1
|
Herrera-Lavados C, Tabilo-Munizaga G, Carvajal-Mena N, Jara-Quijada E, Martínez-Oyanedel J, Pérez-Won M. Obtaining bioactive peptides by enhancing enzymatic hydrolysis of salmon by-product proteins through pulsed electric fields (PEF). Food Res Int 2025; 208:116103. [PMID: 40263776 DOI: 10.1016/j.foodres.2025.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Pulsed Electric Fields (PEF) exhibit significant potential to modify proteins and enzymes, enhancing their enzymatic activity and increasing bioactive peptide production. This work aimed to enhance the obtention of bioactive peptides using PEF as a pre-treatment for enzymatic hydrolysis of salmon by-product proteins. Results show that PEF treatments at 15 and 20 kV/cm improved flavourzyme (FV) enzymatic activity by altering the protein's tertiary structure, decreasing its surface hydrophobicity and intrinsic fluorescence. PEF improved the hydrolysis process, especially when both FV and salmon protein were subjected to PEF, increasing the hydrolysis degree and peptide yield from 9.6 % up to 16.6 % and 10.6 % up to 18.7 %, respectively. PEF-assisted hydrolysis modified molecular weight distribution of the peptides obtained, increasing the amount of 3 and 5 kDa peptides. Optimal antioxidant and anti-ACE activities were achieved by applying PEF at FV and SPI at 50 Hz and 15 kV/cm. These findings suggest that PEF is a promising technology for producing bioactive peptides by increasing enzyme activity and improving the obtained peptide yield.
Collapse
Affiliation(s)
- Carolina Herrera-Lavados
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile.
| | - Nailín Carvajal-Mena
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Erick Jara-Quijada
- Nutrition and Dietetics, Faculty of Health Sciences, Universidad Adventista de Chile, Camino a Las Mariposas, 11771, Chillán, Chile
| | - José Martínez-Oyanedel
- Department of Biochemist and Molecular Biology, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile
| | - Mario Pérez-Won
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| |
Collapse
|
2
|
Kang Z, Wang Z, Wang J, Liu Q, Pan D, Wu Z, Zeng X, Tu M. Production of bioactive peptides by high-voltage pulsed electric field: Protein extraction, mechanism, research status and collaborative application. Food Chem 2025; 483:144139. [PMID: 40250289 DOI: 10.1016/j.foodchem.2025.144139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
Bioactive peptides exhibit a variety of potential applications in the fields of medicine, food and cosmetics. However, studies have shown that the traditional preparation is characterized by low efficiency, substantial pollution, limited activities and poor purity, which constrains their further application. High-voltage pulsed electric field (HPEF) technology, as a physical non-thermal processing method, shows unique advantages in bioactive peptide preparation. Through comprehensive analysis, this paper reveals the main principle of HPEF technology, the extraction of proteins (break up cellular tissue), the structural changes of proteins, enzymes and bioactive peptides after treatment, the improvement of bioactive peptides' functional properties and the potential in promoting bioactive peptides' large-scale production. Besides, this paper introduces the application of other non-thermal processing technologies, artificial intelligence and nanotechnology, providing new ways of thinking for the efficient preparation and application of bioactive peptides and establishes a theoretical foundation for the application and promotion of HPEF technology.
Collapse
Affiliation(s)
- Zeyuan Kang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jingjing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
3
|
Luo X, Nawaz A, Irshad S, Li Z, Qin Z, Li C, Alkahtani S, Khan MR, Walayat N. Inhibitory action of antimicrobial peptides against the formation of carcinogenic and mutagenic heterocyclic amines in meat. Int J Biol Macromol 2024; 280:135503. [PMID: 39304045 DOI: 10.1016/j.ijbiomac.2024.135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Thermal processing of meat leads to the development of Maillard's reaction intermediates, and carcinogenic toxicants. For the first time, the effectiveness of three (HX-12A, HX-12B and HX-12C) antimicrobial peptides (AMPs) against the formation of heterocyclic amines (HAs) in chemical and meat model systems. The results showed that AMPs especially 12A and 12C have strong metal chelation potential (48 and 40% at 1 mg/ml) and antioxidant activity (35 and 25% at 1 mg/ml), respectively, which were endorsed by their secondary structure (FTIR analysis) in terms of high β-sheets (1628 cm-1 and 1672 cm-1) in those AMPs. UPLC-MS analysis revealed that 12A and 12C were the most capable AMPs in MeIQx and PhIP-producing chemical models, respectively, whereas 12B promoted the HAs formation even higher than control. In particular, 12C AMP significantly (P < 0.05) decreased the most abundant carcinogenic HAs (PhIP) up to 90% at 9 mg/100 g of fresh meat, whereas 12A inhibited up to 80% of mutagenic HAs at same level compared to control and 12B. Low Field Nuclear Magnetic Resonance (LF-NMR) test showed that inhibitory effect of 12A and 12C was mediated by means of retaining water (lower T22 and T23 relaxation time) inside the macromolecules. This favorable effect was also evidenced by significantly enhanced tryptophan fluorescent intensity. Finally, based on correlation and principle component analysis, the mechanism of action has been proposed. These outcomes recommend that 12A and 12C are potential AMPs for the attenuation of HAs in thermally processed meat-based products.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China.
