environmental conditions background on udder health, parasitism and milk quantity and quality in Cretan traditional production systems. Milk yields were higher in semi-intensive production systems while concentrations of several nutritionally desirable compounds such as omega-3 fatty acids were found to be higher in milk from extensive systems. Antibiotic and anthelmintic use was relatively low in both extensive and semi-intensive production systems. There was no substantial difference in parasitic burden, somatic cell counts, and microbiological parameters assessed in milk. Recording of flock health parameters showed that animal health and welfare was high in both extensive and semi-intensively managed flocks, and that overall, the health status of extensively managed ewes was slightly better. In contrast, environmental conditions (temperature and rainfall) had a substantial effect on parasitism and milk quality.
Collapse
|
5
|
Qin N, Faludi G, Beauclercq S, Pitt J, Desnica N, Pétursdóttir Á, Newton EE, Angelidis A, Givens I, Juniper D, Humphries D, Gunnlaugsdóttir H, Stergiadis S. Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem 2021; 359:129865. [PMID: 33940467 DOI: 10.1016/j.foodchem.2021.129865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
To study the effects of dairy production system on milk macromineral and trace element concentrations, milk samples were collected monthly in 2019 from 43 conventional and 27 organic farms. Organic milk contained more Ca (1049.5 vs. 995.8 mg/kg), K (1383.6 vs. 1362.4 mg/kg), P (806.5 vs. 792.5 mg/kg) and Mo (73.3 vs. 60.6 μg/kg) but less Cu (52.4 vs. 60.6 μg/kg), Fe (0.66 vs 2.03 mg/kg), Mn (28.8 vs. 45.0 μg/kg), Zn (4.51 vs. 5.00 mg/kg) and Al (0.32 vs. 1.14 μg/kg) than conventional milk. Significant seasonal variation was observed in all determined minerals' concentrations. Milk I concentration was not consistently affected by production system, whereas organic milk contained less I in June and July than conventional milk. Dietary factors contributing to different milk mineral concentrations between production systems included intakes of maize silage, dry-straights and oils (higher in conventional diets), and pasture, clover and wholecrop (higher in organic diets).
Collapse
Affiliation(s)
- Nanbing Qin
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - Gergely Faludi
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom; Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Deák Ferenc u. 16, H-8360, Hungary
| | - Stephane Beauclercq
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - Joe Pitt
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | | | | | - Eric E Newton
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - Angelos Angelidis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - Darren Juniper
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom
| | - David Humphries
- Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Hall Farm House, Church Ln, Reading RG2 9HX, United Kingdom
| | - Helga Gunnlaugsdóttir
- Matís ltd., Vínlandsleið 12, Reykjavík 113, Iceland; Faculty Food Science and Nutrition, University Iceland, Reykjavik, Iceland
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom.
| |
Collapse
|
6
|
Agradi S, Curone G, Negroni D, Vigo D, Brecchia G, Bronzo V, Panseri S, Chiesa LM, Peric T, Danes D, Menchetti L. Determination of Fatty Acids Profile in Original Brown Cows Dairy Products and Relationship with Alpine Pasture Farming System. Animals (Basel) 2020; 10:E1231. [PMID: 32698365 PMCID: PMC7401626 DOI: 10.3390/ani10071231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to evaluate the relationships between fatty acids and the pattern that most contributes to discriminate between two farming systems, in which the main difference was the practice, or not, of alpine summer-grazing. Milk and cheese were sampled every month in two farms of Original Brown cows identical under geographical location and management during no grazing season point of view in the 2018 season. Fatty acids concentrations were determined by gas chromatography. The principal component analysis extracted three components (PCs). Mammary gland de novo synthetized fatty acids (C14:0, C14:1 n9, and C16:0) and saturated and monosaturated C18 fatty acids (C18:0, C18:1 n9c) were inversely associated in the PC1; PC2 included polyunsaturated C18 fatty acids (C18:2 n6c, C18:3 n3) and C15:0 while conjugated linoleic acid (CLA n9c, n11t) and fatty acids containing 20 or more carbon atoms (C21:0, C20:5 n3) were associated in the PC3. The processes of rumen fermentation and de novo synthesis in mammary gland that are, in turn, influenced by diet, could explain the relationships between fatty acids within each PC. The discriminant analyses showed that the PC2 included the fatty acids profile that best discriminated between the two farming systems, followed by PC3 and, lastly, PC1. This model, if validated, could be an important tool to the dairy industry.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Daniele Negroni
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Valerio Bronzo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via Celoria 10, 20133 Milan, Italy; (S.P.); (L.M.C.)
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via Celoria 10, 20133 Milan, Italy; (S.P.); (L.M.C.)
| | - Tanja Peric
- DI4A—Dipartimento di Scienze Agroalimentari Ambientali e Animali/Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/B, 33100 Udine, Italy;
| | - Doina Danes
- Facultaty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Splaiul Independentei 105, 050097 Bucharest, Romania;
| | - Laura Menchetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
7
|
Stergiadis S, Nørskov NP, Purup S, Givens I, Lee MRF. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients 2019; 11:E2282. [PMID: 31554167 PMCID: PMC6835441 DOI: 10.3390/nu11102282] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023] Open
Abstract
Goat milk is globally consumed but nutritional profiling at retail level is scarce. This study compared the nutrient composition of retail cow and goat milk (basic solids, fatty acids, minerals, and phytoestrogens) throughout the year and quantified the potential implications on the consumers' nutrient intakes. When compared to cow milk, goat milk demonstrated nutritionally desirable traits, such as lower concentrations of C12:0, C14:0, C16:0 and Na: K ratio, and the higher concentrations of cis polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), isoflavones, B, Cu, Mg, Mn, P and I, although the latter may be less desirable in cases of high milk intakes. However, in contrast with nutritional targets, it had lower concentrations of omega-3 PUFA, vaccenic acid, lignans, Ca, S and Zn. The extent of these differences was strongly influenced by season and may demonstrate a combination of differences on intrinsic species metabolism, and farm breeding/husbandry practices.
Collapse
Affiliation(s)
- Sokratis Stergiadis
- Department of Animal Sciences, University of Reading, Agriculture Building, P.O. Box 237, Earley Gate, Reading RG6 6AR, UK.
| | - Natalja P Nørskov
- Department of Animal Science, Aarhus University, AU-Foulum, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Stig Purup
- Department of Animal Science, Aarhus University, AU-Foulum, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Ian Givens
- Institute for Food Nutrition and Health, University of Reading, Agriculture Building, P.O. Box 237, Earley Gate, Reading RG6 6AR, UK.
| | - Michael R F Lee
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK.
- Bristol Veterinary School, University of Bristol, Langford, Somerset BS40 5DU, UK.
| |
Collapse
|