| | - Sana Irshad
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Zunhua Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Zuodong Qin
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Changjian Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Rizwan Khan
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Noman Walayat
- Department of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
4
|
Marín-Sánchez J, Berzosa A, Álvarez I, Sánchez-Gimeno C, Raso J. Pulsed Electric Fields Effects on Proteins: Extraction, Structural Modification, and Enhancing Enzymatic Activity. Bioelectricity 2024; 6:154-166. [PMID: 39372091 PMCID: PMC11447477 DOI: 10.1089/bioe.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pulsed electric field (PEF) is an innovative physical method for food processing characterized by low energy consumption and short processing time. This technology represents a sustainable procedure to extend food shelf-life, enhance mass transfer, or modify food structure. The main mechanism of action of PEF for food processing is the increment of the permeability of the cell membranes by electroporation. However, it has also been shown that PEF may modify the technological and functional properties of proteins. Generating a high-intensity electric field necessitates the flow of an electric current that may have side effects such as electrochemical reactions and temperature increments due to the Joule effect that may affect food components such as proteins. This article presents a critical review of the knowledge on the extraction of proteins assisted by PEF and the impact of these treatments on protein composition, structure, and functionality. The required research for understanding what happens to a protein when it is under the action of a high-intensity electric field and to know if the mechanism of action of PEF on proteins is different from thermal or electrochemical effects is underlying.
Collapse
Affiliation(s)
- J. Marín-Sánchez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A. Berzosa
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - I. Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - C. Sánchez-Gimeno
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - J. Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
5
|
Yang J, Ding J, Lu Z, Zhu B, Lin S. Digestive and Absorptive Properties of the Antarctic Krill Tripeptide Phe-Pro-Phe (FPF) and Its Auxiliary Memory-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8491-8505. [PMID: 38587859 DOI: 10.1021/acs.jafc.3c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jie Ding
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| |
Collapse
|
6
|
Yang J, Qi Y, Zhu B, Lin S. A Novel Tetrapeptide Ala-Phe-Phe-Pro (AFFP) Derived from Antarctic Krill Prevents Scopolamine-Induced Memory Disorder by Balancing Lipid Metabolism of Mice Hippocampus. Nutrients 2024; 16:1019. [PMID: 38613052 PMCID: PMC11013912 DOI: 10.3390/nu16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Qi
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| |
Collapse
|
7
|
Nouri K, Nikbakht A, Haghighi M, Etemadi N, Rahimmalek M, Szumny A. Screening some pine species from North America and dried zones of western Asia for drought stress tolerance in terms of nutrients status, biochemical and physiological characteristics. FRONTIERS IN PLANT SCIENCE 2023; 14:1281688. [PMID: 38098786 PMCID: PMC10720665 DOI: 10.3389/fpls.2023.1281688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Drought due to climate change or reduced precipitation is one of the main factors limiting the growth and establishment of plants and is one of the most critical challenges facing humans. To investigate the effect of different levels of drought stress on some pine species, this research was carried out as a factorial experiment using two factors and a completely randomized design. It included five populations of four pine species (Pinus brutia Ten. var. eldarica, P. nigra Arnold, P. mugo, and P. banksiana Lamb (including populations 8310055 and 8960049), and three levels of irrigation (100%, 75%, or 50% FC, denoted as normal, mild or intense drought stress, respectively) with three replicates. The findings showed that, photosynthetic pigments, relative water content, visual quality, the content of nutrients, protein content, and fresh and dry weight all decreased significantly when plants were exposed to intense drought stress. However, raised proline levels, electrolyte leakage percentage, soluble sugars levels, and antioxidant enzyme activity. We detected a decline in most growth traits when comparing mild drought stress conditions to normal irrigation, yet acceptable quality seedlings when compared to intense drought stress. Intense drought stress had a substantial impact on many pine seedlings. PCA results showed that among different pine species, the level of resistance to drought is as follows: P. mugo> P. brutia var. eldarica> P. nigra> P. banksiana 8310055> P. banksiana 8960049. Our novel finding was that, P. mugo is a resistant species in arid and semi-arid regions, and P. banksiana species, especially its population of 8960049, is sensitive.
Collapse
Affiliation(s)
- Karim Nouri
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ali Nikbakht
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Loushigam G, Shanmugam A. Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound-assisted extraction. ULTRASONICS SONOCHEMISTRY 2023; 97:106448. [PMID: 37269691 DOI: 10.1016/j.ultsonch.2023.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Natural resource depletion, negative environmental effects and the challenge to secure global food security led to the establishment of the Sustainable Development Goals (SDGs). In need to explore underutilized sustainable protein sources, this study aims at isolating protein from cowpea by ultrasound-assisted extraction (UAE), where the techno-functional characteristics of the protein isolates were studied at different sonication conditions i.e., 100 W and 200 W at processing times ranging from 5 to 20 min. The US at 200 W-10 min produced the optimal results for all properties. In this process combination, there was an increase in protein yield, solubility, water-holding capacity, foaming capacity and stability, emulsion activity and stability, zeta-potential, and in-vitro protein digestibility from 31.78% to 58.96%, 57.26% to 68.85%, 3.06 g/g to 3.68 g/g 70.64% to 83.74%, 30.76% to 60.01%, 47.48% to 64.26%, 56.59% to 87.71%, -32.9 mV to -44.2 mV and 88.27% to 89.99%, respectively and particle size dropped from 763 nm to 559 nm in comparison to control. The microstructure and secondary-structure alterations of proteins caused by sonication were validated by SEM images, SDS-PAGE, and FTIR analyses. Sonication leads to acoustic cavitation and penetrate the cell walls, improving extraction from the solid to liquid phase. After sonication, the hydrophobic protein groups were exposed and proteins were partially denatured which increased its functionality. The findings demonstrated that UAE of cowpea protein improved yield, modify characteristics to fit the needs of the food industry, and contribute to achieving SDGs 2, 3, 7, 12, and 13.
Collapse
Affiliation(s)
- Geetarani Loushigam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India; College of Indigenous Food Technology, Council for Food Research and Development, Konni, Pathanamthitta, Kerala, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India.
| |
Collapse
|
9
|
Habinshuti I, Nsengumuremyi D, Muhoza B, Ebenezer F, Yinka Aregbe A, Antoine Ndisanze M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem 2023; 423:136313. [PMID: 37182498 DOI: 10.1016/j.foodchem.2023.136313] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- INES-Ruhengeri, Institute of Applied Sciences, B.P. 155, Ruhengeri, Rwanda; Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya; Thought For Food Foundation, 2101 Highland Ave, Birmingham, Alabama 35205, USA.
| | | | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Falade Ebenezer
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Afusat Yinka Aregbe
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | | |
Collapse
|
10
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
11
|
Thongkong S, Klangpetch W, Unban K, Tangjaidee P, Phimolsiripol Y, Rachtanapun P, Jantanasakulwong K, Schönlechner R, Thipchai P, Phongthai S. Impacts of Electroextraction Using the Pulsed Electric Field on Properties of Rice Bran Protein. Foods 2023; 12:foods12040835. [PMID: 36832910 PMCID: PMC9956254 DOI: 10.3390/foods12040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The pulsed electric field (PEF) was applied to improve the extraction yield and properties of rice bran proteins from two rice varieties ("Kum Chao Mor Chor 107" and "Kum Doi Saket"). As compared to the conventional alkaline extraction, PEF treatment at 2.3 kV for 25 min increased the protein extraction efficiency by 20.71-22.8% (p < 0.05). The molecular weight distribution detected by SDS-PAGE and amino acid profiles of extracted rice bran proteins was likely unchanged. The PEF treatment influenced changes in the secondary structures of rice bran proteins, especially from the β-turn to the β-sheet structure. Functional properties of rice bran protein including oil holding capacity and emulsifying properties were significantly improved by PEF treatments by about 20.29-22.64% and 3.3-12.0% (p < 0.05), respectively. Foaming ability and foam stability increased by 1.8- to 2.9-fold. Moreover, the in vitro digestibility of protein was also enhanced, which was consistent with the increment of DPPH and ABTS radical-scavenging activities of peptides generated under in vitro gastrointestinal digestion (37.84-40.45% and 28.46-37.86%, respectively). In conclusion, the PEF process could be a novel technique for assisting the extraction and modification of the protein's digestibility and functional properties.
Collapse
Affiliation(s)
- Saban Thongkong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Kridsada Unban
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Regine Schönlechner
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Parichat Thipchai
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence:
| |
Collapse
|
12
|
Zhang S, Sun L, Dong L, Bao Z, Lin S. Targeted regulation of pulsed electric field (PEF) treatment on responsive amino acids based on the molecular dynamic simulation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Dash DR, Singh SK, Singha P. Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:3151-3166. [PMID: 36218326 DOI: 10.1080/10408398.2022.2130161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.
Collapse
Affiliation(s)
- Dibya Ranjan Dash
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
14
|
He L, Wang X, Wang Y, Luo J, Zhao Y, Han G, Han L, Yu Q. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded cowhide collagen. Food Chem 2022; 405:134793. [DOI: 10.1016/j.foodchem.2022.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
15
|
Rafique H, Dong R, Wang X, Alim A, Aadil RM, Li L, Zou L, Hu X. Dietary-Nutraceutical Properties of Oat Protein and Peptides. Front Nutr 2022; 9:950400. [PMID: 35866075 PMCID: PMC9294724 DOI: 10.3389/fnut.2022.950400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Oats are considered the healthiest grain due to their high content of phytochemicals, dietary fibers, and protein. In recent years, oat protein and peptides have gained popularity as possible therapeutic or nutraceutical candidates. Generally, oat peptides with bioactive properties can be obtained by the enzymatic hydrolysis of proteins and are known to have a variety of regulatory functions. This review article focused on the nutraceutical worth of oat proteins and peptides and also describes the application of oat protein as a functional ingredient. Outcomes of this study indicated that oat protein and peptides present various therapeutical properties, including antidiabetic, antioxidant, antihypoxic, antihypertensive, antithrombotic, antifatigue, immunomodulatory, and hypocholestrolaemic. However, most of the conducted studies are limited to in vitro conditions and less data is available on assessing the effectiveness of the oat peptides in vivo. Future efforts should be directed at performing systematic animal studies; in addition, clinical trials also need to be conducted to fully support the development of functional food products, nutraceutical, and therapeutical applications.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Aamina Alim
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
16
|
Characterization of a synergistic antioxidant synthetic peptide from sea cucumber and pine nut. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2306-2317. [PMID: 35602437 DOI: 10.1007/s13197-021-05245-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
We compared antioxidant activity of the synthetic peptide Val-Leu-Leu-Tyr-Gln-Asp-His-Cys-His (VLLYQDHCH), sea cucumber peptide Val-Leu-Leu-Tyr (VLLY) and pine seed peptide Gln-Asp-His-Cys-His (QDHCH). The structure-activity relationship was analyzed based on radical scavenging ability and Raman, circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). Based on RP-HPLC, the contents of peptides in simulated gastrointestinal tract and digestive juices in rat intestinal sac were determined, and their absorption stability were explored. These results showed that the DPPH clearance rate of VLLYQDHCH was 45.90% higher than the sum of VLLY and QDHCH at 3 mmol/L. The α-helix, β-sheet and random coil of VLLYQDHCH increased, β-turn decreased, and the active hydrogen site shifted. After simulated digestion and absorption, the retention rate of VLLYQDHCH was 80.86 ± 0.88% in simulated stomach and 45.75 ± 0.97% in simulated intestine. There was no significant difference in the absorption rates of the three peptides (P > 0.05). This research provided a new idea for the development of safe and green food-derived animal-plant protein antioxidant peptides. Graphic abstract
Collapse
|
17
|
Lu H, Fang L, Wang X, Wu D, Liu C, Liu X, Wang J, Gao Y, Min W. Structure-Activity Relationship of Pine Nut-Derived Peptides and Their Protective Effect on Nerve-Cell Mitochondria. Foods 2022; 11:foods11101428. [PMID: 35626998 PMCID: PMC9140850 DOI: 10.3390/foods11101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the structure-activity relationship of the pine nut antioxidant peptide WYPGK and its derivative peptides, and to evaluate the protective effect of the latter on oxidative damage to mitochondrial structure and function in PC12 cells. Molecular docking revealed the derivative peptides WYFGK and WYSGK to have higher affinity to the active region of sirtuin 3 (SIRT3) (−6.08 kcal/mol and −5.87 kcal/mol, respectively), hence indicating that they are promising SIRT3 inducers and antioxidant factors. The derivative peptide WYSGK presented the highest ORAC value (5457.70 µmol TE/g), ABTS scavenging activity (70.05%), and Fe2+-chelating activity (81.70%), followed by WYPGK and WYFGK. Circular dichroism and nuclear magnetic resonance data suggested that the presence of 3-Ser in WYSGK increased its β-sheet content, and that the active hydrogen atoms produced chemical shifts. In H2O2-induced PC12 cells, WYSGK substantially reduced ROS and MDA levels, and increased ATP levels. Transmission electron microscopy and Seahorse Analyze assay proved the peptide WYSGK to significantly alleviate mitochondrial damage and respiratory dysfunction (p < 0.05), thereby implying that a study of structure-activity relationships of the peptides can possibly be an effective approach for the development of functional factors.
Collapse
Affiliation(s)
- Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.F.); (X.W.); (D.W.); (C.L.); (X.L.); (J.W.); (Y.G.)
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, China
- Correspondence: ; Tel.: +86-139-4491-9697; Fax: +86-431-8451-7235
| |
Collapse
|
18
|
Study on the characterization of polysaccharide from Tuber sinense and its desensitization effect to β-lactoglobulin in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
21
|
Psarianos M, Dimopoulos G, Ojha S, Cavini ACM, Bußler S, Taoukis P, Schlüter OK. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Explore the mechanism of pulsed electric field technology on improving the antioxidant activity of Leu-Tyr-Gly-Ala-Leu-Gly-Leu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front Nutr 2022; 8:815640. [PMID: 35127796 PMCID: PMC8810531 DOI: 10.3389/fnut.2021.815640] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bioactive peptides generated from food proteins have great potential as functional foods and nutraceuticals. Bioactive peptides possess several significant functions, such as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antihypertensive effects in the living body. In recent years, numerous reports have been published describing bioactive peptides/hydrolysates produced from various food sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in the plant, animal, marine, and dairy products, as well as their by-products. This review also emphasizes the health benefits, bioactivities, and utilization of active peptides obtained from the mentioned sources. Their possible application in functional product development, feed, wound healing, pharmaceutical and cosmetic industries, and their use as food additives have all been investigated alongside considerations on their safety.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- National Research Centre, Department of Food Technology, Food Industries and Nutrition Research Institute, Cairo, Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
24
|
Acevedo‐Juárez S, Guajardo‐Flores D, Heredia‐Olea E, Antunes‐Ricardo M. Bioactive peptides from nuts: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sheccid Acevedo‐Juárez
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Daniel Guajardo‐Flores
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Erick Heredia‐Olea
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Marilena Antunes‐Ricardo
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| |
Collapse
|
25
|
Moaveni S, Salami M, Khodadadi M, McDougall M, Emam-Djomeh Z. Investigation of S.limacinum microalgae digestibility and production of antioxidant bioactive peptides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Venkateswara Rao M, C K S, Rawson A, D V C, N V. Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34751062 DOI: 10.1080/10408398.2021.1997907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plant proteins have recently gained market demand and momentum due to their environmentally friendly origins and health advantages over their animal-derived counterparts. However, their lower techno-functionalities, digestibility, bioactivities, and anti-nutritional compounds have limited their application in foods. Increased demand for physically modified proteins with better techno-functionalities resulted in the application of different thermal and non-thermal treatments to modify plant proteins. Novel physical processing technologies (NPPT) considered 'emerging high-potential treatments for tomorrow' are required to alter protein functionality, enhance bioactive peptide formations, reduce anti-nutritional, reduce loss of nutrients, prevention of damage to heat liable proteins and clean label. NPPT can be promising substitutes for the lower energy-efficient and aggressive thermal treatments in plant protein modification. These facts captivated the interest of the scientific community in designing novel functional food systems. However, these improvements are not verifiable for all the plant proteins and depend immensely on the protein type and concentration, other environmental parameters (pH, ionic strength, temperature, and co-solutes), and NPPT conditions. This review addresses the most promising approaches of NPPT for the modification of techno-functionalities of plant proteins. New insights elaborating the effect of NPPTs on proteins' structural and functional behavior in relation to other food components are discussed. The combined application of NPPTs in the field of plant-based bioactive functionalities is also explored.
Collapse
Affiliation(s)
- Madaraboina Venkateswara Rao
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Sunil C K
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Ashish Rawson
- Department of Food Safety and Quality testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Chidanand D V
- Department of Industry Academia Cell, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| | - Venkatachlapathy N
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM)- Thanjavur (an Institute of National Importance; formerly IIFPT), Thanjavur, India
| |
Collapse
|
27
|
Komorek P, Jachimska B, Brand I. Adsorption of lysozyme on gold surfaces in the presence of an external electric potential. Bioelectrochemistry 2021; 142:107946. [PMID: 34507162 DOI: 10.1016/j.bioelechem.2021.107946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Adsorbed protein films consist of essential building blocks of many biotechnological and biomedical devices. The electrostatic potential may significantly modulate the protein behaviour on surfaces, affecting their structure and biological activity. In this study, lysozyme was used to investigate the effects of applied electric potentials on adsorption and the protein structure. The pH and the surface charge determine the amount and secondary structure of adsorbed lysozyme on a gold surface. In-situ measurements using polarization modulation infrared reflection absorption spectroscopy indicated that the concentration of both the adsorbed anions and the lysozyme led to conformational changes in the protein film, which was demonstrated by a greater amount of aggregated β-sheets in films fabricated at net positive charges of the Au electrode (Eads > Epzc). The changes in secondary structure involved two parallel processes. One comprised changes in the hydration/hydrogen-bond network at helices, leading to diverse helical structures: α-, 310- and/or π-helices. In the second process β-turns, β-sheets, and random coils displayed an ability to form aggregated β-sheet structures. The study illuminates the understanding of electrical potential-dependent changes involved in the protein misfolding process.
Collapse
Affiliation(s)
- Paulina Komorek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland.
| | - Izabella Brand
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
28
|
A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches. Processes (Basel) 2021. [DOI: 10.3390/pr9091626] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to their nutritional and physiological role, proteins are recognized as the major compounds responsible for the rheological properties of food products and their stability during manufacture and storage. Furthermore, proteins have been shown to be source of bioactive peptides able to exert beneficial effects on human health. In recent years, scholarly interest has focused on the incorporation of high-quality proteins into the diet. This fact, together with the new trends of consumers directed to avoid the intake of animal proteins, has boosted the search for novel and sustainable protein sources and the development of suitable, cost-affordable, and environmentally friendly technologies to extract high concentrations of valuable proteins incorporated into food products and supplements. In this review, current data on emergent and promising methodologies applied for the extraction of proteins from natural sources are summarized. Moreover, the advantages and disadvantages of these novel methods, compared with conventional methods, are detailed. Additionally, this work describes the combination of these technologies with the enzymatic hydrolysis of extracted proteins as a powerful strategy for releasing bioactive peptides.
Collapse
|
29
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Validation of Steric Configuration Changes Induced by a Pulsed Electric Field Treatment as the Mechanism for the Antioxidant Activity Enhancement of a Peptide. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Ma Y, Huang K, Wu Y. In Vivo/In Vitro Properties of Novel Antioxidant Peptide from Pinctada fucata. J Microbiol Biotechnol 2021; 31:33-42. [PMID: 32807751 PMCID: PMC9705889 DOI: 10.4014/jmb.2006.06002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p < 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.
Collapse
Affiliation(s)
- Yongkai Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou 50300, P. R. China,School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Kehui Huang
- Guangzhou Maritime University, Guangzhou 510725, P.R. China
| | - Yanyan Wu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou 50300, P. R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, P.R. China,Corresponding author Phone: ±86-20-34063583 Fax: +86-20-84451442 E-mail:
| |
Collapse
|
33
|
Bhat ZF, Morton JD, Mason SL, Jayawardena SR, Mungure T, Bekhit AEA. Cooking does not impair the impact of pulsed electric field on the protein digestion of venison (
Cervus elaphus
) during
in vitro
gastrointestinal digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zuhaib F. Bhat
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - James D. Morton
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Susan L. Mason
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Sasika Reshan Jayawardena
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Tanyaradzwa Mungure
- Department of Food Sciences University of Otago P.O. Box 56 Dunedin9054New Zealand
| | | |
Collapse
|
34
|
Zhang S, Sun L, Ju H, Bao Z, Zeng XA, Lin S. Research advances and application of pulsed electric field on proteins and peptides in food. Food Res Int 2021; 139:109914. [DOI: 10.1016/j.foodres.2020.109914] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/14/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
|
35
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
36
|
Dong M, Tian H, Xu Y, Han M, Xu X. Effects of pulsed electric fields on the conformation and gelation properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: A molecular dynamics study. Food Chem 2020; 342:128306. [PMID: 33069524 DOI: 10.1016/j.foodchem.2020.128306] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023]
Abstract
The potential of pulsed electric field (PEF) of different intensities (8, 18, and 28 kV/cm) on the conformation and gelation properties of myofibrillar proteins (MPs) extracted from pale, soft, and exudative-like (PSE-like) chicken meat was investigated. The results showed a positive correlation between gelation properties and PEF intensities in the range of 8-18 kV/cm; however, a further increase in intensity had a negative impact. Optimized PEF treatment (18 kV/cm) was capable of inducing MPs with a relatively small particle size, thus contributing to the production of a more homogeneous gel structure. The water distribution and mobility in the gel system significantly changed with increasing PEF intensities, the proportion of immobilized water (P21) increased, and that of free water (P22) decreased. Based on molecular dynamics simulations (MDS), an increasing trend in the number of hydrogen bonds and a reduction in the radius of gyration (Rg) after PEF treatment.
Collapse
Affiliation(s)
- Ming Dong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Huixin Tian
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yujuan Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Minyi Han
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
37
|
Park KJ, Khan Z, Subedi L, Kim SY, Lee KR. Antineurodegenerative Labdane Diterpenoid Glycosides from the Twigs of Pinus koraiensis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1794-1803. [PMID: 32520551 DOI: 10.1021/acs.jnatprod.9b01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eleven new labdane-type diterpenoid glycosides, koraiensides A-K (1-11), together with two known analogues were isolated from the twigs of Pinus koraiensis. Their structures were elucidated via NMR, HRMS, and ECD data, DP4+ statistical analysis, and hydrolysis. The metabolites were tested for induction of nerve growth factor in C6 glioma cells to evaluate their potential neuroprotective activity. The compounds were measured for production of nitric oxide levels in lipopolysaccharide (LPS)-activated murine microglia BV2 cells to assess their antineuroinflammatory activity. Compounds 10 and 13 showed NGF secretion inducing effects from C6 glioma cells (162.3 ± 13.9% and 162.7 ± 6.9%, respectively). Compound 6 showed an IC50 value of 24.1 μM, implying significant inhibition of NO production.
Collapse
Affiliation(s)
- Kyoung Jin Park
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | | | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
38
|
The mechanism of pulsed electric field (PEF) targeting location on the spatial conformation of pine nut peptide. J Theor Biol 2020; 492:110195. [DOI: 10.1016/j.jtbi.2020.110195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/30/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
|
39
|
Sun L, Zhang S, Ju H, Bao Z, Lin S. Tryptophan targeted pulsed electric field treatment for enhanced immune activity in pine nut peptides. J Food Biochem 2020; 44:e13224. [PMID: 32266992 DOI: 10.1111/jfbc.13224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
To investigate immune activity of pine nut peptides treated by PEF technology and mechanism of targeting immunoactive sitesits, immune regulatory active was evaluated by RAW 264.7 cells model and the structures of pine nut peptides were researched by fluorescence, CD, and 1D/2D NMR spectrum. These consequences showed the ability of macrophages to phagocytosis neutral red and the production of nitric oxide (NO) were improved after PEF treatment. KWFCT treated by PEF treatment with 40 kV/cm obtained the best immunocompetence. The CD spectroscopy showed that PEF could transform the secondary structures of pine nut peptides. The short-range correlation between Cγ H (1.65 ppm) and Cα H (3.35 ppm), and long-range correlation between Cα H (3.37 ppm) and Nα H (8.07 ppm) were enhanced by PEF treatment. PEF treatment of tryptophan in the pine nut peptides enhanced the immunological activity of the pine nut peptides. PRACTICAL APPLICATIONS: Bioactive peptides derived from food proteins have been extensively studied in recent years. However, little research has been done on the immunoactive peptide of pine nut source. PEF treatment is promising for improving certain properties of foods while maintaining the flavor, color, taste, and nutritional value of the food. This research demonstrated that PEF treatment increased the immunological activity of KWFCT and KWFM. The primary structure of KWFCT and KWFM did not change after PEF treatment, but the secondary structure was transformed into each other. A new perspective on the PEF action site is proposed, which is beneficial to the application of PEF technology.
Collapse
Affiliation(s)
- Liangzi Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
40
|
Sun L, Zhang S, Yuan L, Yang Y, Lin S. Glutamine and methionine targeted pulsed electric field treatment for enhanced immune activity in pine nut Gln‐Trp‐Phe‐Met peptides. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- LiangZi Sun
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Liyan Yuan
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yiying Yang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Songyi Lin
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
41
|
|
42
|
A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020; 131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Improper nutrition provokes many types of chronic diseases and health problems, which consequently are associated with particularly high costs of treatments. Nowadays, consumer's interest in healthy eating is shifting towards specific foods or food ingredients. As a consequence, bioactive peptides as a promising source of health promoting food additives are currently an intensely debated topic in research. Process design is still on its early stages and is significantly influenced by important preliminary decisions. Thus, parameters like peptide bioactivity within the product, selection of the protein source, enzyme selection for hydrolysis, peptide enrichment method, as well as stability of the peptides within the food matrix and bioavailability are sensitive decision points, which have to be purposefully coordinated, as they are directly linked to amino acid content and structure properties of the peptides. Branched chain amino acids (BCAA) are essential components for humans, possessing various important physiologic functions within the body. Incorporated within peptide sequences, they may induce dual functions, when used as nutraceuticals in functional food, thus preserving the foodstuff and prevent several widespread diseases. Furthermore, there is evidence that consuming this peptide-class can be a nutritional support for elderly people or improve human health to prevent diseases caused by incorrect nutrition. Based on the knowledge about the role of BCAA within various peptide functions, discussed in the review, special attention is given to different approaches for systematic selection of the protein source and enzymes used in hydrolysis, as well as suitable peptide enrichment methods, thereby showing current trends in research.
Collapse
|
43
|
Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102277] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Structural characterization and in vitro hepatoprotective activity of polysaccharide from pine nut (Pinus koraiensis Sieb. et Zucc.). Carbohydr Polym 2019; 223:115056. [DOI: 10.1016/j.carbpol.2019.115056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
|
45
|
Zhang C, Li L, Wang Y, Hu X. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature (16 ± 1 °C). BIORESOURCE TECHNOLOGY 2019; 292:121960. [PMID: 31437798 DOI: 10.1016/j.biortech.2019.121960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
The effects of different frequencies of pulsed electric field (PEF) on the ANAMMOX process were investigated. The results showed that the intermediate frequency could dramatically enhance both the ANAMMOX bacterial activity and granule sludge stability at 16 ± 1 °C The nitrogen removal efficiency of R1 (intermediate frequency) was significantly enhanced by 62.24% and 79.51% compared to R2 (lower frequency) and R3 (higher frequency), with a nitrogen loading rate of 6.84 kg Nm-3 d-1. In addition, the intermediate frequency could stimulate cells to secrete more extracellular polymeric substances (EPS) to sustain the granule sludge stability. The granule sludge disintegrated on days 55 and 35 in R2 and R3. The protein (PN)/polysaccharide (PS) ratios of R1 were 28.46% and 54.20% higher than R2 and R3, which was beneficial to granule sludge stability. This study showed that PEF could solve the problem of decreased ANAMMOX bacterial activity and granule stability at lower temperatures.
Collapse
Affiliation(s)
- Chi Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Yujia Wang
- Shenyang JianZhu Univ, Sch Municipal & Environm Engn, Shenyang 110168, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
46
|
Wu D, Sun N, Ding J, Zhu B, Lin S. Evaluation and structure-activity relationship analysis of antioxidant shrimp peptides. Food Funct 2019; 10:5605-5615. [PMID: 31432849 DOI: 10.1039/c9fo01280j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of amino acids Gln and Lys on the antioxidant ability of peptides were investigated in this study. The identified peptides Lys-Met-Asp-Asp-Lys (KMDDK), Lys-Met-Asp-Asp-Gln (KMDDQ), Gln-Met-Asp-Asp-Lys (QMDDK), and Gln-Met-Asp-Asp-Gln (QMDDQ) were used to investigate their antioxidant activity and the structure-activity relationship by using UPLC-Q-TOF-MS, flow cytometry, laser scanning confocal microscopy and 1H NMR spectroscopy. The results indicated that the four pentapeptides significantly increased the viability of PC12 cells and inhibited cell apoptosis and that QMDDQ possessed a stronger survival activity than the others in cell apoptosis. Moreover, the four peptides significantly decreased the scopolamine-induced ROS and LDH content in PC12 cells, and upregulated the SOD activity to the level of the scopolamine group. The DPPH and hydroxyl radical scavenging of QMDDQ were higher than those of the other peptides at 0.5 mg mL-1 and 1.0 mg mL-1 (P < 0.05). 1H NMR spectra revealed that the prominent antioxidant ability of QMDDQ might be attributed to more active hydrogen sites and functional groups. The carboxyl active hydrogen atoms and amino active hydrogen atoms as active sites play a critical role in the antioxidant capacity.
Collapse
Affiliation(s)
- Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China and National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - BeiWei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China and National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| |
Collapse
|
47
|
Liu X, Liu J, Zhang W, Han S, Zhang T, Liu B. Electron beam irradiation-induced structural changes increase the antioxidant activities of egg white protein. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Res Int 2019; 120:793-799. [DOI: 10.1016/j.foodres.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
|
49
|
Zhang S, Liang R, Zhao Y, Zhang S, Lin S. Immunomodulatory Activity Improvement of Pine Nut Peptides by a Pulsed Electric Field and Their Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3796-3810. [PMID: 30864792 DOI: 10.1021/acs.jafc.9b00760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, Alg-Gly-Ala-Val-Leu-His (RGAVLH) obtained from pine nut ( Pinus koraiensis Sieb. et Zucc.) protein was chosen to investigate the phenomenon of immunomodulatory activity improvement upon pulsed electric field (PEF) processing. The influence of electric field intensity on immunomodulatory activity of RGAVLH was evaluated using RAW 264.7 cells. It was found that RGAVLH can not only significantly ( p < 0.05) improve the capability of macrophage phagocytosis but also promote the production of nitric oxide. RGAVLH treated under an electric field intensity of 40 kV/cm exhibited the best immunomodulatory activity. The primary and secondary structures of PEF-treated peptides were analyzed by mid-infrared (MIR) spectroscopy, Raman spectroscopy, circular dichroism spectroscopy, and one-dimensional/two-dimensional nuclear magnetic resonance spectroscopy. After PEF treatment, the primary structure of RGAVLH was not influenced, as evaluated by MIR and Raman spectra. In addition, the content of β-sheet was decreased and active hydrogen was changed in PEF-treated RGAVLH solution. Moreover, the long-range connectivity between CαH (3.39 ppm) and NαH (8.24 ppm) was enhanced by PEF. Therefore, the improvement of the immunomodulatory activity of RGAVLH might result from the changes of the spatial state and spatial force in the peptide solution system.
Collapse
Affiliation(s)
- Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Rong Liang
- College of Agriculture , Liaocheng University , Liaocheng , Shandong 252000 , People's Republic of China
| | - Yu Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
50
|
Zhang C, Li L, Hu X, Wang F, Qian G, Qi N, Zhang C. Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature. BIORESOURCE TECHNOLOGY 2019; 275:225-231. [PMID: 30593941 DOI: 10.1016/j.biortech.2018.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
This study explored the effect of a pulsed electric field (PEF) on the anaerobic ammonium oxidation (ANAMMOX) process at room temperature (20 ± 1 °C). The influences of different modes of PEF (R1), a direct current electric field (R2) and a control reactor (R3) were determined through long-term tests. The results showed that R1 shortened the start-up time and led to excellent nitrogen removal. At this stage, the activities of key enzymes of R1 were much higher than those of R3. The high-throughput sequencing results showed that the relative abundance of functional bacteria in R1 was higher than that in R2 and R3. The mechanism by which the PEF enhanced ANAMMOX might be the improvement of the speed of ion and molecular migration that occurred by changing the permeability of the cell membrane under the PEF.
Collapse
Affiliation(s)
- Chi Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Fan Wang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Guangsheng Qian
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Nan Qi
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Chao Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|